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ABSTRACT

Finding an envy-free allocation of indivisible resources to agents
is a central task in many multiagent systems. Often, non-trivial
envy-free allocations do not exist, and finding them can be a com-
putationally hard task. Classic envy-freeness requires that every
agent likes the resources allocated to it at least as much as the
resources allocated to any other agent. In many situations this
assumption can be relaxed since agents often do not even know
each other. We enrich the envy-freeness concept by taking into
account (directed) social networks of the agents. Thus, we require
that every agent likes its own allocation at least as much as those of
all its (out)neighbors. This leads to a “more local” concept of envy-
freeness. We also consider a strong variant where every agent must
like its own allocation more than those of all its (out)neighbors.

We analyze the classic and the parameterized complexity of
finding allocations that are envy-free with respect to one of the
variants of our new concept, and that either are complete, are Pareto-
efficient, or optimize the utilitarian social welfare. To this end, we
study different restrictions of the agents’ preferences and of the
social network structure. We identify cases that become easier (from
Zg-hard or NP-hard to P) and cases that become harder (from P to
NP-hard) when comparing classic envy-freeness with our graph-
based envy-freeness. Furthermore, we spot cases where graph envy-
freeness is easier to decide than strong graph envy-freeness, and
vice versa.
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1 INTRODUCTION

Modern management strategies emphasize the role of teams and
team-work. To have an effective team one has to motivate the
team members in a proper way. One method of motivating team
members is to reward them for achieving a milestone. On the one
hand, it is crucial that every member of a team feels rewarded
fairly. On the other hand, in every team there are hierarchical or
personal relations, which one should attend to in the rewarding
process. Since, according to the recent labor statistics in the US [19],
the average cost of employee benefits (excluding legally required
ones) is around 25% of the whole cost of labor, it is important to
effectively use rewarding instruments. It is tempting to follow a
simplistic belief that tangible incentives motivate best and thus
reward employees with cash bonuses and pay raises. However,
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it has been shown that to keep the employee satisfaction high,
an employer should also honor the employees with non-financial
rewards [12].

We propose a model for the fair distibution of indivisible goods
which can be used to find an allocation of non-financial rewards’
such that each team member is satisfied with its rewards and, at
the same time, is not worse off compared to any other peer whom
she is in relation with. Besides the rewarding scenario our model
has numerous further potential applications, just to mention tar-
geting marketing strategies (giving non-monetary bonuses to loyal
customers), allocating physical resources to virtual resources in vir-
tualization technologies (both network and machine virtualization),
and sharing charitable donations between cities or communities
which may envy each other.

Returning to our initial example of reward management, it is a
well-established fact that team members evaluate the fairness of
rewarding based on comparisons with their peers. This phenom-
enon, first described seventy years ago by the social psychologist
Leon Festinger [10], is probably one of the reasons of the popularity
of fair allocation (division) problems in computer science. Natu-
rally, when evaluating the subjective fairness of rewards, every
team member tends to compare itself to similar peers, neglecting
those who differ substantially in position, abilities, or other aspects.
This has already been reflected by one of Festinger’s hypotheses;
however, so far, most reserach in computer science has focused on
fairness notions based on “global” comparisons, that is, pairwise
comparisons between all members of society.

In this work we aim at incorporating “local” comparisons into
the fair allocation scenario. Having a collection of indivisible re-
sources we look for a way to distribute them fairly among a group
of agents which, prior to the distribution, shared their opinions
on how they appreciate the resources. For example, imagine that a
company is to reward a team of three employees responsible for
a successful project. The team consists of a key account manager
(KAM) being the chief of the group, an internet sales manager (ISM),
and a business-to-business (B2BSM) sales manager. The company
intends some non-financial rewards to recognize the employees’
performances. The rewards are ‘participating in a language course’,
‘being the company’s representative for an episode of a documen-
tary program’, ‘moving to a new high-end office’, and ‘receiving
an employee-of-the-month award’. The employees (agents) were
surveyed for their favorite rewards, yielding the results given in Ta-
ble 1.

Each agent considers a rewarding unfair if after exchanging all
its rewards with all rewards of some peer, the agent would get more
approved rewards. According to the company’s rewarding policy,
all rewards must be handed out. Considering the standard model

!Financial rewards can be interpreted as divisible resources while we focus on indivis-

ible resources.
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KAM B2BSM ISM
language course O vl v
TV episode g v} v}
high-end office & vl vl
employee-of-the-month award & v} v}

Table 1: The results of a survey concerning employees’ (0/1)
preferences over the possible rewards. Checked boxes indi-
cate the approved rewards of a particular person.

