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ABSTRACT

Although many reinforcement learning methods have been
proposed for learning the optimal solutions in single-agent
continuous action domains, multiagent coordination domains
with continuous action have received relatively few investi-
gations. In this paper, we propose an independent learner
hierarchical method, named Sample Continuous Coordination
with recursive Frequency Maximum Q-Value (SCC-rFMQ),
which divides the coordination problem into two layers. The
first layer samples a finite set of actions from the continu-
ous action spaces by a sampling mechanism with variable
exploratory rates, and the second layer evaluates the actions
in the sampled action set and updates the policy using a
multiagent reinforcement learning coordination method. By
constructing coordination mechanisms at both levels, SCC-
rFMQ can handle coordination problems in continuous action
cooperative Markov games effectively. Experimental result-
s show that SCC-rFMQ outperforms other reinforcement
learning algorithms.
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1 INTRODUCTION

A large number of multiagent coordination domains involve
continuous action spaces [7, 13], where agents not only need
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to coordinate with other agents towards desirable outcomes
efficiently [1, 5, 6, 8, 9, 20],but also have to deal with infinitely
large action spaces [3, 4, 10-12, 15, 16, 18].

We propose a reinforcement learning method for multiagen-
t continuous-actions coordination problems named Sample
Continuous Coordination with recursive Frequency Maxi-
mum Q-Value(SCC-rFMQ), which divides the problem into
two layers: (1) the action set modification layer; (2) the e-
valuation and policy updating layer. The first layer extracts
a discrete action set from the original continuous action s-
paces by a variation of re-sampling mechanism inspired by
SMC [3]. The new re-sampling mechanism preserves the best
action of each agent and uses a variable exploratory rate
to control the resample distribution and the convergence of
the re-sampling mechanism. The variable exploratory rate
is adjusted by a strategy named the Win or Learn More
(WoLM) principle, to handle non-stationarity and stochas-
ticity problems in cooperative MASs during the action set
modification period. In the evaluation and policy updating
layer, we extend the PHC algorithm [2] with the idea of the
rFMQ methods [6] such that it can handle coordination prob-
lems in multiagent multi-state environments. Experimental
results show that SCC-rFMQ outperforms other algorithms
regarding coordination efficiency and effectiveness.

2 SCC-RFMQ

The SCC-rFMQ divides the learning process into two layers:
the action set modification layer, and the evaluation and
policy updating layer. To handle coordination problems, we
add a coordination strategy for each layer.

In SCC-rFMQ), the initial sample set A;(s) is a subset of
the continuous action set A;(s) with |A;(s)| = n, where all
elements a € A;(s) are randomly selected from A;(s). Each
round in SCC-rFMQ consists of two steps, i.e., Action set
modification (Line 5) and Evaluation & Policy updating (Line
6). First, whenever the resample condition is satisfied, the
sample set A;(s) is updated by the Coordination Resample
strategy. The condition we used here is quite simple: every
¢ rounds for each state. Next, it moves to the valuation
and policy updating, which evaluates action values in A;(s)
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Algorithm 1 SCC-rFMQ for agent ¢ with n samples

1: For all state s € S, initialize the available action set A;(s)
by drawing n samples from A;(s)
repeat
s < initial state
repeat
Action set modification:
if resample condition is satisfied then
Resample A;(s) using the SCC strategy
6: Evaluation & Policy updating:
for all a € A;(s) do
Update m;(s,a) and Q;(s,a) by multi-state rTFMQ
Update state: s <+ s’
8: until s is an absorbing state
9: until the repeated game ends

R

and updates the policy using the multi-state rTFMQ learning
strategy.

Sample Continuous Coordination (SCC) Strategy. To solve
learning problems in continuous action cooperative multia-
gent games, the SCC strategy preserves the currently best
action and resamples n — 1 new actions according to a vari-
able probability distribution, and use a variable exploratory
rate to control the convergence of the sampling strategy by
adjusting the sampling probability distribution adaptively.
We propose WoLLM principle to adjust the exploratory rate.

Specifically, we first update the exploratory rate ;(s) for
agent ¢ at state s following the WoLM principle. If the cur-
rent average reward is no less than the accumulate average
reward V;(s), l;(s) is decreased to l;(s)dq (64 < 1), otherwise,
it is increased to l;(s)d; (6; > 1). The variable exploration
rate [;(s) ensures that the sampling range can be adaptive-
ly changed in response to the changing environment, while
also ensures that sampling can find optimal solutions effi-
ciently. Then, we update the accumulate reward V;(s) using
the learning rate as. Next, the available action set A;(s) is
resampled by preserving the currently best action amaq, and
drawing n — 1 new samples following uniform distribution
U [amaz — 1i(8); Gmaz + 1:(8)]. In this way, when actions in
A;(s) are close to the optimal action of the whole action
space A;(s), the exploratory rate l;(s) ) will be gradually de-
creased to a very small value and eventually reaches 0. Thus
it ensures that our algorithm can converge to an optimal
policy. Finally, m;(s,a) and Q;(s,a) are re-initialized to 1/n
and 0, to ensure that each new sampled action has enough
observations to obtain a relatively correct estimate @) given
that the total number of observations are limited.

Multi-state rFMQ Strategy. Combining with the idea of
rFMQ, we extend the PHC algorithm to multi-state multi-
agent games. Initially, if the set A;(s) has been resampled,
Fi(s,a), Q7***(s,a) and E;(s,a) are initialized for all ac-
tions in A;(s), where E;(s,a) is a weighted average result
of Qi(s,a) and the historical maximum of the state-action

pair Q7**"(s,a), and F;(s,a) is the weight estimating the
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frequency of receiving the maximum reward when action a
is executed. After initialization, agent i selects an action a
based on policy 7;(s,a) with certain degree of explorations,
and receives reward r; then, the expected reward Q;(s,a)
is updated by Q-learning strategy [19]. Next, the process
of calculating F;(s,a) is a natural extension of the original
single-state rTFMQ [6] to multiple states. Specially, F;(s,a) is
recursively computed using a learning rate oy,

1 r+ymaxQi(s’,a’) > Qmas(s,a)
(I—ap)F+ap r+ymaxQi(s’,a') = Qmas(s, a)
(1—ap)F r+ymaxQi(s’,a") < Qmax(s,a)
and E;i(s,a) « Fi(s,a)Qmaz(s,a) + (1 — Fi(s,a))Qi(s,a).
Finally, the policy m;(s,a) is updated according to F;(s,a)
by PHC strategy [2]. Overall, the improved rFMQ strategy

can be applied in multi-state games and can handle stochastic
coordination problems.

F

3 EXPERIMENTAL EVALUATION

Using the bilinear interpolation techniques [14], we construct
continuous action game models based on two classic matrix
games shown in Figure 1(a), which usually be used to test the
ability to solve non-stationarity and stochasticity problems.
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Figure 1: Performance comparison between SCC-
rFMQ, SMC-learning and rFMQ

We compare our algorithm SCC-rFMQ with SMC-learning
[3], rTFMQ [6] and CALA [17], in continuous CG and continu-
ous PSCG. Both SMC-learning and SCC-rFMQ are initialized
with 5 and 10 samples. For rTFMQ algorithm, we conduct
two games with 5 and 10 evenly distributed actions from the
continuous CG. Figure 1(b) shows the experimental results
in continuous CG and continuous PSCG averaged over 50
runs. We can see that in all cases, our algorithm SCC-rFMQ
significantly outperforms the other three algorithms, followed
by SMC-learning, and CALA performs worst.
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