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ABSTRACT
Automating planning for large teams of heterogeneous robots is a
growing challenge. The planning literature incorporates expressive
features, but examples that scale to multiple robots in complex
domains are limited and fail to generate feasible plans. The Coali-
tion Formation then Planning framework accelerates planning by
decomposing the robots into coalitions, allocating tasks to each
coalition, and planning each task separately. However, the task
decomposition limits cooperation between coalitions and results
in many nonexecutable plans. The presented Task Fusion heuris-
tics fuse coalition-task pairs, resulting in higher success rates by
leveraging relaxed plans to estimate couplings between tasks and
determine the coalition-task pairs to be fused. The heuristics are
compared to baseline methods across randomly generated problems
that incorporate temporal and continuous constraints.
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1 INTRODUCTION AND BACKGROUND
Robots are rapidly moving into the commercial, medical, and mil-
itary domains. Robots have proven potential to assist in first re-
sponse to major disasters, such as search and rescue, bomb defusal,
and firefighting, but currently require micromanagement [1]. De-
cision making is limited to low level actions. Exploiting the full
potential of autonomous robots requires scalable automated plan-
ning capable of accurately modeling the dynamic and uncertain
real-world problems that incorporate a diverse set of robots [1].

First response requires rapid evaluation and deployment of avail-
able personnel and equipment to mitigate the situation. As tech-
nological capabilities improve, the complexity of the deployment
allocation and assignment problem increases. Existing planning
methods (e.g., [2–4, 7, 10–12, 14–16]) fail to account for all of the
domain’s complexities, such as requiring continuous fluents, con-
current actions, and real-time results that are robust to dynamic
and uncertain situations. Existing planning methods partially meet
the requirements, but cannot scale to dozens of robots [8].

Dukeman [5] developed the Coalition Formation then Planning
(CFP) framework for merging automated planning and coalition for-
mation to improve scalability when developing plans for complex
missions composed of dozens of robots for domains that have con-
tinuous and temporal requirements. CFP assigns robots to coalitions
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according to their capabilities, and allocates tasks to each coalition.
Planning for each task separately dramatically accelerates planning,
but limits cooperation between coalitions. Task Fusion (TF) extends
CFP by merging coalitions based on evaluating the utility of fusing
each coalition pair [5]. TF heuristics estimate utility and fuse the
highest scoring pairs; thus, allowing explicit cooperation between
robots and improving plan success rate. However, the TF effective-
ness was inconclusive [5]. The existing heuristics [5] estimate the
utility of fusing coalition-task pairs, pi and pj .

The Coalition Similarity (CS) heuristic [5] operates on coalition-
task pairs that share common agents. Coalition-task pairs with no
common agents score 0, while those that share all agents score 1.
The Coalition Assistance (CA) heuristic [5] estimates the ratio of
coalition capabilities over task requirement capabilities after fusion,
prioritizing pairs that share the same task requirement capabilities
[6]. These heuristics do not consider planning-related information,
such as robots handling the same logical objects or sharing the
same physical room, which limits the heuristic’s accuracy and leads
to poor success rates. Task coupling can be an accurate estimate of
Task Fusion (TF) utility. Detecting task couplings allows fusing cou-
pled tasks and planning tasks together, which improves cooperation
and produces higher plan success rates.

2 TASK FUSION HEURISTICS
A relaxed plan can be used as a TF heuristic to leverage the in-
formation revealed during planning [6]. Relaxed plans provide an
estimate of the full plan, including sequences of actions to accom-
plish the plan, logical objects involved in each action, and the time at
which each action occurs. The simplest approach leverages relaxed
plans’ contents for estimating TF utility to analyze the overlap of
actions and logical objects between two relaxed plans. This overlap
indicates how similar the plans are and how coupled each plans’
tasks are, which can reduce the length of the fused plan. Higher
overlap of actions and logical objects for coupled tasks indicates the
robots interact with common objects and navigate through com-
mon locations, which are also represented as logical objects. The
planner will consider each tasks’ goals individually, and potentially
produce redundant sequences of actions, when two coupled tasks
are planned separately Planning uncoupled tasks together does
not improve plan success rates, and often increases planning time
and memory usage. Uncoupled tasks can be planned and executed
separately; thus, the utility of fusing uncoupled tasks is lower than
that of fusing coupled tasks. The proposed TF heuristics use the
overlap of actions and logical object occurrences to estimate task
coupling and the utility of fusing coalition-task pairs.

