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ABSTRACT
We examine the use of online mechanism design in settings where

consumers have multi-unit demand, goods are procured and allo-

cated over time, and future procurement costs are uncertain and

only become known at the time of allocation. An important applica-

tion with such characteristics is demand response, where electricity

wholesale prices depend on overall demand and the availability

of renewables. We formulate this as a mechanism design problem

and focus specifically on the property that the mechanism does

not revoke any allocated items. In this setting, we characterise a

class of price-based mechanisms that guarantee dominant-strategy

incentive compatibility, individual rationality, and no cancellation.

We present three specific such mechanisms in this domain and

evaluate them in an electric vehicle charging setting. By using ex-

tensive numerical simulations, we show that a mechanism based

on the first-come first-served principle performs well in settings

where future procurement costs can be estimated reliably or supply

is very tight, while a responsive mechanism performs very well

when the estimated procurement costs are highly uncertain and

supply is not as tight. We moreover show that a well-defined price-

based mechanism can lead to high profits for the operator of the

mechanism in many real-world situations.
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1 INTRODUCTION
In many settings, consumers wish to acquire resources at specific

times in the future, such as when booking hotels or airline tick-

ets, participating in demand response schemes in the Smart Grid,

or reserving cloud computing space. Because of uncertain future
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demand and fluctuating wholesale prices, current systems for book-

ing such resources typically employ dynamic pricing schemes. For

example, revenue management systems continuously adjust prices

and capacities to maximise the seller’s revenue [2, 3, 14], while

day-ahead, hour-ahead, and real-time electricity markets allow the

trading of electricity at varying timescales in the future. However,

a key shortcoming of these systems is that they require consumers

to speculate about the best time to buy resources.

To address this shortcoming, we propose using online mecha-

nism design, which aims to devise mechanisms that are dominant

strategy incentive compatible (DSIC). Under such mechanisms,

consumers maximise their utility by truthfully revealing their pref-

erences. Their advantage is twofold: they both negate the need for

speculation and enable the more efficient procurement and alloca-

tion of resources, as consumers are incentivised to promptly and

accurately reveal their private preferences. In addition to DSIC, we

are interested in ensuring individual rationality (IR), which holds

when consumers do not make a loss by participating in the mech-

anism. Depending on the application, we may also require that

allocations made cannot be revoked. In this study, we define this

property as no cancellation, or NC for short.

A considerable strand of the literature has proposed auction-

based systems to ensure DSIC [4, 9], including for settings with

complex preferences [1]. However, these studies take place in a one-

shot setting. By contrast, Porter [12], Hajiaghayi [7], and Parkes [10]

considered online settings in which consumers arrive dynamically

over time. They proposed an online DSIC mechanism that does not

need any prior knowledge of future arrivals, which is the so-called

‘model-free’ property. In addition to DSIC and IR, this mechanism

considers weak budget balance (WBB), which ensures that the

mechanism does not run a deficit. To keep DSIC, IR, and WBB,

it first defines a (weakly) monotonic allocation and then uses a

critical-value payment. In this study, we call this type of common

mechanism a critical-value-based mechanism.

Generally, in model-free online settings, no allocation can be op-

timal; hence, existing work is typically interested in the efficiency of

the mechanism, defined as the proportion of social welfare achieved

compared with the offline optimal. For example, in settings with

single-minded bidders, Parkes [10] proposed a critical-value-based

online mechanism that is DSIC, IR, and WBB and has an efficiency

of 1/2. By contrast, Gerding et al. [5] proposed a critical-value-based

online mechanism by considering the multidimensional preferences
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of agents, assuming non-increasing marginal valuations for agents.

Owing to the nature of critical-value-based mechanisms, their pro-

posed mechanism is DSIC, IR, and WBB. However, in settings with

multidimensional preferences, such mechanisms require the cancel-

lation of certain allocations that have already been made in order

to achieve good efficiency. Indeed, Robu et al. [13] showed that

the efficiency of an NC variant of this mechanism is 1/C , while a
variant with cancellation achieves an efficiency of 1/2.

By contrast, Hayakawa et al. [8] proposed a price-based NC

mechanism that first defines the price and then determines the allo-

cation. Unlike critical-value-basedmechanisms, it is notWBB.More-

over, simple price-based online mechanisms are not completely

general because certain allocations are not possible [10]. However,

Hayakawa et al. [8] empirically showed that a well-defined price-

based mechanism satisfies both good efficiency and high profit in

certain real-world situations (e.g. when procurement costs vary).

However, a wide range of options are available to determine the

allocation and payment policy of price-based mechanisms and the

performance of the mechanism greatly depends on the choice of

these policies. To design mechanisms in complicated procurement

settings in the real world, we consider settings with uncertain future

costs and unlimited supply (but increasing marginal costs). We

assume that resources are perishable (i.e. once procured, they have

to be allocated immediately). We also assume that consumers arrive

over time and wish to procure one or more units of a good, with

arbitrary marginal valuations of the quantity of this good (including

complementarities). Further, consumers have constraints on how

the resource can be consumed, including a consumption interval,

consumption rate, and deadline by when an allocation needs to

be confirmed by the mechanism. No existing work in the field of

mechanism design has thus far simultaneously considered these

challenges.

A key motivating example of this setting is an electric vehicle

(EV) charging mechanism operated by a demand response aggre-

gator [6]. Considering this, in this study, we make the following

novel contributions:

• We characterise a class of price-based online mechanisms

that are DSIC, IR, and NC in settings with uncertain procure-

ment costs and multi-unit demand.