= B2BSM

Figure 1: An illustration of who compares to whom for the
introductory example. Every node represents an employee
and arcs represent directions of comparisons, for instance,
if an arc points from the key account manager to the inter-
net sales manager, then the former compares herself to the
latter.

of resource allocation, where each agent can compare itself to each
other agent, the company cannot find a fair reward allocation. At
least one agent has to get two rewards. As a consequence, two
employees have at most one reward. However, a rewarding policy
in the company assumes that a team’s chief is always a basis of
team success and thus deserves a better reward. Hence, both sales
managers do not compare their rewards to the ones of their boss.
Naturally, the key account manager’s reward should be at least as
good as the ones of the others. To illustrate these relations, we use
the directed graph depicted in Figure 1. In this case, the company can
reward the key account manager with the office and the employee-
of-the-month award, and distribute the two remaining rewards
equally to the internet and business-to-business managers. Doing so,
the company achieves a fair rewarding. The key account manager
has two favorite rewards and there is no incentive to exchange them.
The remaining team members do not compare themselves to their
boss, so they do not envy him or her. Finally, both the business-to-
business and internet managers have one favorite reward, so there
is no envy. Thus, by introducing the graph of relations between the
employees, we were able to represent social comparisons.

Related Work. In 1948, Steinhaus [23] asked how to fairly dis-
tribute a continuous resource, a “cake”, among a set of agents with
(possibly different) heterogeneous valuations of the resource. From
this first mathematical model of fair allocation two main research di-
rections evolved. The difference lies in the nature of the resources—
divisible or indivisible. The former type yields the so-called cake
cutting problem. We refer to the books [7, 18, 22] and recent sur-
veys [5, 17, 20, 21] on fair division problems, and next discuss
literature related to our setting.

Abebe et al. [1] and Bei et al. [2] introduced social networks of
agents into the fair division problem. They defined (local) fairness
concepts based on social networks and then compared them to the
classic fairness notions and designed new protocols to find envy-
free allocations. Although their models defined local envy-freeness,
it differs from our concept since they considered divisible resources.
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An allocation, instead of being executed by a central mechanism,
might emerge from a sequence of trades between the agents initially
endowed with random resources; this setting gives birth to the
problem of distributed allocation of indivisible resources. Gourvés
et al. [11] studied this problem of embedding agents in a social
network describing the possible agent interactions and restricting
allocations to give a single resource to every agent. They addressed
the computational hardness of several questions such as existence of
a Pareto-efficient allocation, reachability of a particular allocation,
or reachability of a resource for a candidate. For all these questions,
they proved that finding an answer is in general NP-hard but it is
polynomial-time solvable for some constrained cases. Additionally,
Chevaleyre et al. [8] enriched the distributed allocation problem
with monetary payments for the trades. They defined a version of
graph envy-freeness which takes into account both allocations of
resources and the payments of agents. They showed several results
describing convergence of trades converging to a fair allocation.
Additionally, they proved that the problem of finding a deal reducing
unfairness among the agents is NP-hard.

The somewhat orthogonal model where relations of resources,
instead of agents, are described by a graph was recently studied
by Bouveret et al. [4]. They proved that to decide whether there
is a fair allocation such that every assigned bundle contains only
resources forming a connected component is, in general, NP-hard.
Furthermore, Suksompong [24] studied the existence and properties
of approximate versions of various fairness concepts in the special
case of resources lying on a path.

Our Contributions. Our work follows the recent trend of com-
bining fair allocation with social networks. We introduce social
relations into the area of fair allocation of indivisible resources with-
out monetary payments. Making use of a greater model flexibility
resulting from embedding agents into a social network, we define
two new versions of the classic envy-freeness property; namely,
(weak) graph-envy-freeness and strong graph-envy-freeness. Even
though Chevaleyre et al. [8] also introduced a property called graph-
envy-freeness, their version differs from ours significantly because,
instead of being a property of an allocation, it describes a particular
state of the negotiations between the agents, including monetary
payments (which has the flavor of divisible resources) paid to the
agents so far.

We study problems of finding (weakly/strongly) graph-envy-
free and efficient allocations employing separately completeness,
Pareto-efficiency, and maximization of utilitarian social welfare as
efficiency criteria. We assume that the agents’ preferences over the
resources are cardinal, additive, and monotonic. We go beyond the
general case (with no further constraints on agents’ preferences
and an arbitrary social network), and we analyze our problems
with respect to social networks being directed acyclic graphs or
strongly connected components, and with respect to identical or 0/1
preferences over the resources. As a result, we explore a broad and
diverse landscape of the classic computational complexity of the in-
troduced problems. Our results reveal that in comparison to classic
envy-freeness, our model sometimes simplifies the task of finding
a proper allocation and sometimes makes it harder. Similarly, we
identify cases where finding a (weakly) graph-envy-free allocation
is easier than finding a strongly graph-envy-free allocation but also
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cases where the opposite is true. Additionally, our work assesses
the parameterized computational complexity of several cases with
respect to a few natural parameters such as the number of agents,
the number of resources, and the maximum number of neighbors
of an agent.

In the following sections, firstly, we present basic concepts and
introduce our new model and computational problems (Section 2).
Then, we analyze the problem of finding complete graph envy-free
allocations (Section 3). We show that the majority of results for the
case of complete graph envy-free allocations can be transferred to
the other efficiency concepts; we also provide results where this
transfer is impossible (Section 4). We end with conclusions and
suggestions for future work (Section 5). Due to the lack of space,
we defer several proof details to the full version of the paper.

