Robotics Track Extended Abstract

AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

Artificial Emotions as Dynamic Modulators of Individual and
Group Behavior in Multi-robot System
Robotics Track

Jérdme Guzzi, Alessandro Giusti,
Luca M. Gambardella

Dalle Molle Institute for Artificial Intelligence (USI-SUPSI)

Lugano, Switzerland
jerome,alessandrog,luca@idsia.ch

ABSTRACT

We propose a model for adaptation and implicit coordination in
multi-robot systems based on the definition of artificial emotions,
which play two main roles: modulators of individual robot behavior,
and means of communication among different robots for system-
level social coordination. We model emotions as compressed rep-
resentations of a robot’s internal state that are subject to a dy-
namics influenced by internal and external conditions; they can
be efficiently exposed to nearby robots, allowing to achieve local,
group-level behavior adaptation and modulation, with minimal
computational and bandwidth requirements.
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1 INTRODUCTION

In animals, emotions play a dual role: they act as internal modula-
tors of behavior and as mediators of social interaction. The former
role is exemplified by an animal’s increased responsiveness to exter-
nal stimuli when experiencing fear. The latter role is made possible
by the fact that the animal exposes its emotional state (e.g., by chang-
ing body posture), thus implementing a simple yet immediate form
of communication, resulting in a social modulation effect.

We present a general, high-level robot control architecture with
similar mechanisms, encompassing artificial emotion generation
and dynamics, behavior modulation, and emotion-based informa-
tion sharing. Artificial emotions are used to represent a robot’s
internal state in a compressed yet informative form. The emotional
state modulates the robot’s behavior and, at the same time, can
be effectively exposed to other members of the system with very
low bandwidth requirements, resulting in system-level behavior
modulation and coordination in a multi-robot system.

Previous works on affective computing [18] have developed com-
putational emotion models [9, 16], often with explicit biological
inspiration [13, 20, 22]. Different roles of emotions for multi-agent
and multi-robot [6, 19] systems have been investigated in detail,

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10-15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

2189

Gianni A. Di Caro
Carnegie Mellon University in Qatar
Doha, Quatar
gdicaro@cmu.edu

namely: behavior modulation [4, 11, 12]; emotion-based informa-
tion sharing [1, 5, 23]; compressed state representation [10].

Up to our knowledge, our work is the first which encompasses
these three roles in a unified, coherent, high-level architecture. We
exploit the general notion of artificial emotions to obtain, at the
same time, adaptive behaviors for the single robots and the emergence
of coordinated behaviors at the system-level.

In fact, we aim to improve the performance of multi-robot sys-
tems through intrinsic adaptivity and emerging coordination, for
which emotional modeling is a good candidate, as shown by several
related works [2, 3, 14, 17, 21]. We present the high-level robot
control architecture in Section 2 as our main contribution. We use
a multi-robot navigation scenario as a reference example.

2 ARTIFICIAL EMOTIONS MODEL

We illustrate in Figure 1 the basic components of the model —
emotions as compressed internal state; emotions as behavior mod-
ulators; and emotion-based information sharing for system-level
coordination — from the point of view of a robotic agent, part of a
team of cooperative agents, that, at time ¢, is engaged in task T and
has a set of abilities A, a personality P, and an energy level L(t).

2.1 Compressed Internal State

At a time ¢, a robot acquires sensing information x(t) € R to
update its internal state pu(t) € RV, i.e., a description of the cur-
rent situation that is useful to solve the task. For instance, for a
navigation task, this might include velocity, presence of obstacles,
activity of nearby robots, as well as higher-level notions, such as
how predictable the motion of a neighbor is.

We model the internal state as a collection of N micro-states
that influence K affective macro-states £(t) € [0,1]X through a
time-independent surjective function v : RN — [0, 1]X, a concept
loosely borrowed from statistical mechanics. Affective macro-states
should be part of a universally shared vocabulary (e.g., every human
as an idea of what fear is and how it affects behaviors); should be
relevant to the task and the characteristics of the robot, i.e., they
should map to available behavior modulations; and should be a com-
pressed representation of internal states, K < N. In this context,
we define emotions as labels of affective macro-states. Namely, the
k-th affective macro-state ¢ is interpreted as the activation of the
k-th emotion e; € E. For example, Confusion emotion is associated
to an affective macro-state aggregating a collection of micro-states
that describe “how well a sensor is working”, “how often robot’s
goal is changing”, and “how predictable a neighbor is”.
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Figure 1: Information flow in the proposed modular architecture based on affective states: exploded view for Robot 1 and
summarized view for (neighbor) Robot 2. The central part illustrates the emotion dynamics of Robot 1, where affective macro-
states ¢ are also influenced by the emotional state of neighbor robots (red box). The current active emotion e (blue box) of each
robot can be exposed through a very low-bandwidth link (like an RGB LED) and shared with humans.