• We introduce three novel mechanisms within this class, two

of which also satisfy WBB.

• In real-world situations in which price-based mechanisms

performmuch better than common critical-value-basedmech-

anisms, we empirically evaluate the performance of the pro-

posed mechanisms in various settings of supply tightness

and the accuracy of estimated future costs.

2 SYSTEM OVERVIEW
In this section, we introduce a general model of consumers and of

the procurement process as well as the theoretical properties we

would like the mechanism to satisfy. We assume that decisions are

made at discrete time steps t ∈ T , where T is the set of all time

steps.

/** 1 

Start Time 

𝑎𝑎𝑖𝑖 
Deadline 

𝑑𝑑𝑖𝑖 

Duration for receiving items 
𝛼𝛼𝑖𝑖 𝛽𝛽𝑖𝑖  

Time 

Figure 1: Agents’ time preferences.

2.1 Consumer Model
We refer to consumers as agents and use I to denote the set of all

agents. Agents arrive over time and, for each agent, we distinguish

between the time when they become aware of their demand and

when they can actually receive the resources. Formally, ai ∈ T
denotes the time when agent i ∈ I realises its demand. Furthermore,

we consider a deadline di ≥ ai ∈ T by which the agent must

know the total number of units to be allocated and the payment. In

addition, i has a time interval [αi ,βi ] ⊂ T in which the resources

can actually be allocated (see Figure 1). Note that existing online

mechanisms (e.g. [5, 10, 11]) assume that ai = αi and di = βi ,
meaning that this model is more general. In particular, when di <
αi , it captures settings with advance reservations. For example, in

the EV charging case, although agents can only be charged when

they are plugged in, they may know their demand and book the

use of a charging station in advance.

Agents are interested in multiple units of the same resource,

and we usevi =
{
vi,0,vi,1, . . .

}
to denote the valuations of agent i ,

where vi,k is the total value when k units are allocated between αi
and βi . A mild assumption is that preferences are monotonic (a.k.a.

free disposal), namely ∀k ′ ≤ k : vi,k ′ ≤ vi,k . Note that unlike

Gerding et al. [5], this approach allows for increasing marginal

valuations. W.l.o.g. we set ∀i : vi,0 = 0. Agents may have restric-

tions on the maximum number of resources that can be allocated

in each time step, which we denote by ri . We assume that this is

bounded by rmax , i.e. ∀i : ri ≤ rmax , and that rmax is known to

the mechanism.

Given the above, the type of agent i is denoted by

θi = {ai ,di ,αi ,βi ,ri ,vi }.

We consider agents to be strategic and able to misreport their type

if this increases their utility. We use
ˆθi = {âi , ˆdi , α̂i , ˆβi , r̂i ,v̂i } to

denote the report of agent i . Note that the mechanism only becomes

aware of agent i at time âi . We use θ to denote the types of all agents

and θ−i to denote the types of all agents except i . Similarly,
ˆθ is

the reported types of all agents and
ˆθ ⟨t ⟩ is the reported types of all

agents i ∈ I : âi ≤ t .
As is standard in online mechanism design and natural in many

applications, we assume limited misreports [10], namely âi ≥ ai ,
ˆdi ≤ di , α̂i ≥ αi , ˆβi ≤ βi , and r̂i ≤ ri . That is, an agent can only

report more restrictive preferences (except for the valuations). For

example, an agent cannot report ai before it is aware of its own
preferences; however, it can easily delay its report. In addition, we

make the natural assumption that α̂i ≥ âi and ˆβi ≥ ˆdi . Finally, we
assume that each agent has a maximum number of units that it can

receive, Qi , which is known to the mechanism. For example, in the

EV charging case, Qi is the remaining capacity of the battery, and
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the mechanism can detect this when it is plugged into the charging

equipment.

2.2 Procurement and Assignment Model
The mechanism has to procure resources from an external market.

We use c (t ,k ) to denote the marginal procurement cost of the kth
unit at time t . We assume that the supply of the external market

is infinite, although the marginal costs can be arbitrarily high. We

also assume that the mechanism knows the actual cost c (t ,k ) right
before it allocates items to agents at time t , but does not know
these in advance. However, it knows the maximum marginal cost

cmax (t ,k ) and expected cost c̃ (t ,k ) in advance.

The mechanism computes, for each agent i ∈ I , a price, Pi,k =

Pi (k , ˆθ
⟨ ˆdi ⟩), which depends on the allocation (i.e. the number of

units received) k , based on the information available at the reported

deadline
ˆdi .

At each time point, the mechanism decides and renews the al-

location schedule for all agents. Let y⟨t ⟩i,t ′ = y⟨t ⟩i,t ′ (
ˆθ ⟨t ⟩) denote the

scheduling function, which specifies the total number of units allo-

cated to agent i by time t ′ when the current time is t . This function
makes (potentially temporary) allocation decisions for future time

points t ′ > t , given the information available at time t . In addition,

we denote by yi,t = y⟨t ⟩i,t the number of units actually allocated

to agent i by time t . Obviously, the scheduling algorithm cannot

change past allocations, and thus

∀t ,t ′ > t : y⟨t
′⟩

i,t = y
⟨t ⟩
i,t = yi,t . (1)

The total number of units allocated to agent i is fixed by the reported

deadline
ˆdi , meaning we have

∀t ≥ ˆdi : y
⟨t ⟩
i, ˆβi
= y⟨

ˆdi ⟩
i, ˆβi
= yi, ˆβi

. (2)

However, the allocation schedule (i.e. the time at which the mecha-

nism will allocate the items to each agent) can be flexible because

agents are only interested in the final allocation at the end of the

reported time interval
ˆβi . We denote by Yi the final allocation of

agent i , such that

Yi = yi, ˆβi
. (3)

Given the foregoing, we use ∆yi,t to denote the number of units

actually allocated to i at time t , such that

∆yi,t =



yi,t − yi,t−1 if t > αi

yi,αi if t = αi .
(4)

The number of unitsmt allocated to all agents at time t is

mt =
∑
i ∈I

∆yi,t . (5)

Thus, the procurement cost at time t is
∑mt
k=1 c (t ,k ).