2 MODEL AND BASIC DEFINITIONS

We start with basic concepts for describing graphs which we use to
model relations between agents. For a directed graph G = (V, E),
consisting of a set V of vertices and a set E of arcs, by N(v) we
denote the outneighborhood of vertex v € V, i.e., theset W Cc V
of vertices such that for each vertex w € W there exists an arc
e = (v,w) € E, ie., arc e is directed from v to w. Where needed, we
complement our notation by using a subscript indicating the graph
we consider.

We continue with defining some standard concepts for allocation
problems needed to formally introduce our problems.

Definition 2.1. An allocation of a set of resources R to a set of
agents A is a mapping 7: A — 2% such that 7(a) and 7(a’) are
disjoint whenever a # a’. For any agent a € A, we call n(a) the
bundle of a under 7.

There are different ways to model preferences of agents over
resources; we focus on preferences expressed numerically.

Definition 2.2. We call a preference relation < over all subsets of
resources R additive if there is a utility functionu: R — Z such that
for any X,Y C R it holds that X < Y if and only if u(X) < u(Y),
where u(X), for X C R, is defined as ), cx u(r).

For additive preferences, < is caled monotonic if and only if the
values of the utility function are non-negative. In our work, we
restrict preferences to be additive and monotonic. We call them 0/1
if the utility function maps to {0, 1} for every agent, and identical if
every agent has the same utility function.

Next, we formally define our graph fairness concepts based on
comparisons between neighbors in a social network.

Definition 2.3. Fix a group A of agents, a set R of resources, and a
directed graph G = (A, E) (i.e., the agents are the vertices of G). We
call allocation 7 (weakly) graph-envy-free if for each pair of (distinct)
agents aj, az € A such that az € N(aj) it holds that u; (7 (a;1)) >
u1(r(az)). By replacing the weak inequality in our criterion with a
strict inequality we obtain the definition of a strongly graph-envy-
free allocation.

An allocation which gives nothing to every agent is always
(weakly) graph-envy-free; to overcome this trivial case we com-
bine our fairness concepts with different measures of allocation
efficiency.
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Definition 2.4. Consider an allocation 7 of a set R of resources
to a set A of agents and a family U = {u1, u2, ..., u; 4/} of utility
functions where some function u; represents preferences of agent a;.
We call & complete if | J,c # 7w (a) = R. We call & Pareto-efficient if
there exists no allocation n” that dominates 7, where dominating
means that for all a; € A it holds that u;(7(a;)) < u;i(7’(a;))
and for some a; € A it holds that u;(r(a;)) < uj(7’(a;)). We call
Y.a;eA ui(m(a;)) the utilitarian social welfare Wy of allocation 7.

A problem parameterized by p is fixed-parameter tractable if it is
solvable in f(p) - |I |9 time for some computable function f and
the input size |I| according to the problem’s encoding; W[¢]-hard,
t > 1, problems are presumably not fixed-parameter tractable. We
call a problem para-NP-hard if it is NP-hard even for a constant
value of the parameter.

Throughout the paper we make heavy use of the graph problem
CLIQUE to show our results regarding computational hardness.

Definition 2.5. In the CLIQUE problem, given an undirected graph
and an integer k, we ask whether there is a clique of size k, i.e., a
size-k subset of the vertices such that they are pairwise adjacent.

CLIQUE is a well-known NP-complete [14] problem which is
W/[1]-complete [9] when parameterized by the size of the clique.

Problem Description. For fair allocation applications, it is impor-
tant not only to know that there exists an allocation with particular
features, but also to know how it looks like. This is why we define
our problems in the form of search problems, instead of decision
problems. Obviously, our problems also have natural decision vari-
ants.

Subsequently, X-(s)GEF-ALLocATION stands for X-(strongly)
graph-envy-free allocation where X € {C,E, W}, ‘C’ referring to
complete, ‘E’ referring to Pareto-efficient, and ‘W’ referring to util-
itarian social welfare. We start with defining our problems with
respect to completeness and Pareto-efficiency.

C-GEF-ALrrocATION (resp. C-sGEF-ALLOCATION)
Input: A set A of n agents, a set R of m indivisi-
ble resources, a family U = {uy,uy, ..., un} of agents’
utility functions, and a directed graph G = (A, E).
Task: Find a complete, graph-envy-free (resp. strongly
graph-envy-free) allocation of R to A.

Analogously, we define the E-GEF-ArLocaTION and E-sGEF-AL-
LOCATION problems where we search for a Pareto-efficient and
(weakly/strongly) graph-envy-free allocation. In the case of utili-
tarian social welfare we slightly change the task when defining the
respective W-GEF-ALLOCATION, W-sGEF-ALLOCATION problems:
We search for a (weakly/strongly) graph-envy-free allocation which
maximizes the utilitarian social welfare.

Basic Observations. We start with two observations. Our first
observation basically says that graph-envy-freeness can be checked
in polynomial time. It is enough that for each agent one compares
its own bundle value to values it assigns to the neighbors’ bundles.

