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ABSTRACT
We assume that service robots will have spare time in between
scheduled user requests, which they could use to perform addi-
tional unrequested services in order to learn a model of users’
preferences and receive reward. However, a mobile service robot is
constrained by the need to travel through the environment to reach
a user in order to perform a service for them, as well as the need to
carry out scheduled user requests. We present modified versions of
Thompson Sampling and UCB1, existing algorithms used in multi-
armed bandit problems, which plan ahead considering the time and
location constraints of a mobile service robot. We compare them to
existing versions of Thompson Sampling and UCB1 and find that
our modified planning algorithms outperform the original versions
in terms of both reward received and the effectiveness of the model
learned in a simulation.
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1 INTRODUCTION
Consider a service robot in an office building that performs services
for users. Users can request services, but the robot can also approach
a user’s office to offer a service that they have not requested. It
would be desirable for such a robot to perform as many successful
services as possible, but some users in a given building might be
more interested in receiving the robot’s services when they have
not requested them than others.

In order tomaximize the service it provides, the robot would have
to learn a model of how likely different users in the building are to
be interested in its services when they have not made any requests.
Then, during the time between scheduled service requests, it would
choosewhich services to perform on theway to its next user request,
striking a balance between learning more about users’ preferences
and offering services that it knows are likely to succeed. Its ability
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to do this is constrained by the need to spend time traveling to
users’ offices to offer services, as well as scheduled requests that
must be performed at specific locations and times.

Previous work with service robots operating in their spare time
has focused on robots that gather knowledge they can use to per-
form scheduled requests. For example, the Dora the Explorer robot
can search for information about where objects can be found that
might be requested by users in the future[3]. In our own previous
work, we studied how the CoBot mobile service robots can use
their spare time to observe when users’ doors are open in order to
improve their ability to schedule user-requested services[4, 5].

In this paper we explore how a service robot can gather informa-
tion in its spare time and use that information to perform additional
services for users. We treat the problem as a variant of the multi-
armed bandit problem (MAB). In a MAB, an agent can pull a variety
of levers, each of which yields a reward from an unknown random
distribution, and must maximize the reward received over time. We
focus on two existing MAB algorithms – Thomspon Sampling, a
probability matching algorithm, and UCB1, an optimistic algorithm
[1, 2, 6] – and adapt them to plan ahead, taking into account the
constraints of a service robot operating in its spare time. We show
that our adapted algorithms outperform the standard versions of
the algorithms used with regular MABs.

2 PROBLEM DESCRIPTION
The environment is represented by an undirected graph. Nodes on
the graph represent offices where the robot can go to offer services
to users, and edge lengths represent the time to travel between
adjacent offices. The robot has a complete and accurate map, and
thus can find the shortest path between any two locations and
accurately predict how long it will take to travel along that path.

We will divide the robot’s time into the segments between sched-
uled user requests. During a segment, the robot begins at location
Lstar t and time t = tstar t , the location and time at which it com-
pleted its last scheduled request. We will assume tstar t = 0 for the
sake of simplicity. The robot must arrive at the location of its next
scheduled request, Lend , by time tend .

In the meantime, the robot can offer services to users. To do so,
it must travel to a user’s office and interact with the user. Each
user u has some probability pu of accepting services offered by
the robot. The robot begins with no knowledge of pu for any user.
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If the user accepts the service, the robot receives a reward of 1,
otherwise it receives a reward of 0. This process takes a time of
tservice , regardless of whether the service is accepted or rejected.
The robot may only offer a service to each user once per segment.
Once it has offered a service to a user, whether it succeeded or
failed, it may not offer a service to the same user again until after
it has completed its next scheduled request.

The goal is to maximize the reward the robot receives over time.
In order to do this, the robot must both learn a model of the likeli-
hood of a service being successful for any given user, and manage
its time during each segment as it travels from user to user offering
services while ensuring that it reaches Lend in time.