2.3 Mechanism Properties
Given the models above, the utility ui of agent i is ui ( ˆθ

⟨ ˆdi ⟩) =

vi,Yi −Pi,Yi . Furthermore, the revenueR of the mechanism isR ( ˆθ ) =∑
i ∈I Pi,Yi −

∑
t ∈T
∑mt
k=1 c (t ,k ).We define the total social welfare

SW ( ˆθ ) as the sum of the utilities of all agents and the revenue of

the mechanism:

SW ( ˆθ ) =
∑
i ∈I

ui ( ˆθ
⟨ ˆdi ⟩) + R ( ˆθ ) =

∑
i ∈I

vi,Yi −
∑
t ∈T

mt∑
k=1

c (t ,k ).

Now, we are interested in the following properties. A mechanism is

said to be DSIC if ∀θi , ˆθi , ˆθ−i : ui ({θi , ˆθ−i }) ≥ ui ({ ˆθi , ˆθ−i }). Further-

more, the mechanism is IR if∀θi : ui ({θi , ˆθ−i }) ≥ 0. Themechanism

is ex-post WBB if ∀ ˆθ : R ( ˆθ ) ≥ 0, and it is ex-interimWBB if R is com-

puted using the expected costs. Finally, we state that the mechanism

satisfies the property of no cancellation (NC) if

∀i,∀t ; α̂i < t ≤ ˆβi : yi,t ≥ yi,t−1. (6)

This is important because in most real-world scenarios, cancelling

(i.e. removing) previously allocated units is impossible or impracti-

cal.

3 MECHANISM CHARACTERISATION
Here, we characterise a general class of mechanisms that satisfy

DSIC, IR, and NC in the given setting. As shown in the previous

section, the mechanism consists of a pricing function Pi,k and

scheduling function y⟨t ⟩i,t ′ . In this section, we define a price-based

DSIC (and IR) mechanism and discuss the properties that the pricing

function should satisfy. We then show a set of constraints for the

scheduling function through which the mechanism is guaranteed

to satisfy NC.

3.1 Price-Based Online DSIC Mechanism
To extend the simple price-based online mechanism for single-

minded bidders [10] to our setting, we first define the monotonicity
of pricing functions as follows.

Definition 3.1. A pricing function is monotonic if it is (weakly)

monotonically increasing over âi and α̂i , and (weakly) monotoni-

cally decreasing over
ˆdi , ˆβi and r̂i .

We define the price-based online DSIC mechanism for the multi-

minded domain as follows.

Definition 3.2. A mechanism is a price-based DSIC online mech-

anism for multi-minded bidders if

1. The mechanism decides the price Pi,k for every possible allo-

cation k to agent i by adopting a pricing function that is monotonic

and independent of v̂i .

2. The final allocation Yi for agent i coincides with k such that

the value of v̂i,k −Pi,k is maximised (over all k that can be allocated

to i for any choice of v̂i ).

Then, we have the following theorem.

Theorem 1. A price-based onlinemechanism defined by Definition
3.2 is DSIC.

Proof. The proof is shown in Appendix A. �

In addition to being DSIC, assuming Pi,0 = 0, themechanism is IR

because the payment of i cannot exceed its valuation. This definition
is quite general and common critical-value-based mechanisms are

also included in this domain.
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3.2 Constraints of the Scheduling Function for
NC Mechanisms

Definition 3.2 only considers the prices at the (reported) deadline

and corresponding final allocations. However, allocations are gen-

erally made over time. To this end, we describe a framework for

designing mechanisms that neither under- nor overallocate by the

end of the reported time interval, where the allocations already

made are never revoked.

First, we define an NCF (no cancellation and feasible) schedule

as follows.

Definition 3.3 (NCF schedule). A schedule for i , determined at

time t , satisfies NCF if

∀t ′; α̂i < t ′ ≤ ˆβi : 0 ≤ y⟨t ⟩i,t ′ − y
⟨t ⟩
i,t ′−1 ≤ r̂i . (7)

Lemma 1. If the schedules for all agents at every time step satisfy
NCF, the mechanism with such a scheduling function satisfies NC.