OBSERVATION 1 (GRAPH-ENVY-FREENESS TEST). Given a set R of
resources, a set A of agents with their preferences over bundles of R,
and some allocation 7r: A — 2R one can decide in polynomial time
whether 1 is (weakly/strongly) graph-envy-free.
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C-GEF-ALLOCATION

DAG SCC General
identical 0/1 P (Obs. 3) P (Cor. 1) NP-h (Thm. 1)
identical P (Obs.3) NP-h(Pr.1,&) NP-h(Pr.1, &)
0/1 P (Obs.3) NP-h (Th. 2) NP-h (Th. 2)
additive P (Obs.3) NP-h(Pr.1,¢) NP-h(Pr.1,9)
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C-sGEF-ALLOCATION

DAG SCC General

identical 0/1 P (Pr. 3) O(1) (Obs. 5) P (Pr. 3)
identical NP-h (Pr.2) O(1) (Obs.5) NP-h (Pr. 2)
0/1 NP-h (Th.3) NP-h (Th.3) NP-h(Th. 3)
additive NP-h (Th.3) NP-h(Th.3) NP-h (Th.3)

Table 2: Computational complexity results for C-(s)GEF-ALLocATION for different graph and preference restrictions. DAG and
SCC stand for directed acyclic graphs and strongly connected graphs respectively. Entry “NP-h” refers to NP-hard cases, “P”
refers to polynomial-time solvable cases, and “O(1)” refers to trivial (constant-time solvable) cases. Results marked with & can,
using Observation 6, also be derived from Bouveret and Lang [6]. Results marked with ¢ also derive from Lipton et al. [16].

C-GEF-ALLOCATION

parameter preferences restrictions complexity

outdegree identical 0/1 outdegree=2 p-NP-h (Th. 1)
#agents identical outdegree=1 W[1]-h (Pr. 1)

#resources 0/1 str. connected W[1]-h (Th. 2)

C-sGEF-ALLOCATION

parameter preferences restrictions complexity
outdegree additive outdeg.=1 p-NP-h (Th. 4)
#agents additive outdeg.=1 W[1]-h (Th. 4)

Table 3: Parameterized complexity results for C-(s)GEF-ALLOCATION. Entry “p-NP-h” denotes para-NP-hard cases, that is, cases
that remain hard even for constant parameter values. Entry “W[1]-h” denotes W[1]-hard cases, that is, cases which are presum-

ably not fixed-parameter tractable.

Due to Observation 1 every NP-hardness proof in Section 3
implies NP-completeness of the corresponding decision problem
discussed in the proof.

Intuitively, considering (weakly/strongly) graph-envy-free allo-
cations, we can rule out all resources which have no value for any
agent. We state this claim as the following observation.

OBSERVATION 2. Without loss of generality, there are only re-
sources to which at least one agent assigns positive utility.

Observation 2, albeit simple, results in a useful consequence for
the case of identical 0/1 preferences: All variants of X-(s)GEF-AL-
LOCATION boil down to distributing a certain number of indistin-
guishable resources.

3 FINDING COMPLETE ALLOCATIONS

We analyze the classic complexity (Table 2) and the parameterized
complexity (Table 3) for finding allocations that are complete and
(weakly/strongly) graph-envy-free. In Section 3.1, we discuss our
results for the weak version of envy-freeness and in Section 3.2
we discuss our results for the strong version of envy-freeness. We
identify cases where using our graph-based envy-freeness concept
leads to decreased complexity (from NP-hard to P) and cases where
it leads to increased complexity (from P to NP-hard), each time
comparing to classic envy-freeness.

3.1 Weakly Graph-envy-free Allocations

As a warm-up, we consider the case where the graph encoding
the envy-relation is acyclic and where the preferences are additive
monotonic (being the least-restrictive preference type considered
in this paper). This case is well-motivated because it describes
hierarchical situations where only higher ranked agents may envy
lower ranked agents.
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For weak graph-envy-freeness there is a trivial solution that
allocates all resources to a single source agent. Indeed, nobody can
envy a source agent because it has no incoming arcs, the remaining
agents do not envy each other because none has a resource, and
the allocation is complete since all items are allocated.

OBSERVATION 3. C-GEF-ALLOCATION for monotonic additive pref-
erences and an acyclic input graph is solvable in linear time.

Next, we consider the most restrictive preference type, identical
0/1 preferences, together with the fairly large class of strongly
connected graphs. Here, because of transitivity of the “greater or
equal” relation, we obtain a very simple tractable case where all
agents must obtain the same number of resources. To show this,
we start with the following observation, directly yielding a simple
algorithm.

OBSERVATION 4. Let 7 : A — 2% be a graph-envy-free alloca-
tion. Then, for every pair {a,a’} of agents that belong to the same
strongly connected component, it holds that (1) u(r(a)) = u(x(a’))
for identical preferences, and (2) |n(a)| = |n(a’)| for identical 0/1
preferences.

CoROLLARY 1. C-GEF-ALLOCATION for identical 0/1 preferences
and an input graph being strongly connected is solvable in linear time.

Proor. Using Observation 4, our algorithm checks whether the
number of resources is divisible by the number of agents and returns
true if and only if this is the case. O

Observation 4 (2) allows us to view agents from the same strongly
connected component as “uniform block of agents”. This view will
be very helpful to obtain the following theorem which basically
states that, even with identical 0/1 preferences, GEF-ALLOCATION
becomes intractable as soon as the graph is not strongly connected.
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THEOREM 1. C-GEF-ALLOCATION for identical 0/1 preferences is
NP-hard even if each vertex has outdegree at most two.