A relaxed plan, π r , consists of a list of actions, where each ac-
tion entry contains a start time t , robots A = {A1,A2, . . .}, and
planning-model first-order logic objects o = {o1,o2, . . .}. Relaxed
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plan heuristics compile a list of logical object and action occur-
rences, extracted from each relaxed plan action entry. Each action-
object occurrence, tagged with the associated action start time,
τ , populates the action-object list, L = {⟨o1,τ1⟩, ⟨o2,τ2⟩, . . .}. The
similarities between plans π ri and π rj render an estimate for the
utility of fusing coalition-task pairs pi and pj .

Let π ri and π rj represent the relaxed plans for coalition-task
pairs pi and pj , respectively. Relaxed plan heuristics are a function
H (π ri ,π

r
j ) : π

r
i × π rj → R+, that maps to a utility value and require

synthesizing relaxed plans π r for allm coalition-task pairs p, but
leverages plans’ details that are otherwise unavailable.

The Object (O), Action (A), and Action-Object (AO) heuristics
represent the level of overlap between the object and action occur-
rences in relaxed plans π ri and π rj for coalition-task pairs pi and pj ,
respectively: 1

|Li | · |Lj | ·
∑
li ∈Li

∑
lj ∈Lj (li = lj ), where |Li | and |Lj |

are list sizes for action-object lists Li and Lj , respectively. All pairs
of entries from both action-object lists are compared. Each heuristic
variant populates the relaxed plan lists, Li and Lj , with object occur-
rences, action occurrences, or both. The Object heuristic populates
lists with object occurrences; the Action heuristic populates lists
with action occurrences; and the Action-Object heuristic populates
lists with both action and object occurrences. The normalizing frac-
tion ensures that the heuristic values are between [0, 1], where 0
represents no task coupling and 1 indicates maximal task coupling.

The Object-Temporal (OT), Action-Temporal (AT), and Action-
Object-Temporal (AOT) heuristics integrate temporal dependencies
in order to account for action and object interactions at different
times throughout the plan. The temporal variants populate the re-
laxed plan lists with object and action occurrences and weight each
matching list entry with a decaying exponential weighting factor.
The weighting ranks pairs that interact with the same objects at
similar times higher than pairs that interact with the same objects at
different times. The weighting factor is a function of the time differ-
ence between eachmatching list entry: 1

|Li | · |Lj | ·
∑
li ∈Li

∑
lj ∈Lj (li =

lj )·e−|τi−τj | , where τi and τj are temporal timestamps for list entries
li and lj , respectively. The weighting factor is 1 if ∆τ = |τi −τj | = 0,
(i.e., the object matching occurs at the same time), and 0 if ∆τ → ∞,
(i.e., the object matching occurs at different times).

3 EXPERIMENTS AND RESULTS
The planning outcomes were: Success, a valid plan; Nonexecutable,
no plan can be derived given the coalition’s composition and allo-
cated tasks; Time Fail, the time limit was exceeded; and Memory
Fail, the memory limit was exceeded. Ten robot coalitions and
ten missions were randomly generated to form 100 problems per
domain. The Blocks World Domain [9] incorporated temporal con-
straints, continuous fluents and modeled a variety of end-effectors,
block sizes, and multiple robot arms. The First Response Domain
[6] models disaster response problems that require coordinating
heterogeneous human-robot teams and incorporates time-varying
fluents, so that the robot batteries drain as a function of robot ac-
tivity over time. Human-robot teams cooperate to rescue victims,
collect hazardous objects, clear gas leaks, and clear blocked roads
after a natural disaster.

RACHNA [17], a market-based coalition formation algorithm,
was used for the First Response Domain and a dynamic program-
ming coalition formation algorithm [13] was used for the Blocks
World Domain. Both the regular and the relaxed plans were syn-
thesized using the COLIN package [4]. Each trial was time capped
at one hour and memory usage was limited to 120 GB.
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Figure 1: Blocks World Domain planning results.

Blocks World Domain: The Object (48%), Object-Temporal (47%),
and the Action-Object (46%) heuristics produced the best planning
success rates, as presented in Figure 1. Planning Alone had zero
nonexecutable coalitions, but had the worst planning success (28%),
time failure (42%), and memory failure (30%) rates. CFP produced
the most nonexecutable coalitions (34%). The relaxed plan heuristics
provide higher plan success rates; thus, larger temporal continuous
planning problems involving multiple robots can be solved.
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Figure 2: First Response Domain planning results.

First Response Domain: The Coalition Similarity heuristic pro-
duced the best planning success rate (66%), as presented in Figure 2,
while the Object-Temporal heuristic was the second best (65%).
Planning Alone exceeded the 1-hour processing time limit for all
problems. CFP produced the highest rate of nonexecutable coali-
tions (32%), while the Action heuristic produced the highest failure
rates, due to exceeding both the 1-hour time limit (42%) and the
120 GB memory limit (5%).
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