Proof. By definition, at the deadline di of agent i , this ensures

that ∀t ′; α̂i < t ′ ≤ ˆβi : 0 ≤ y⟨
ˆdi ⟩

i,t ′ − y
⟨ ˆdi ⟩
i,t ′−1, and thus ∀i,∀t ; α̂i < t ≤

ˆβi : yi,t ≥ yi,t−1 holds. �

To ensure this, we discuss a set of constraints for the scheduling

function y⟨t ⟩i,t . First, we introduce an upper-bound function h⟨t ⟩i ,

which satisfies

y⟨t ⟩i,t ≤ h⟨t ⟩i , (8)

for all i and t . Given this, we focus on the upper limit number
of units h⟨t ⟩i and temporarily assigned number of units y⟨t ⟩

i, ˆβi
, and

call these u-number and t-number, respectively. Here, u-number
h⟨t ⟩i expresses the maximum number of units assigned to agent i

until time t , whereas t-number y⟨t ⟩
i, ˆβi

expresses the number of units

(temporarily) assigned to agent i during its available time interval,

determined by the schedule at time t . Given these numbers, the

allocation schedule y⟨t ⟩i,t to agent i is determined. To avoid revoking

the allocation, u-number h⟨t ⟩i should be (weakly) increasing over

time, that is,

∀t : h⟨t+1⟩i ≥ h⟨t ⟩i , (9)

because otherwise the allocation at time t is cancelled if y⟨t ⟩i,t = h
⟨t ⟩
i .

Then, to avoid under- or overallocation,

∀t : 0 ≤ y⟨t ⟩
i, ˆβi
− h⟨t ⟩i ≤ ( ˆβi − t )r̂i (10)

should hold. Here, the difference y⟨t ⟩
i, ˆβi
− h⟨t ⟩i between t-number

and u-number represents the minimum number of units that the

mechanism should allocate between t and ˆβi based on the schedule

(temporarily) decided at time t . Hence, it can neither be negative

nor exceed the number achievable by the maximum rate r̂i . Then,
we use Πi to denote the maximum number of units that agent i

could receive, such that, Πi = min

{
Qi , ( ˆβi − α̂i + 1)r̂i

}
. Given this,

∀t : y⟨t ⟩
i, ˆβi
≤ Πi , (11)

holds. We then define a cut-off time δi such that

δi = βi − ⌈
Πi
r̂i
⌉ + 1. (12)

If t < δi , the mechanism can allocate a maximum of Πi units to

the agent before the end of the reported time interval,
ˆβi , because

r̂i ( ˆβi−t+1) ≥ Πi . However, if t ≥ δi , the mechanismmay be unable

to allocate Πi , and thus we introduce the following constraint:

∀t ≥ δi : y
⟨t+1⟩
i, ˆβi

≤ y⟨t ⟩
i, ˆβi
. (13)

This means that t-number y⟨t ⟩
i, ˆβi

is (weakly) decreasing over time

after the cut-off time δi .
Summarising the above constraints, we define the term YH con-

straints as follows.

Definition 3.4 (YH constraints). A scheduling function y⟨t ⟩i,t ′ satis-

fies the YH constraints if it satisfies Eqs. 8, 9, 10, 11, and 13 with an

upper-bound function h⟨t ⟩i .

We then have the following result.

Lemma 2. Given unlimited supply, if a schedule that is NCF at
time t − 1 satisfies the YH constraints with an upper-bound function
h⟨t ⟩i , there always exists an NCF schedule at time t .

Proof. The proof is shown in Appendix B. �

Lemma 3. Given unlimited supply, there always exists a scheduling
function that is NCF at time âi and that satisfies the YH constraints
with an upper-bound function h⟨t ⟩i .

Proof. This can be achieved by settingy⟨âi ⟩
i, ˆβi
= h
⟨ ˆβi ⟩
i andy⟨âi ⟩i,âi

=

min(r̂i ,h
⟨âi ⟩
i ), with an arbitrary upper-bound function h⟨t ⟩i that

satisfies Eq. 9 and h
⟨ ˆβi ⟩
i ≤ Πi . �

We now have the following result.

Theorem 2. Given unlimited supply, an NCF schedule that satis-
fies the YH constraints with an upper-bound function always exists
and an allocation mechanism with such a scheduling function satisfies
NC.

Proof. This theorem is proven by Lemmas 1, 2, and 3. �

Thus, it is possible to design an NC mechanism by using the YH
constraints.

3.3 Price-Based Online DSIC and NC
Mechanism

We now have a price-based online DSIC and NC mechanism for

our setting, as defined below.

Definition 3.5. A mechanism is a price-based online DSIC and

NC mechanism for our setting if

1. The mechanism decides the price Pi,k for every possible allo-

cation k to agent i by adopting a pricing function that is monotonic

and independent of v̂i .

2 At each time, the mechanism makes an allocation to agents by

adopting a scheduling functiony⟨t ⟩i,t ′ that satisfies the YH constraints

with an upper-bound function h⟨t ⟩i .

3. The final allocation Yi for agent i coincides with k such that

the value of v̂i,k −Pi,k is maximised (over all k that can be allocated

to i for any choice of v̂i ).
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Then, we have the following result.

Theorem 3. A price-based online mechanism defined by Defini-
tion 3.5 satisfies DSIC and NC.

Proof. The theorem is proven by Theorems 1 and 2. �

In our setting with uncertain marginal procurement costs and

multidimensional preferences, there is no model-free allocation

mechanism with a bounded competitive ratio (see Appendix C).

In the following part of this paper, we therefore consider a real-

world situation in which our proposed price-based mechanism is

used effectively and show its properties as well as the results of

quantitative evaluations.

4 MECHANISMS
We now consider several specific mechanisms within the general

class of price-based online DSIC and NC mechanisms discussed in

the previous section. These offer various trade-offs between achiev-

ing WBB and high efficiency in practice (as we explore empirically

in the next section).