Proor. For the sake of readability we extend the concept of envy
from agents to sets of agents. We say that a strongly connected
component A’ envies another strongly connected component A”
if there exists an agent from A’ that envies an agent from A”. For
identical 0/1 preferences, a solution to C-GEF-ALLOCATION has to
allocate exactly the same number of resources to every agent being a
part of the same strongly connected component (Observation 4 (2)).
Thus, we say that we are allocating some number of resources to
a strongly connected component (instead of an agent) when we
uniformly distribute these resources to the agents that belong to
the component. As a consequence, we can allocate only multiples
of t resources to a strongly connected component consisting of
t agents.

To prove Theorem 1, consider a CLIQUE instance formed by an
undirected graph G = (V,E) with a set V = {91, 72,...,05} of
vertices and a set E = {é1,é5,..., &) of edges, and a clique size k.
Without loss of generality, assume that 1 < k < 7i and 1 > (IZ()

We present a polynomial-time many-one reduction from CLIQUE
to C-GEF-ALLocATION. We introduce 7i2m (7% + 1) + m agents and
atm + kam + (IZ< ) resources which are assigned utility one by each
agent. We specify an input graph G over the agents in two steps.
First, we define strongly connected components of G separately
and then add arcs connecting them. By connecting two strongly
connected components we mean adding an arc between two arbi-
trarily chosen vertices, one from each connected component. In a
first step, we build the following strongly connected components:

(1) For each vertex © € V, we introduce a vertex component Gg
which consists of 7 - m vertices;

(2) For each edge & € E, we introduce an edge component G;
which consists of one vertex;

(3) We introduce a root component G* which consists of 7i*
vertices.

-m

Then, we connect the strongly connected components to form an
input graph G of the C-GEF-ALLOCATION instance. Figure 2 depicts
graph G resulting from the following steps:

(1) For each edge & = {0/,9"'} € E, we connect Gy and Gy~ to
edge component G¢ (with an arc pointing to Gg);

(2) we connect the root component with every vertex compo-
nent (with an arc starting at the root component).

To prove the correctness of the reduction, we have to show
that there is a k-clique in G if and only if there is a complete and
graph-envy-free allocation for the constructed C-GEF-ALLOCATION
instance. Assume that there is a k-clique C = (V¢, E¢) in graph G.
We create a complete and graph-envy-free allocation as follows:

o We give At - m resources to G*;

e we give 71-m resources to every vertex component associated
with a vertex from V¢ ; and

e we give one resource to every edge component associated
with an edge from Ec.

The allocation is complete because we assign

k
itm + am|Ve| + |Ec| = itm + kim + (2)
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Figure 2: The input graph of a C-GEF-ALLOCATION instance
constructed in the proof of Theorem 1. The circles represent
strongly connected components. Labels indicate a name (up-
per part) and the number of agents in the component (lower

part). The connections represent arcs between two arbitrar-
ily chosen agents from different components.

resources. Every edge component is a single vertex without out-
going arcs which means that, by definition, no edge component
envies. Every vertex component Gg, € G, might envy only edge
vertices it is connected to. If & € V-, then no vertex in G envies
anybody, because every vertex in G5 has one resource and every
vertex of every edge component has at most one resource. If 0 ¢ V,
then ¢ cannot envy because all edge components representing o’s
incident edges, which are not a part of clique C, have no resource
allocated. Finally, the root component does not envy because each
of its agents get one resource and no other agent gets more.

Conversely, assume that there exists a complete and graph-envy-
free allocation for the constructed instance of C-GEF-ALLOCATION.
On the one hand, the root component has to get at least %7 re-
sources because it consists of n*m agents. On the other hand, be-
cause of a lack of resources, the root component cannot get 27t
resources. This derives from the following inequality holding for
n>1:

k
ki + (2 < ifm+ A% < 2r’m < At
Thus, every agent in the root component gets one resource. Since
every agent in the root component might envy all other agents

(even all agents in the edge components due to transitivity of the

“greater than or equal to” relation), every other agent can get at most

one resource. Besides the root component’s resources, there are
still kam + (12c ) resources left. For every feasible solution there exist

exactly k vertex components whose agents have a one-resource
bundle. Because

(k + 1)am > kam + (I;)

we cannot allocate resources to more than k vertex components.
Contrarily, if one allocates 7im resources to k — 1 vertex components,
then there are still aim+ (I;) resources left. However, we have only m
edge components, each one capable of having at most one resource.
Thus, a feasible allocation chooses exactly k vertex components and
(Izc) edge components. Moreover, every vertex component has to be
connected to chosen edge components. This exactly corresponds to
choosing k distinct vertices and (g) distinct edges such that every
edge is incident to two of the chosen vertices.
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To see that the described construction can be realized with max-
imum outdegree at most two, observe that strongly connected
components can be obtained through simple directed cycles (where
each vertex has one outgoing arc). Each component has fewer “out-
going arcs” than vertices so that we can use an individual agent
(creating a second outgoing arc) in each case.

