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1 INTRODUCTION
Our goal is to simulate agent navigation in an unknown or partially
known environment. Our approach stands in contrast to models
of agent simulation that have been built upon the assumption of
omniscient knowledge [5] of the surrounding environment.

The wayfinding procedure we present in this paper is modeled
after human cognitive processes, including landmark navigation,
path integration, and memory. We consider landmarks as salient
objects or locations captured by the visual attention [9]. In mem-
ory, the interactions between landmarks during memory decay
are modeled by a spring-mass system, which is an intuitive model
that accurately parallels recent accounts of cognitive maps [1] [20].
An agent relies on a complex cognitive architecture comprised
of distinct memory layers [22] that maintain its cognitive map of
explored areas of the environment.

2 RELATEDWORK
Navigation. Which navigational method is used by animals and
humans? while some researchers believe not only that animals
and humans form a cognitive map, but also that it is perfectly
Euclidean [4], others claim that the famous experiment conducted
by Tolman on cognitive maps in rats has never been replicated [17]
and that evidence of the existence of a cognitive map in bees is
inconclusive [2]. The latest research shows that while some animals
rely strongly on path integration [2], humans are not particularly
adept at it. Even though it is possible for them to orient themselves
in the absence of landmarks [18], their preferred navigation method
is landmark navigation. Overall, human beings can adopt different
strategies based on their needs [9].
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Computational Models ofWayfinding. How can wayfinding
be correctly simulated as a human navigation process that incorpo-
rates a cognitive map of the environment? In 1978, Kuipers pub-
lished the first comprehensive computational account of wayfind-
ing, the TOUR model [12]. TOUR tries to model a cognitive map of
a large-scale space through a hierarchical system that integrates a
network of links between locations with a catalog of routes (defined
as sequences of actions). Overarching regions delimited by dividing
boundaries present an additional level of abstraction. Other models
followed.

ELMER [14] also hierarchically integrates navigation plans and
knowledge base routes. The Traveler [13] presents a cognitive agents
that tries to build feasible paths to a location by connecting nodes
in a network. SPAM [15] implements a fuzzy map in which the
spatial values are not fixed, varying within a certain range. NAVI-
GATOR [6] does not rely on a complete model of the spatial layout
but more on route knowledge and on a city-block metric. All of
these methods, while trying to model a cognitive map, refrain from
a purely allocentric, Euclidean view.

Memory Decay. Several models of spatial distortion in mem-
ory have been proposed [20], like the Nelson-Chaiklin model, in
which the distance between the target and the landmark is under-
estimated according to a power function. According to the Hut-
tenlocher model, the recollection will be influenced not only by
the location of the target but also by the spatial category to which
the target belongs [10]. Schmidt et al. propose a partition model
according to which the space is subdivided into zones dominated by
single landmarks; the midpoints between landmarks may function
as additional attraction points [20].

Figure 1

(a) (b) (c) (d) (e) (f)

3 GEOMETRIC ANALYSIS OF BUILDING
ENVIRONMENTS FOR NAVIGATION

The virtual environment (VE) is assumed to be a one-story build-
ing that is composed of rectangular rooms adjoined to connected
rectangular hallways. The entrance of a room is assumed to be
smaller than the length of any of its walls (Assumption R), and the
entrance of a hallway is assumed to be as wide as the inner width
of the hallway (Assumption H ). A binary floor plan image can be
generated from the navigation mesh [11] of a VE (Fig. 1.a).
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3.1 Floor Plan Segmentation
The floor plan image is segmented in two phases. In the first phase,
a morphological closing operation [21] is applied to the image to
separate rooms from hallways (Fig. 1.b). Based on Assumption R, a
closing operation can be parameterized to close the entrance of a
roomwithout filling its entirety. AssumptionH makes this approach
inapplicable to hallways. This phase leaves the hallways as one
connected component (HCC), which the second phase segments
coherently.

During the second phase, the contour of the pixels belonging to
the HCC is first smoothed, such that in sequence, no three points
are collinear and no two points are closer than a threshold (Figs.
1.c,1.d). For each point on the smoothed contour, a line is drawn to
the closest other point, cutting the HCC (Fig. 1.e). A final labeling of
connected components will properly distinguish between coherent
hallway segments (henceforth referred to as hallways). Assuming
hallways are elongated and the lengths for hallways h1 and h2 are
respectively at leastw2+m andw1+m,m =

√
w2
1 +w

2
2 , lengthwise

along the contour(s) of a hallway, the turning point’s closest other
point is a non-sequential turning point for bends, T-junctions, and
intersections of hallways. After the phases, a watershed transform is
applied to the labelled image to determine which segments (rooms
and hallways) are connected in the VE, which is used to form a cell
and portal graph [8] (Fig. 1.f).