Active Emotion. At any time, all emotions contribute to modu-
late the robot’s behavior; nonetheless the predominant macro-state
has a particular importance and defines the robot’s active emotion
e(t) = argmax, cp ¢ (t). More precisely, to make the overall re-
sponse robust and avoid oscillations, the selection uses a hysteresis:
the robot keeps the currently-active emotion until the activation
decreases enough or another emotion’s activation rises enough.

Dynamics. In humans, emotions are temporally modulated [15];
here we assume that artificial emotion activations follow a stimulus-
response dynamic %e(t) = g(v(”(t))’i(t);P)_E(t) (
emotion life-time once the stimulus is removed), coupled with an in-
ternal dynamic { that stimulates the activation of an emotion from
(other) emotions and from the compressed internal state, depending
on the personality. For example, a robot that is experiencing con-
fusion and has a personality linked to impulsive, quick-tempered
emotion dynamics, may quickly become frustrated (which in turn
may trigger a behavior that deals with the cause of confusion).

where 7 is the

2.2 Behavior Modulation

We assume that a robot is provided with a set B of predefined behav-
iors. At time t, each behavior b € B can be activated and tuned by
adjusting R;, parameters 8(b; t) € [0, 1]R>. A robot uses the com-
pressed information about its internal state as well as information
about its task, abilities, energy level and personality, to select the ac-
tive behaviors and their parameters through a behavior modulation
function 6(b;t) = © (b, &(t), P, A, T, L(t)). For example, when the
robot increases its Confusion-level, there could by behavior modula-
tions such as: decrease moving speed to avoid collisions; activate an
help-seeking behavior to lower the reliance on its sensors; increase
the number of raw data samples that are filtered to update p.

2.3 Emotion sharing for coordination

The active emotion is the information that describes the robot’s
state best and should be shared with neighbors to favor emerging
coordination in multi-robot systems with minimal communication
overhead; the robot should complement it with data that increases
its predictability. Therefore, the robot publishes, as another in-
stance of generic emotional behavior modulation, the message
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Table 1: Emotional dynamic and modulation in multi-robot
navigation.
Behavior modulation

Emotion  Stimulus

no other active emotion
lack of free space and
many frustrated neighbors
Frustration slow progress to target
Urgency  close to deadline
Confusion many changes of direction

Neutral
Fear

default behavior and parameters
1 cautiousness and | speed

escape crowds

| cautiousness (] neighbors’ cautiousness)
| speed (] neighbors’ cautiousness and
willingness to help)

I(t) = (e(t),ee(t), P, A T, L(t)). Neighboring agents that receive
such message, add its content to their own internal state; this, in
turn, closes the loop by modifying the recipient’s affective macro-
states, active emotion, and communication content and yields an
automatically-regulated shared social emotional state that, if cor-
rectly designed, increases the performance of the system as a whole.
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Table 1 summarizes the example of the proposed framework in the
context of multi-robot navigation that we have been following. Few,
legible, bio-inspired rules (emotionally) modulate the navigation
behavior [8] and define the emotional dynamics. For example, we
impose that fearful agents should be more careful and slow down.
Although the task by itself has no emotional content, introducing
emotions {Neutral, Fear, Frustration, Urgency, Confusion} has been
shown [7] to have a positive impact on performance by preventing
deadlocks, favoring robots with time-critical tasks, and assisting
robots with sensing issues.

Multi-robot navigation

3 CONCLUSIONS

We presented a control architecture for robotic agents that is in-
spired by the dual nature of animal emotions, which act both as
an internal behavior modulator, and as an implicit communication
mechanism that allows for emerging coordination. This approach
simplifies the system design, which decomposes into two modu-
lar, bio-inspired, interpretable and potentially reusable mappings:
compression of internal state and emotional behavior modulation.
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