The reduction is clearly executable in polynomial time. o

Another way to try to extend the tractability from Corollary 1
to a broader setting is to keep the graph being strongly connected
but to consider identical monotonic additive preferences (so, al-
lowing more than just values 1 or 0). However, Observation 4 (1)
allows for a (quite straight-forward) reduction from the NP-hard
and W([1]-hard EEF EXISTENCE [6]. As a result, C-GEF-ALLOCATION
for identical monotonic additive prefences inherits intractability
even for the case with few agents and the graph G being a directed
cycle (implying that the outdegree of each vertex is at most one,
meaning that each agent envies at most one other agent).

PropPOSITION 1. C-GEF-ALLOCATION for identical monotonic ad-
ditive preferences is NP-hard and W[1]-hard when parameterized by
the number of agents even if the input graph is a cycle.

We finally consider C-GEF-ALLOCATION for the case of few re-
sources. With the classic envy-freeness notion (or G being complete
for C-GEF-ALLOCATION), the problem of finding a complete, envy-
free allocation can easily be seen to be fixed-parameter tractable
(using an analogous technique as used by Bliem et al. [3, Propo-
sition 1]). For graph-envy-freeness, however, it turns out that the
problem becomes W([1]-hard even for 0/1 preferences and G being
strongly connected. This provides an example where the complex-
ity for C-GEF-ArrocaTiIoN differs between the cases of complete
directed graphs and general strongly connected graphs.

THEOREM 2. C-GEF-ALLOCATION for 0/1 preferences is NP-hard
and W([1]-hard when parameterized by the number of resources even
if the input graph is strongly connected.

Proor. Consider an instance of CLIQUE with graph G = (V, E)
and clique size k. Let m = k + (g) + 1 be the number of re-
sources in the new instance of C-GEF-ALLocATION. Specifically, we
have a special resource r., k vertex resources Ry = {ri,r2, ..., 7},
and (Izc) edge resources Re = {r'1,1'2,.. ., r’(k)}. We have a spe-
cial agent a,, dummy agents A. = {a1,az, .. 2 am+1), a starting
agent s, and an ending agent t. Additionally, we add vertex agents
Ay = {v1,v2,...,v5} and edge agents Ae = {e1, ez, ..., e} that
correspond to vertices and edges of graph G. The construction
of the input graph for the new instance of C-GEF-ALLOCATION,
illustrated in Figure 3, is as follows:

(1) Create a cycle over all agents from A U{s, t}U{as} such that
every two adjacent agents are connected with bidirectional
arcs. The order of the agents is arbitrary except that a. is
adjacent to agents s and ¢.

(2) For every vertex or edge agent a create two arcs (g, a,) and
(ax, a).

(3) Connect agent s with every vertex agent by an arc pointing
to a vertex agent.

(4) Connect agent t with every edge agent by an arc pointing
to an edge agent.
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agents

S| A |t Ay | Ae

A
res.

r« | 0 1 0] 1 0 0
Ry |0 1 1] 1 1 0
Re | 1 1 0] 1 1 1
Table 4: Utilities of the resources reported by the agents in
the reduction in the proof of Theorem 2.

((@)o(a)e o o(om)olemdo(+)
\ /
4=

Figure 3: The general graph constructed in the reduction in
the proof of Theorem 2. Every node is labeled with its name.

(5) Encode the structure of the input graph G by connecting a
vertex agent to an edge agent by an arc starting at the vertex
agent whenever a corresponding vertex (in G) is incident to
the corresponding edge (in G).

Finally, Table 4 depicts the utility values given by the agents to the
resources.

If there exists a solution to the CLIQUE instance, then we can
obtain a complete, graph-envy-free allocation for the C-GEF-AL-
LOCATION instance by assigning the vertex and edge resources to
agents representing, respectively, the vertices and the edges of the
clique. We give the special resource to the special agent. Indeed,
one can check using Table 4 that such an allocation is always graph-
envy-free. The special resource, r, given to agent a, makes neither
s nor t envious. Even though s can envy vertex agents, they get only
vertex resources to which s assigns the value of zero. As a result,
s is unenvious. By symmetry, the same holds for ¢. Since both s and
t get no resource, none of the dummy agents envies. Because every
clique’s edge connects only the clique’s vertices, every edge agent
that gets a resource may be envied only by the vertex agent that
also got a resource. Consequently, there is no envying vertex agent.
With observing that the edge agents do not envy special agent a.
because they give zero utility to the special item, we conclude that
our allocation is complete and graph-envy-free.

Proving that a solution to C-GEF-ALLOCATION yields a solution to
CLIQUE is more involved. Observe that every dummy agent reports
utility of one for every resource and all edges between agents A, U
{s, t} are bidirectional. Thus, if at least one agent from A¢ U {s, t}
was assigned a resource, then all dummy agents would have to get
one, too. This is impossible because there are m + 1 dummy agents
and only m resources. Hence, no complete and graph-envy-free
allocation assigns a resource to any agent from the set A U {s, t}.
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Now, consider resource ry. Assigning r, to one of the either
vertex or edge agents makes a. envious. Consequently, a, has to be
assigned one of the remaining resources. However, every possible
choice from the remaining resources makes either s or ¢ envious.
Since we have proven that we are not allowed to give a resource
to any of s and ¢, one has no choice but to assign r, to a,. Indeed,
since no agent is envious after such an allocation, if there exists a
complete and graph-envy-free allocation, then r, is assigned to a..