4.1 First-Come First-Served Mechanism
Our first mechanism is based on the well-known first-come first-

served (FCFS) principle. This mechanism produces an optimal allo-

cation schedule for each agent in the order of their arrival while

keeping existing schedules fixed, and the prices are based on the

marginal costs given existing commitments. We consider two vari-

ants: one using the maximum cost, cmax (t ,m), and the other using

the expected cost, c̃ (t ,m), referred to as FCFS(Max) and FCFS(Est),
respectively. In more detail, suppose that, when i arrives, k⟨âi ⟩

−i,t
units have already been allocated to preceding agents at some fu-

ture point t . Then, the price for i of the µth unit at time t is given

by ρ1 · cmax (t ,k
⟨âi ⟩
−i,t + µ ) and ρ1 · c̃ (t ,k

⟨âi ⟩
−i,t + µ ), respectively for all

µ such that 1 ≤ µ ≤ r̂i . Here, ρ1 is a parameter that can be set by

the mechanism.

The marginal price p⟨âi ⟩i,l is then obtained by sorting all the prices

during the period t ∈ [α̂i , ˆβi ] in ascending order. The prices (and

hence the allocation schedule) are set on arrival and remain un-

changed. Note that the prices obtained in this way do not depend

on v̂i and are monotonic. Given these prices, the scheduling func-

tion yi,t is set to maximise the value of v̂i,k − Pi,k . Defining the

upper-bound function that coincides with the scheduling function,

namely h⟨t ⟩i = yi,t , the FCFS mechanism satisfies the condition

of Theorem 3, and thus it is DSIC and NC. In addition, if ρ1 ≥ 1,

FCFS(Max) is ex-post WBB and FCFS(Est) is ex-interim WBB.

4.2 Responsive Mechanisms
We now introduce mechanisms that unlike FCFS respond to the ac-

tual costs c (t ,m) and agents arriving by adapting to future prices. At

each time t , the mechanism determines a price p⟨t ⟩i,l for all agents us-

ing the information given by c (t ,m) at the current time and c̃ (t ,m)

or cmax (t ,m) in the future. Here, p⟨t ⟩i,l denotes the provisional mar-

ginal price of the lth unit for agent i at time t , and p⟨t ⟩i,0 = 0. The pro-

visional price at time t for agent i for receiving k units until the end

of the reported time interval, βi , is described as P ⟨t ⟩i,k =
∑k
l=0 p

⟨t ⟩
i,l .

We describe two specific ways of determining the marginal prices

in Sections 4.2.1 and 4.2.2.

By using these provisional prices, the upper-bound function h⟨t ⟩i
is defined as follows:

h⟨t ⟩i = min{argmax

k≤Πi
{v̂i,k − P

⟨min(t, ˆdi )⟩
i,k }}. (14)

Given this upper-bound function h⟨t ⟩i , at each time, the mech-

anism myopically decides the allocation schedule that maximises

total social welfare (including future allocations), while satisfying

the YH constraints with h⟨t ⟩i . To keep Eq. 9, which is a part of the

YH constraints, the price P ⟨t ⟩i,k has to be (monotonically) decreasing

over time. Hence, if the provisional marginal price p⟨t ⟩i,l is set inde-

pendent of v̂i , is monotonic, and is (monotonically) decreasing over

time, the mechanism is DSIC, IR, and NC because of Theorem 3.

In the following subsection, we show two pricing algorithms that

satisfy these conditions, namely Count and PayEX.

4.2.1 Count All Agents (Count). At each time t , this pricing

algorithm calculates the maximum number of units n⟨t ⟩t ′ that can

be allocated at time t ′, given the information available at time t not

considering the report of i , as follows: n⟨t ⟩i,t ′ =
∑
j ∈I ⟨t ⟩
−i,t ′

r̂ j + rmax .

Here, I ⟨t ⟩
−i,t ′ denotes the set of agents available at time t ′ based on

the information available at time t , excluding agent i . Namely,

∀j ∈ I ⟨t ⟩
−i,t ′ : j , i, α̂ j ≤ t ′, ˆβj ≥ t ′, âi ≤ t . (15)

Using this, the virtual cost c ′⟨t ⟩i,t ′ is defined as follows:

c ′⟨t ⟩i,t ′ =



c (t ′, ⌊ρ2 · n
⟨t ⟩
i,t ′⌋) (t ′ ≤ t )

cmax (t
′, ⌊ρ2 · n

⟨t ⟩
i,t ′⌋). (t ′ > t )

(16)

Here, parameter ρ2 ≤ 1 can be set by the mechanism. Then, the

cost c⟨t ⟩i,t ′ is set for each agent as follows:

c⟨t ⟩i,t ′ =



c ′⟨t ⟩i,t ′ (t = âi )

min{c⟨t−1⟩i,t ′ ,c
′⟨t ⟩
i,t ′ }. (otherwise )

(17)

If t ≤ δi , the marginal price p⟨t ⟩i,l is obtained by sorting all c⟨t ⟩i,t ′

during the period t ∈ [α̂i , ˆβi ] in ascending order, and if t > δi ,

p⟨t ⟩i,l = p
⟨t−1⟩
i,l .

This pricing function is (monotonically) decreasing over time. It

also does not depend on v̂i and is monotonic. Hence, a responsive
mechanism using this pricing algorithm is DSIC, IR, and NC. It also

satisfies ex-post WBB if ρ2 = 1.

4.2.2 Pay Externality of the Virtual Market (PayEX). This pricing
algorithm calculates agent i’s price based on a virtual marketM−i ,

which considers only the reports
ˆθ ⟨

ˆdi ⟩
−i of all other agents except i .

