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ABSTRACT
We study the k-committee selection rules minimax approval, pro-
portional approval, and Chamberlin-Courant’s approval. It is known
thatWinner Determination for these rules is NP-hard. Moreover,
the parameterized complexity of the problem has also been studied
with respect to some natural parameters. However, there are still
numerous parameterizations that have not been considered. We
revisit the parameterized complexity ofWinner Determination
for these rules by considering several important single parame-
ters, combined parameters, and structural parameters, aiming at
detecting as many fixed-parameter tractability results as possible.
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1 INTRODUCTION
Multi-winner voting rules have received a considerable amount of
attention recently due to its significant applications in many ar-
eas [1, 9, 10, 19]. Calculating the winning candidates (k-committee)
is of particular importance for voting. Intractability of winner de-
termination for a multi-winner rule precludes the applications of
this rule in practice. Fortunately, many multi-winner rules such as
STV, Bloc, k-Borda, admit polynomial-time algorithms to determine
the winners [7]. However, there are also important multi-winner
rules for which the Winner Determination problem is NP-hard.
Among them are minimax approval voting (MAV) [4, 14], propor-
tional approval voting (PAV) [2, 11, 18], and Chamberlin-Courant’s
approval voting (CCA) [5, 17]. In spite of the intractability of Win-
ner Determination, PAV, MAV and CCA in fact satisfy many
desirable axiomatic properties [1, 9, 11–13], which advances the
study of many topics around these rules. In addition, even when
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a problem is shown to be NP-hard, there are still prominent ap-
proaches to handle the problem efficiently. For instance, if one
compromises on the quality of the solution, one could resort to
approximation or heuristic algorithms. If, however, one insists on
seeking an optimal solution, then one of the most prominent tools
is arguably the parameterized complexity, which, by introducing a
proper parameter can make a hard problem tractable with respect
to the selected parameter. We refer to Chapter 11 of [8] for a nice
survey of parameterized complexity used in computational social
choice. This paper is concerned with the parameterized complexity
of Winner Determination for MAV, PAV, and CCA.

2 PRELIMINARIES
An election is a tuple E = (C,V ) where C is the set of candidates
andV the multiset of votes, each of which is defined as a nonempty
subset of C . We say a vote v approves a candidate c if c ∈ v . Let
k be a positive integer such that k ≤ |C |. A k-committee selection
rule (k-multi-winner rule) maps each election (C,V ) to a subset
w ⊆ C such that |w | = k . The subsetw is called a k-committee. In
this paper, we study the following k-committee selection rules. We
exchangeably use the terms “vote” and “voter”.

MAV The MAV score of a committee w with respect to an
election (C,V ) is MAV(V ,w ) = maxv ∈V ( |v \w | + |w \v |).
MAV selects a k-committee with minimum MAV score.

CCA A voter v is satisfied with a committee w if and only
if at least one of v’s approved candidates is included in w ,
i.e., v ∩w , ∅. The CCA score of w with respect to (C,V ),
denoted CCA(V ,w ), is the number of voters satisfied byw .
CCA selects a k-committee with maximum CCA score.

PAV The PAV score of a committeew with respect to (C,V ) is

PAV(V ,w ) =
∑

v ∈V ,v∩w,∅

(1 +
1
2
+ · · · +

1
|v ∩w |

).

PAV selects a k-committee with maximum PAV score.
Let τ ∈ {PAV, CCA, MAV}. The decision version of the winner

determination problem for τ is defined as follows.

Winner Determination for τ (τ -WD)
Input: An election E = (C,V ) and two positive integers k ≤ |C |
and d .
Question: Is therew ⊆ C such that |w | = k and MAV(V ,w ) ≤ d
for τ = MAV, and τ (V ,w ) ≥ d for τ ∈ {PAV, CCA}?
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single parameter combined parameter structural parameter
d m n k k̄ (△V , △C ) k, △C k, △V k̄, △C k̄, △V d, △V ω α

MAV FPT FPT FPT W[2]-h W[2]-h
(≥ 2, ≥ 3):

FPT FPT FPT W[2]-h FPT
w.r.t.

FPTNP-h [14] ω, k
[15] [15] [15] others: P FPT

CCA 2O (d ) FPT
nn [3]

W[2]-h W[1]-h
(≥ 2, ≥ 3):

FPT W[1]-h FPT W[1]-h FPT 4ω 4αNP-h [16]
2O (n) [3] others: P

PAV ? FPT FPT W[1]-h

(≥ 2, ≥ 3):

W[1]-h FPT

w.r.t.