Next, we show that every vertex resource can be given only to a
vertex candidate and that every vertex agent gets at most one vertex
resource. To justify the first part of the claim, let us assume that
some vertex resource v is given to either a. or some edge agent. This
immediately implies that ¢ has to get one of the resources which,
according to our very first observation, make finding a solution
impossible if given to ¢. Conversely, one can safely assign v to one
of the vertex agents. Towards showing that every vertex agent
gets at most one vertex resource, let us assume that some vertex
candidate is assigned two vertex resources. By Table 4, we see that
a- is envious now (even when a, has been assigned r.). However,
giving a. any resource except for r, ends up in the situation where
either s or  has to be assigned a resource which is forbidden. By
symmetry arguments, we can use a similar deduction to observe
that every edge resource can be given only to an edge agent and
that every edge agent gets at most one edge resource.

Altogether, the observations stated above show that a solution
for the C-GEF-ALLOCATION instance needs to allocate exactly k
vertex resources to exactly k vertex agents and exactly (IZC) edge

resources to exactly (I;) edge agents. By our construction, every
time an edge resource is assigned to some edge agent e, a vertex
resource has to be assigned to every vertex agent connected with e.
Since a vertex resource is connected to an edge resource if and only
if the vertex is incident to the edge, the vertex and edge agents with
allocated resources represent a k-clique.

The reduction works in polynomial time which implies that C-
GEF-ALLocATION is NP-hard. Additionally, the reduction uses a
number of resources upper-bounded by a (polynomial) function
of k, which implies W([1]-hardness. o

3.2 Strongly Graph-envy-free Allocations

We move on to the strong variant of our envy-freeness concept and
analyze how this stronger notion effects computational complexity.
Again, we start with directed acyclic graphs to model hierarchical
structures. Here, strong graph-envy-freeness seems to be a very
reasonable assumption. In contrast to C-GEF-ALLOCATION, which
is trivial to solve in this setting, it turns out that C-sGEF-ALroca-
TION is intractable even for identical preferences. Reducing from
the NP-hard UNARY BIN PACKING [13], we mainly use the fact that
in a (directed) length-k path of agents, the first agent has to get a
bundle with utility at least k — 1.

PROPOSITION 2. C-sGEF-ALLOCATION with identical monotonic
additive preferences is NP-hard even if the input graph is acyclic.

Using a reduction from CLIQUE, we can show that for acyclic
graphs C-sGEF-ALLOCATION remains hard in case of 0/1 prefer-
ences. The proof is based on the observation that if we have a
group B of agents connected to some agent a ¢ B which has to get
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some resource r, then, depending on whether the agents in B like
resource r or not, we can distinguish two cases. The first case is
that every agent in B gets at least two resources. The second case
is that for every agent in B it is enough to get one resource.

THEOREM 3. C-SGEF-ALLOCATION with0/1 preferences isNP-hard
for the input graph being either a directed acyclic graph or a strongly
connected component.

By Proposition 2 and Theorem 3, identical 0/1 preferences are
the last hope to identify a tractable case for acyclic graphs. Indeed,
for this preference type we develop a polynomial-time algorithm
which even works for all directed graphs. As a first step, we observe
that, in contrast to C-GEF-ALLocATION, which was NP-hard, C-
SGEF-ALLOCATION is trivial for monotonic additive preferences
and strongly connected graphs (including cliques and, hence, the
“standard but strong” envy-freeness concept). The intuitive idea is
that any directed cycle implies a cycle for the transitive “greater
than” relation when comparing the utility values of the agents’
resources along this cycle.

OBSERVATION 5. Let G be a graph that contains a strongly con-
nected component with more than one vertex. Then, there is no strongly
graph-envy-free allocation if the agents have identical preferences.

Next, we present Algorithm 1 which, applying Observation 5,
finds a complete, graph-envy-free allocation for the case of identical
0/1 preferences and arbitrary input graphs.

Algorithm 1: Let R be a set of resources, let A be a set of
agents such that every agent assigns the preference value of
one to every resource, and let G = (A, E) be a directed graph.
if |A| = 1 then
‘ Allocate all resources to the single vertex; return;

if There exists a cycle in G then
‘ No allocation is possible; return;
Build a graph G’ = (A U {vs}, E’) where
E' = {(u,v): (v,u) € E} U {(vs,u): u € A A|Ng(u)| =0};
Assign every vertex w € V a label £(w) being the length of the
longest path from vs decreased by one;
if [R] > Yyew £(w) then
Assign £(w) arbitrary resources from R to every agent
wevV;
Assign the remaining resources to arbitrary agents with
zero in-degree in graph G; return;
No allocation is possible; return;

PROPOSITION 3. C-SGEF-ALLOCATION for identical 0/1 preferences
can be solved in linear time.