3 ALGORITHMS
In this section, we describe the algorithms we created based on
two MAB algorithms, Thompson Sampling and UCB1. For each
algorithm, we describe the standard MAB version of the algorithm,
then contribute our own planning version which better takes into
account the constraints of the spare-time planning problem.

3.1 Planning Thompson Sampling
Thompson sampling is a probability-matching algorithm, in which
the probability the robot chooses an action is equal to the probability
that the action is optimal. This is accomplished by sampling from
the distribution of possible expected rewards based on the samples
the robot has gathered from each office.

For a given office ui , the function Bi (n1,n0) gives the probability
distribution of the true expected reward of that office given that
the robot has performed successful services for that office n1 times
and failed services n0 times, where B(x ,y) =

(x−1)!(y−1)!
(x+y−1)! is the

beta function. If the robot samples a reward from Bj (n1,n0) for
each office uj , then the probability of office ui having the highest
sampled reward is equal to the probability that ui has the highest
true expected reward of any office given the robot’s data.

The standard MAB version of Thompson Sampling works by
repeatedly sampling a reward from each possible action and per-
forming the action with the highest sampled reward. In the context
of the spare-time service problem, the robot chooses the office with
the highest sampled reward that is has time to visit within the
constraints. It travels to that office and offers a service, then re-
peats the process until it does not have time to perform any more
services, and travels to the end location. We refer to this as Naive
Thompson Sampling.

We contribute an algorithm that considers the constraints of the
problem, which we call Planning Thompson Sampling. With
Planning Thompson Sampling, the robot samples a reward from
every office in the environment, finds the plan of services that
maximizes the sampled rewards received that meets the time and
location constraints, and executes that plan.

3.2 Planning UCB1
UCB1 is an optimistic algorithm that intentionally overestimates
the expected reward of an office based on the uncertainty of its
model of that reward. That way, the robot will be biased towards
gathering data from offices for which the reward is highly uncertain
in order to improve its model. Specifically, the robot assigns each

Figure 1: The reward received by the robot. PlanningThomp-
son Sampling and Planning UCB1 had the best perfor-
mances.

officeui a value of r ′ = r+β
√

2 lnn
ni , where r is the average observed

reward from that office, n is the total number of attempted services
the robot has ever made, ni is the number of attempted services
the robot has made for office ui , and β is a tuning parameter.

As with Thompson sampling, we refer to the standard MAB
version of UCB1, which always offers a service to the office that
it has time to reach with the highest optimistic reward, as Naive
UCB1. We contribute Planning UCB1, which finds the plan that
will receive the maximum optimistic reward in the available time.

4 EXPERIMENTAL RESULTS
We compared the algorithms described in Section 3 in simulation.
The environment consisted of six hallways, each containing six
offices spaced a distance of 15 apart, radiating out from a center
room. The value of tservice was 20, tend was 500, and Lstar t and
Lend were always the center office. Both versions of the UCB1
algorithm used a value of 0.1 for β , determined empirically. Figure
1 shows the reward received by the robot using each algorithm,
averaged over 200 trials.

As can be seen, the two planning algorithms received signifi-
cantly more reward than the two naive algorithms. Running the
same experiment in environments with as few as four or as many
as eight hallways gave similar results. Additionally, we analyzed
the model learned by the robot, judging it based on the expected
reward of the best plan according to the robot’s model – in other
words, how effectively the robot’s model could be used to find an
effective plan if the robot assumed its model was perfectly accurate.
By this metric we similarly found that the two planning algorithms
performed significantly better than the naive ones.

These results show that, in a specific structured environment,
our modified versions Thompson Sampling and UCB1 significantly
outperform the naive versions used in standard MAB problems for
a service robot performing services in its spare time. In fact, our
planning algorithms received a near-optimal reward on average
within 150 iterations. These algorithms are very promising and we
will test and improve them further in our future work.
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