The virtual market is rerun from the beginning of T . Considering
M−i , we myopically find the schedule that optimises the total social

welfare ofM−i and allocate units to the virtual agents inM−i . This
is repeated at each time step, using information about new arrivals;

however, allocations before the current time t remain fixed. We use

SW (t ,M−i ) to denote the achieved social welfare at time t . Then,
to compute the price of agent i , we recalculate the optimisation
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with the constraint that agent i obtains k units during [α̂i , ˆβi ]. Let
SWk (t ,M−i ) denote the achieved social welfare, excluding agent

i’s value. Given this, denote the externality EXi (t ,k ) of agent i
as EXi (t ,k ) = SW (t ,M−i ) − SWk (t ,M−i ). Then, the provisional

marginal price p⟨t ⟩i,l of agent i is determined as follows:

p⟨t ⟩i,l =




ρ3 · {EXi (t, l ) − EXi (t, l − 1) } (t = âi )
p⟨t−1⟩i,l (t > δi )

min{ρ3 · {EXi (t, l ) − EXi (t, l − 1) }, p
⟨t−1⟩
i,l } (otherwise )

Here, ρ3 can again be set by the mechanism.

This pricing algorithm is independent of v̂i , is monotonic, and
is (monotonically) decreasing over time. Therefore, a responsive

mechanism using this pricing algorithm is also DSIC, IR, and NC.

However, unlike the two previous mechanisms, FCFS and Count, it
does not guarantee ex-interim WBB (i.e. the revenue of the mecha-

nism can become negative).

4.3 Theoretical Bounds on Social Welfare
As Theorem 5 in Appendix C states, none of the presented mecha-

nisms guarantees a bounded competitive ratio. However, the total

social welfare of FCFS and Count is guaranteed to be non-negative

when ρ1 ≥ 1 or ρ2 = 1 because of the IR and BB properties. On the

contrary, the total social welfare of PayEX can be negative.

5 NUMERICAL ANALYSIS
While there are no theoretical performance bounds, we now con-

sider the empirical performance of the mechanisms in real-world

settings, where EV charging is coordinated by a demand response

aggregator [6], which acts as a broker between EV agents and the

electricity market by procuring electricity from a mixture of local

renewable generators.

5.1 Experimental Setup
Agents (EV drivers) submit their requirements (i.e. type) at time âi .

EVs are plugged into the charging equipment during t ∈ [α̂i , ˆβi ].

To obtain the distribution of α̂i and ˆβi , we use the results of a

questionnaire about daily travel patterns answered by 340 citizens

in Nagoya City, Japan. The booking time âi is uniformly drawn

from α̂i − 12 to α̂i and the deadline
ˆdi is uniformly drawn from

âi to ˆβi . We assume that the charging speed of all agents is 3 kW.

Furthermore, a single time step is one hour and a single unit of

electricity is 3 kWh; ∀i ∈ I : ri = 1. The capacity Qi of each agent

is uniformly drawn from 1 to 6.

The model of procurement costs is described below. First, given

the cost ct,1 of the first unit at time t , the marginal cost c (t ,m) of
themth unit is obtained from Eq. 18:

c (t ,m) = γm−1ct,1. (18)

Here, γ ≥ 1 is a parameter that indicates supply tightness. If γ = 1,

the marginal costs are constant and they increase otherwise. The

aggregator estimates ct,1 with a certain error band ε . We use c̃t to
denote the estimated value:

(1 − ε )c̃t ≤ ct,1 ≤ (1 + ε )c̃t . (19)

We assume that the aggregator knowsγ and ε accurately in advance,
and thus the maximum cost cmax (t ,m) is obtained as cmax (t ,m) =

0
20
40
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80

0 6 12 18 24

Co
st
 [J
PY
/u
ni
t]

Time of the day [h]

Figure 2: Estimated cost.

(1+ε )γm−1c̃t . In this analysis, we set c̃t as shown in Figure 2, using

the real market price of a typical fine June day in Japan
1
. The actual

ct,1 is uniformly drawn from the range shown by Eq. 19 at each

time. The analysis is run for a 48-hour period, and the estimated

cost is the same for these two days, while the actual cost is different.

The optimisation in all mechanisms is carried out by solving the

corresponding mixed integer program by using the Gurobi
2
solver

without any tolerance.

As benchmarks, common critical-value-based online DSIC mech-

anisms may be considered. However, such mechanisms [5, 10] are

based on the greedy algorithm and thus unable to take predictions

about future procurement cost into account. Indeed, Hayakawa

et al. [8] showed that FCFS outperforms the existing state-of-the-

art mechanisms in procurement settings. Thus, we adopt FCFS as a
baseline of the analysis.

5.2 Empirical Results
We now numerically evaluate our proposed mechanisms. In all the

figures, each point shows the average over 30 trials and the error

bar shows the 95% confidence intervals.

5.2.1 Efficiency. First, we compare efficiency, which is defined

as the obtained social welfare as a proportion of that of the offline

optimal. We evaluate two cases. In case 1, γ = 1.0 and ε = 0.2;

in case 2, γ = 1.1 and ε = 0.5. These represent constant/rising

marginal costs and low/high prediction errors, respectively. The

parameters of the mechanisms are set as ρ1 = ρ2 = ρ3 = 1. Figure

3 shows the results where the number of agents varies from 5 to

100. These results show that PayEX outperforms the other two

mechanisms and achieves over 80% efficiency in these settings.