FPT
W[1]-h NP-h[2] w.r.t. k W[1]-h w.r.t. k̄ , ω, k
[2] (≥ 3, 2): ? △C , △V [2] △C , △V FPT

others: P FPT FPT

Table 1: Our results are in boldface. For FPT-results with single-exponential time algorithms, we give the running time in the
table with the bigO∗ () omitted. Entries marked with “?” mean that the corresponding results remain open. ω is the parameter
tree-width and α is the size of maximummatching of the incident graph of the given election.

In the following, letm be the number of candidates, i.e.,m = |C |,
n the number of votes, i.e., n = |V |, k̄ = m − k , △V the maximum
number of candidates a voter approves, i.e., △V = maxv ∈V {|v |},
and △C the maximum number of voters a candidate is approved,
i.e., △C = maxc ∈C {|v ∈ V | c ∈ v |}.

3 OUR CONTRIBUTION
Single-parameters. It is easy to see thatWinner Determination
for PAV, MAV and CCA is fixed-parameter tractable (FPT) with
respect tom. Misra, Nabeel and Singh [15] proved that MAV-WD is
FPT with respect to d and n, but becomes W[2]-hard with respect
to k . Betzler, Slinko and Uhlmann [3] proved that CCA-WD is FPT
with respect to n, but turn out to be W[2]-hard with respect to
k . Moreover, they considered a dual parameter R = n − d . They
proved that CCA-WD is NP-hard even for R = 0, but presented
an FPT-algorithm with respect to the combined parameter k + R.
Aziz et al. [2] proved that PAV-WD is W[1]-hard with respect to k
even if every voter approves at most two candidates. We first close
some gaps and improve an FPT-algorithm. Concretely, we propose
an FPT-algorithm for PAV-WD with respect to n. With respect to
the parameter d , we show that CCA-WD is FPT by developing a
single-exponential time algorithm. For the parameter n, the FPT-
algorithm for CCA-WD studied in [3] runs in time O∗ (nn ). We
significantly improve the result by proposing an FPT-algorithm
running in time O∗ (2O (n) ). Second, we study a natural parameter
k̄ =m−k , i.e., the number of candidates that are not expected to be
in the k-committee. With respect to this parameter, we prove that
MAV-WD is W[2]-hard, and CCA-WD and PAV-WD are W[1]-hard.
Third, based on previous results we achieve some dichotomy results
with respect to the two natural parameters △C and △V . It is known
that PAV-WD, MAV-WD and CCA-WD are already NP-hard when
△C = 3 and △V = 2 [2, 14, 16]. We prove that MAV-WD and CCA-
WD become polynomial-time solvable if △C ≤ 2 or △V ≤ 1, and
PAV-WD becomes polynomial-time solvable if △C = 1, or △V = 1,
or △C = △V = 2.

Combined parameters. Obviously, if a problem is FPT with
respect to a parameter p then it is FPT with respect to any combined

parameter which can be bounded from below by a computable
function of p. Therefore, for MAV and CCA, and combinations of
two single parameters, it only makes sense to study the following
ones: k+△V ,k+△C , k̄+△V , k̄+△C . We establish many FPT results
with respect to these combined parameters. Concretely, we obtain
FPT results for MAV-WD and CCA-WD with respect to both k +△C
and k̄ + △C . However, we show that MAV-WD is W[2]-hard and
CCA-WD is W[1]-hard with respect to k̄ + △V . With respect to
k + △V , we develop an FPT-algorithm for MAV-WD but show that
CCA-WD is W[1]-hard. Concerning PAV, the reduction by Aziz et
al. [2] implies that PAV-WD is W[1]-hard with respect to k + △V .
We show that the same result holds for the combined parameter
k̄ +△V too. We are not able to show the fixed-parameter tractability
of PAV-WD with respect to the single-parameter d , but we show
that combining d with △V leads to an FPT result. Moreover, if we
combine k,△C and △V , or combine k̄,△C and △V we also have FPT
results for PAV-WD.

Structural parameters. So far the most studied structural pa-
rameters for multi-winner determination are based on various con-
cepts of restricted domains, such as single-peaked or single-crossing
domains (see, e.g., [3, 6, 20]). In this paper, we study some differ-
ent structural parameters. Given an election E = (C,V ) we can
construct a bipartite graph GE , called the incident graph of E, with
vertex set C ∪V . There is an edge between a candidate c ∈ C and
a vote v ∈ V if and only if c ∈ v . We study the tree-width of GE
and the size of a maximum matching of GE . We prove that CCA-
WD is FPT with respect to the tree-width of GE , and MAV-WD
and PAV-WD are FPT if we combine the tree-width of GE and the
parameter k . With respect to the size of a maximum matching of
GE , we present FPT results for all three voting rules.

Our results are summarized in Table 1.
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