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ABSTRACT
Apprenticeship learning enables learning from human demonstra-
tions performed on tasks. However, acquiring demonstrations in
complex tasks where a human expert is not available can be a chal-
lenge. In this paper, we propose a new learning algorithm, called
Apprenticeship bootstrapping via Inverse Reinforcement Learning
using Deep Q-learning (ABS via IRL-DQN), to learn a complex task
through using demonstrations performed on primitive sub-tasks.
The algorithm is evaluated on an aerial and ground coordination
scenario, where an Unmanned Aerial Vehicle (UAV) is required to
maintain three Unmanned Ground Vehicles (UGVs) within a field
of view of the UAV ’s camera (FoV). The results show that perfor-
mance of our proposed algorithm is comparable to that of a human,
and competitive to the original IRL using expert demonstrations
performed on the composite task.
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1 INTRODUCTION
In a recent survey [5] about apprenticeship learning, the main chal-
lenges come from the problem of how to transfer human skills to
agents or robots through demonstrations. Some recent research fo-
cuses on solving the difficulties in collecting expert demonstrations.
For example, Knox et al. [6] introduces a shaping technique inwhich
an agent is interactively trained through positive or negative signals
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from an expert. In another approach to the problem of low-level con-
trols, Faust et al. [3] aims to find the suitable preference-balancing
task that supports human to control a quadrotor in real-world con-
ditions such as strong wind. In these research, human skill-levels
are assumed to be available. However, when designing a new task
for an autonomous system, particularly in complex tasks, there is
no guarantee that a human expert is available to to create a dataset
for the apprenticeship learning.

Abbeel et.al [2] proposed apprenticeship learning via inverse
reinforcement learning (AL via IRL) to produce an approximate
policy that is close enough to the observed one. AL via IRL was
successfully applied for developing a controller of helicopter aer-
obatics [1]. Recently, the Deep Q-network (DQN) [7] algorithm
demonstrated that DQN agents are able to successfully learn from
complex state spaces, with the performance of DQN achieving a
professional skill-level when tested on 49 Atari games.

In this paper, we proposes a new apprenticeship learning algo-
rithm, called "Apprenticeship Bootstrapping via Inverse Reinforce-
ment Learning Using Deep Q-learning" (ABS-IRL-DQN), to learn a
composite task using human demonstrations on sub-tasks.

2 THE PROPOSED ALGORITHM
The main idea of ABS-IRL-DQN is that a complex task is decom-
posed into sub-tasks that require less skilled humans, so that we
can bootstrap the higher skills from these building blocks. The sub-
tasks represent a decomposition of the action space. Not all actions
are needed for a sub-task. It may also involve a decomposition of
the state space since sub-tasks are associated with simpler contexts
that represent partial representations of the original context.

Demonstrations on these sub-tasks are used to approximate
the reward signal needed for a subset of the state vector. These
incomplete approximations are then fused through an expectation
function to approximate the overall reward function for Deep Q-
learning to discover a policy over the composite task. The primary
assumption we make is that there exists a human who can perform
the sub-tasks. Each sub-task encodes sub-skills for the composite
task. However, the fusion of these sub-skills is left to the RL agent
to learn how to switch and combine them.
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It is important to emphasize that in our case, the sub-tasks are
orthogonal. Therefore, taking the sum of the feature expectations
vector is equivalent to taking the union of the state space. Abbeel
et.al [2] explained that averaging the feature expectation for policies
is equivalent to calculating the feature expectation of a distribution
over policies. However, in our case each sub-task is defined with
a different state space and actions; in other words, the sub-spaces
are non-commensurable. When we average the policies’ feature
expectations, the non-commensurable state spaces are morphed
into a composite state representing the overall state space needed
for conducting the overall task.

3 EXPERIMENTAL RESULTS
Our proposed algorithm is evaluated on a ground-air tracking task,
where an unmanned aerial vehicle (UAV) attempts to maintain
a mobile group of unmanned ground vehicles (UGVs) within its
camera range. This scenario can be seen in our previous research[4].

We used a human to generate the ground truth for training and
testing using four maneuvers: Fixed-Altitude, Climb, Descend, and
Combined maneuver. The first three maneuvers define the low-
level skills required to perform the fourth maneuver; these are:
the UAV needs to either track UGVs by moving forward, climbing
and descending. In the fourth maneuver, the UGVs move in more
complex maneuvers where all three forms of behaviour (lateral
tracking, climbing and descending) are used simultaneously.

Two experiments are conducted to assess our proposed algo-
rithm. The first experiment uses the original IRL [2] for the human
demonstrations collected in the fourth maneuver. Meanwhile, in
the second experiment, ABS-IRL-DQN is used to learn from human
demonstrations on the first three maneuvers. To evaluate perfor-
mance, we calculate the distance between the UAV Center of mass
(cx , cy) and the center of UGVs’ mass (UGVx ,UGVy), as well as
the difference between the actual radius rai and the ideal radius
raa . Meanwhile, raa and rai is the actual and ideal radius of the
UGVs’ operating circle within the FoV, respectively.

Table 1: Average and Standard Deviations of Errors in All Testing
Experiments in the Combined Experiments. Results highlighted in
boldface are different from the human’s results and the differences
are statistically significant at α = 0.05.

Experiment ID Distance Errors Radius Errors
Human Performance 21.2 ± 13.1 6.1 ± 5.4

Original IRL 33.7 ± 22.5 12.6 ± 9
ABS-IRL-DQN 23.3 ± 13.2 12.6 ± 6.5

Table 1 shows that both ABS-IRL-DQN and original IRL agents
are able to perform nearly equivalent to the human subject. This is
despite the fact that the reward functions used in ABS-IRL-DQN
are based on an observed state space that is a subset of the overall
state-space used in the original IRL. ABS-IRL-DQN seemed to have
favored the distance metric more than the original IRL did.

To better understand the phenotypic differences between the
human performance and agents, we visualize the behaviour of the
UAV in Figure 1. As expected, the IRL trajectory is qualitatively
similar to human trajectory. The ABS-IRL-DQN trajectory, however,
has smoother oscillation but with larger magnitude. This smoother

oscillation is desirable as too much oscillations generate inefficient
flights; possibly outside the performance envelop of the UAV. How-
ever, this comes with a cost, where distance error increases. The
more the UAV attempts to have a smoother trajectory, the less it
is able to quickly adjust to the UGVs and the greater the distance
error. The averaging of the feature expectations vector favors the
smoother trajectory. It should be possible to control the trade-off
between smoothness and distance errors by changing the fusion
function.

Figure 1: The Ideal and Actual UGVs Circle Trajectories on Vertical
Image in the Combined Maneuver. Top-Left: Human Control; Top-
Right: ABS-IRL-DQN; Bottom: Original IRL. It is important to note
that UGVs do not have identical dynamics in the three scenarios
because of stochastic noise.

4 CONCLUSION
The paper shows that the ABS via IRL-DQN agent perform in a com-
parable manner to humans and are competitive to the agent trained
on data collected from humans performing the more complex task.
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