Then, we fix the number of agents to 100 and vary ε , which reg-

ulates the error in the cost prediction, from 0.0 to 1.0. The results in

Figure 4 show that the efficiency of FCFS is sensitive to ε regardless
of the adopted pricing function. Responsive mechanisms, Count
and PayEX, are less sensitive to ε because they adapt their schedule

after observing the actual cost, as opposed to FCFS, which does not

adapt.

Finally, we fix the number of agents to 100 and vary γ , which
regulates the supply tightness, from 1.0 to 1.5. The results in Figure 5

show that the responsive mechanisms perform well if the supply is

not too tight because they have the option to accept late-arriving

high-valued agents, while FCFS always gives priority to the early-

arriving agents. However, the responsive mechanisms result in

poor performance if supply is very tight. The efficiency of Count

1
http://www.jepx.org/english/index.html.

2
http://www.gurobi.com.
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Figure 5: Influence of supply tightness γ .

decreases rapidly over γ but is bounded to be positive, while the

efficiency of PayEX decreases more slowly but is unbounded.

5.2.2 Trade-off between Efficiency and Revenue. In all three

mechanisms, there is a trade-off between revenue and efficiency.

Specifically, we fix γ to 1.1 and consider the two cases where ε is
0.2 or 0.5. The number of agents is set to 100. Figure 6 shows the

trade-off achieved by these mechanisms by setting various param-

eters, 0.7 ≤ ρ1 ≤ 1.5, 0.06 ≤ ρ2 ≤ 1.0, 1.0 ≤ ρ3 ≤ 2.0. In this

setting, FCFS(Est) is a variant of FCFS(Max), where ρ1 is set to 1

ε+1 .

Hence, we show the performance of FCFS based on FCFS(Max). For
all mechanisms, the point ρ1 = ρ2 = ρ3 = 1.0 is shown by an

asterisk.

In both cases, PayEX outperforms the other two mechanisms. In

particular, when ε = 0.5, the aggregator can obtain about 32% more

revenue by using PayEX compared with FCFS, while it can achieve

about 14% higher social welfare.

Note that for a wide range of ρ parameters, namely for all the

plots in Figure 6, the mechanism satisfies DSIC, IR, and NC. Unlike

critical-value-based mechanisms that require unique scheduling

and pricing algorithms, a wide range of algorithms can thus be
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Figure 6: Trade-off between efficiency and revenue.

adopted in our proposed framework, considering the trade-off be-

tween efficiency and revenue.

6 CONCLUSIONS
In this study, we addressed how to design online mechanisms in

settings with uncertain future procurement costs and multi-unit

demand, focusing on the no cancellation (NC) property. In these

settings, no mechanism has a bounded competitive ratio in terms

of efficiency. We characterised the price-based DSIC, IR, and NC

mechanism for such settings. We focus on the domain of multi-

unit demand, in which agents are only interested in the finally

assigned number of units and do not care when they are assigned,

and propose a novel algorithm that uses this flexibility to improve

performance. The proposed mechanisms are model-free w.r.t. fu-

ture agents, but can consider stochastic information about future

procurement cost. We presented three specific mechanisms within

the framework, each of which has some flexibility to consider the

trade-off between efficiency and revenue.

As shown in our numerical analysis, first-come first-servedmech-

anism performs well in settings where the aggregator can estimate

future procurement costs reliably or supply is very tight. However,

when the estimated procurement costs are highly uncertain and

supply is not as tight, PayEX performs very well, although it is not

WBB. These conditions are typically true in the EV charging setting,

where procurement costs depend more on the time of day rather

than the number of customers, and there can be high uncertainty

about the costs because of the increasing reliance on the generation

of renewable energy. As shown in the presented results, in certain

real-world situations, a price-based mechanism that is not WBB

not only achieves better efficiency but also makes more profit for

the operator than common WBB mechanisms.

In the future, we plan to explore algorithms in various fields, such

as booking hotels, airline tickets, and the Smart Grid, considering

the specific constraints of each field.

A PROOF OF THEOREM 1
Here, we show the proof of Theorem 1. We first use the character-

isation of the DSIC mechanisms for offline settings presented by

Bartal et al. [1], namely where the misreports of âi , ˆdi , α̂i , ˆβi , and
r̂i are not considered.
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Lemma 4. Assuming truthful reports of âi , ˆdi , α̂i , ˆβi , and r̂i , a
direct revelation mechanism for our setting is DSIC if and only if

1. The pricing function Pi (k , ˆθ
⟨ ˆdi ⟩) for every possible allocation k

to agent i does not depend on v̂i .
2. The allocation function Yi ( ˆθ ⟨

ˆdi ⟩) allocates k items to i such that
the value of v̂i,k − Pi (k , ˆθ ⟨

ˆdi ⟩) is maximised (over all k that can be
allocated to i for any choice of v̂i ).

Lemma 4 is proven by Theorem 1 in Bartal et al. [1]. Next, we

consider the situation where agents can misreport âi , ˆdi , α̂i , ˆβi , and
r̂i in settings with limited misreports. We then have the following

result.

Theorem 4. A direct revelation mechanism for our setting is DSIC
if and only if

1. The pricing function Pi (k , ˆθ
⟨ ˆdi ⟩) for every possible allocation k

to agent i is monotonic and independent of v̂i .
2. The allocation function Yi ( ˆθ ⟨

ˆdi ⟩) allocates k items to i such that
the value of v̂i,k − Pi (k , ˆθ ⟨

ˆdi ⟩) is maximised (over all k that can be
allocated to i for any choice of v̂i ).