Proor. Algorithm 1 solves the problem. Because of space con-
straints we omit the proof of correctness and give the running time
analysis only. Using breadth-first search, we can assign the labels
to the agents and check in linear time whether a graph has a cy-
cle. Since the same holds for our procedure of building auxiliary
graph G’, Algorithm 1 works in linear time. O
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Proposition 3 complements our analysis of the classic computa-
tional complexity landscape of sGEF-ArLocATION for the consid-
ered restrictions on graphs and preferences. However, we strengthen
our intractability result for the case of general monotonic additive
preferences stated in Theorem 3. In Theorem 4 we show that C-
SGEF-ALLOCATION remains intractable even in case of few agents,
the input graph being acyclic, and every agent having outdegree at
most one.

THEOREM 4. C-sGEF-ALLOCATION for monotonic additive prefer-
ences is NP-hard and W[1]-hard when parameterized by the number
of agents even if the input graph G is a directed path.

4 EFFICIENCY AND SOCIAL WELFARE

In this section, we briefly discuss to which extent our results from
Section 3 transfer to settings where one searches for graph-envy-
free allocations that are not necessarily complete, but that are
Pareto-efficient or that optimize the utilitarian social welfare. The
following observation, the proof of which is based on proving re-
lations between its parts sequentially, shows that many hardness
results provided in Section 3 directly transfer.

OBSERVATION 6. LetR be a set of resources and A be a set of agents
with identical additive monotonic preferences. Then, the following
three statements are equivalent:

(1) there is a complete and (weakly/strongly) graph-envy-free al-
location,
(2) there is a Pareto-efficient and (weakly/strongly) graph-envy-
free allocation, and
(3) there is a (weakly/strongly) graph-envy-free allocationw: A —
2R with W =w,
where w = Y, cg maxX,e g Ug(r).
For 0/1 preferences, it holds that (3) & (2) — (1).

Theorem 2, Theorem 3, and Theorem 4 are not fully covered by
the above observation. However, since in the respective reductions
every resource must be allocated to one of the agents that “values
it the most” in every graph-envy-free and complete allocation, the
proofs indeed can be extended to also work for Pareto-efficiency
and utilitarian social welfare.

As for tractability, to adapt our results from Section 3 is a bit
more complicated than adapting them for NP-hardness. Of course,
for Pareto-efficiency and identical additive monotonic preferences
one can use the algorithm from Observation 3 as direct consequence
of Observation 6 ((1) & (2)).

Surprisingly, it turns our that, while for E-GEF-ALLOCATION all
polynomial-time cases still hold but require a slightly more involved
algorithm, W-GEF-ALLOCATION becomes intractable for directed
acyclic graphs and additive monotonic preferences. To prove this,
we reduce from CLIQUE and only need the utility values 0, 1, and 2.

PROPOSITION 4. W-GEF-ALLOCATION is NP-hard for the input
graph being a directed acyclic graph even for three-valued utility
functions.

Finally, we describe an algorithm that shows that polynomial-
time solvability of the remaining cases of C-GEF-ALrLocATION holds
also for the same special cases of the W-GEF-ALLocATION and E-
GEF-ALLOCATION problems.
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Algorithm 2: Let R be a set of resources, let A be a set of
agents with preferences encoded by the utility functions u, :
R — N,a € A, and let G be a DAG. The sets R and A are
ordered (arbitrarily).

while R # 0 do
Remove all agents a with u,(r) = 0,Vr € R;
Allocate the first resource r* to the first agent a* with zero
in-degree which values r* the most among the agents
with zero in-degree;

Remove r* from R;

PRroposITION 5. Algorithm 2 runs in polynomial time and solves

o E-GEF-ALLOCATION for acyclic input graphs and monotonic
additive preferences, and

o W-GEF-ALLOCATION for acyclic input graphs and 0/1 prefer-
ences.

Note that de Keijzer et al. [15] have shown that finding a Pareto-
efficient and envy-free allocation is not only NP-hard but Zg—hard
even for monotonic additive preferences. So, Proposition 5 decreases
the complexity of E-GEF-ALLOCATION from 2}2) for general directed
graphs to polynomial-time solvability for DAGs.

5 CONCLUSION

Combining social networks with fairness in the context of resource
allocations is a promising line of (future) research. Our work signif-
icantly differs from the one of Chevaleyre et al. [8] which, among
many other things, has a more distributed and (because of consid-
ering monetary payments) more divisible-resources flavor. The ma-
jority of our results are computational hardness results. In a sense,
they lay the foundations for a more refined search for islands of
tractability concerning practically motivated use cases of our basic
models. To this end, there are plenty of opportunities. First, one
may study further natural parameters, including the number of
resources, maximum utility values, or structural graph parameters
such as treewidth. Note, however, that these parameters may need
to be combined in order to achieve fixed-parameter tractability
results (e.g., a small maximum utility value does not guarantee
fixed-parameter tractability). Second, it appears natural to deepen
our studies by considering various special graph classes for the un-
derlying social network. In addition, one may move from directed
to undirected graphs or one may consider graphs that only consist
of small connected components. Again note, however, that the class
of bounded-degree graphs (reflected by a parameterization using
maximum degree as the parameter) alone, as shown in this work,
may not be enough to achieve (fixed-parameter) tractability. Finally,
including further fairness concepts beyond the ones we studied
appears to be promising as well.
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