4 MEMORY-ENABLED AUTONOMOUS
AGENTS

4.1 Landmarks (Visual Attention)
The visual attention (VA) of the agent captures non-occluded land-
marks in the agent’s visual field up to a capacity [7]. Landmarks
consist of manually curated objects in the VE and procedurally
generated “reference points in the environment [...] where naviga-
tional decisions have to be made" [16]. Such reference points are
located at the portals of the prior cell and portal graph. Landmarks
in close enough proximity are considered as the same landmark to
avoid redundancy. Each landmark has an inherent salience value
based on its physical properties/surroundings, which serves as its
priority in the agent’s VA. This salience can be increased based on
the agent’s navigational goals.

4.2 Route Formation (Short-Term Memory)
The purpose of the short-term memory (STM) is to convert the
instantaneous perception information from the VA into temporal
position information (i.e., routes travelled between landmarks by
the agent). As landmarks are captured by the VA, the STM stores
them with their VA priorities. While a landmark remains in the VA,
its STM priority does not decay. Otherwise, its STM priority decays
until at zero, it is removed from the STM. The retention of the STM
is limited to a capacity that the sum of the STM priorities cannot
exceed. If this capacity does not exceed that of the VA, the agent
will have no memory of past landmarks, resulting in a degenerate
cognitive map.

For an agent that steers forward to navigate, this temporal per-
ception information contains surrounding landmarks, which the
agent can use to accurately determine the closest landmark (i.e., its

general position). When the agent nears a different landmark, the
route (i.e., change in landmarks) is stored in its long-term memory
(LTM).

4.3 Cognitive Map (Long-Term Memory)
The cognitive map (CM), which serves as an agent’s LTM, is mod-
eled as a spring-mass system in the plane of the VE. In the CM, the
masses (henceforth referred to as CM landmarks) represent land-
marks, the masses of CM landmarks represent their memorability,
and the springs represent traversed routes.

When a route is first formed, its landmarks become CM land-
marks connected by a spring. While a landmark remains in the VA,
its position in the CM is the same as in the VE. Otherwise, its CM
position decays according to the physics of the CM, which is sepa-
rate from that of the VE. This changes where the agent recalls the
landmark to be located. Initially, the mass of a landmark in the CM
is its VA priority. While a landmark is closest to the agent, its mass
in the CM does not decay. Otherwise, the agent is decreasingly able
to recall that the landmark exists and the CM landmark’s position
is subject to accelerating decay.

The decay of the CM is based on the Nelson-Chaiklin model
of memory distortion, where “distortion is [...] toward the near-
est landmark because the distance between landmark and target
is underestimated” [20]. Therefore, the equilibrium length of all
springs is zero. Also, each time a CM landmark is revisited, its mass
is reset and increased by a multiplicative factor. During this process,
if a CM landmark’s mass exceeds a threshold, the CM will set its
mass to mmax and stop decaying the CM landmark’s mass and
position [19].

4.4 Active Perception (Wayfinding)
When an agent is tasked with a navigational goal, its behavior re-
flects its knowledge about the goal. If the goal is in the STM, it is
directly navigated to. If the goal is unknown, the agent performs a
thorough blind search. Otherwise, if intermediary goals (i.e., sub-
goals) are unknown, the agent will recall the goal’s heading and
perform an oriented search [3] in the VE (implemented as greedy
best-first search where the heuristic is the difference between a
local heading and the goal heading). If subgoals are known, oriented
search is performed for each subgoal in sequence.

To determine whether subgoals are recalled, uniform cost search
to the goal is performed on the CM, considering each route r ’s cost
as aE(r ) + (1 − a)(1 −M(l)), where l is r ’s other landmark, E(r ) is
the normalized Euclidean distance, andM(l) is the normalized CM
mass. Depending ona, the cost strikes a balance between the agent’s
familiarity with the landmarks and its recalled lengths of routes.
For a > 0, when all landmarks exist in the CMwith massmmax , the
route cost becomes proportional to E(r ), resulting in the shortest
path. The CM landmarks in the path are then probabilistically
recalled based onM(l).

5 CONCLUSION
This novel framework for landmark navigation in crowd simulation
gives new nuances to the navigational behaviors of agents, making
them more comparable to those of humans, and the framework’s
intuitiveness makes it accessible for exploring new crowd scenarios.
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