Proof. First, we show that this is a sufficient condition. An

agent cannot manipulate its own price by misreporting v̂i , because

this is determined independent of v̂i . Therefore, due to the second

condition, it can always maximise its own utility by reporting v̂i =

vi . If the agent reports the true v̂i , it can only increase its utility

by decreasing prices. However, owing to the monotonicity of the

pricing function, only misreporting âi < ai , ˆdi > di , α̂i < αi ,
ˆβi > βi , or r̂i > ri can reduce prices, and this is not possible

because of the assumption of limited misreports. Thus, the agent

always maximises its own utility by truthfully reporting ai , di , αi ,
βi , and ri .

Second, we show that this is necessary. Assume to the contrary

that the first condition does not hold. If the pricing function depends

on v̂i , then the mechanism is not DSIC because of Lemma 4. Now,

suppose that the pricing function is not monotonic, namely there is

some a′i < a′′i such that Pi (k ,a
′
i ) > Pi (k ,a

′′
i ), while

ˆdi , α̂i , ˆβi , and
r̂i are the same. In this case, an agent whose true type is a′i and
who is allocated k units when reporting truthfully can increase its

utility by misreporting a′′i even when the allocation remains the

same. Thus, the first condition is necessary.

Now, assume that the first condition holds but the second condi-

tion does not. Then, for some v̂ ′
i
, the mechanism allocates k ′ such

that v̂i,k ′ − Pi (k
′, ˆθ ⟨

ˆdi ⟩) < v̂i,k ′′ − Pi (k
′′, ˆθ ⟨

ˆdi ⟩), where k ′′ can be

allocated by reporting a certain v̂ ′′
i
. In this case, if its true valuation

is vi = v̂ ′
i
, its utility can increase by misreporting v̂ ′′

i
. Thus, the

second condition is necessary. �

Hence, Theorem 1 is proven. The conditions stated in Defini-

tion 3.2 are necessary and sufficient to be DSIC.

B PROOF OF LEMMA 2
Due to the assumption that a schedule y⟨t−1⟩i,t ′ at time t − 1 satisfies

NCF,

y⟨t−1⟩
i, ˆβi

− y⟨t−1⟩i,t−1 ≤ ( ˆβi − t + 1)r̂i . (20)

In this case, if the schedule at time t is set by

y⟨t ⟩i,t = min(y⟨t−1⟩i,t−1 + r̂i ,h
⟨t ⟩
i ), (21)

with the upper-bound function h⟨t ⟩i that, with the scheduling func-

tion y⟨t ⟩i,t , satisfies the YH constraints, the schedule y⟨t ⟩i,t at time t is

NCF for the following reason.

First, because of Eqs. 1, 8, and 9, y⟨t ⟩i,t−1 = y⟨t−1⟩i,t−1 and h⟨t ⟩i ≥

h⟨t−1⟩i ≥ y⟨t−1⟩i,t−1 hold; thus, from Eq. 21,

0 ≤ y⟨t ⟩i,t − y
⟨t ⟩
i,t−1 = min(r̂i ,h

⟨t ⟩
i − y

⟨t−1⟩
i,t−1 ) ≤ r̂i , (22)

holds. Then, we consider two cases for the value of the right-hand

side of Eq.21.

(1) Case 1, where y⟨t−1⟩i,t−1 + r̂i ≤ h⟨t ⟩i

In this case, y⟨t ⟩i,t = y
⟨t−1⟩
i,t−1 + r̂i . If t < δi , according to Eqs.11 and

12, y⟨t ⟩
i, ˆβi
− y⟨t ⟩i,t ≤ Πi ≤ ( ˆβi − t )r̂i . Moreover, if t ≥ δi , according to

Eqs.13 and 20,

y⟨t ⟩
i, ˆβi
− y⟨t ⟩i,t ≤ y⟨t−1⟩

i, ˆβi
− y⟨t ⟩i,t = y

⟨t−1⟩
i, ˆβi

− (y⟨t−1⟩i,t−1 + r̂i ) ≤ ( ˆβi − t )r̂i .

(2) Case 2, wherey⟨t−1⟩i,t−1 +r̂i ≥ h⟨t ⟩i . In this case,y⟨t ⟩i,t = h
⟨t ⟩
i . Then,

according to Eq.10, y⟨t ⟩
i, ˆβi
− y⟨t ⟩i,t = y

⟨t ⟩
i, ˆβi
− h⟨t ⟩i ≤ ( ˆβi − t )r̂i .

Thismeans that in both cases, there exists a schedule that satisfies

∀t ′; α̂i < t ′ ≤ ˆβi : 0 ≤ y⟨t ⟩i,t ′−y
⟨t ⟩
i,t ′−1 ≤ r̂i ,and thus an NCF schedule

can be obtained.

C COMPETITIVE ANALYSIS
We say that an allocation mechanism Y has a bounded competitive

ratio p if ∀ ˆθ : pSWY ( ˆθ ) ≥ SWOPT ( ˆθ ), where SWY ( ˆθ ) is the social

welfare achieved by Y and SWOPT ( ˆθ ) is the social welfare of the
offline optimal allocation given all information about future arrivals

and procurement costs.

Theorem 5. No allocation mechanism has a bounded competitive
ratio.

Proof. Assume there is a single agent
ˆθ1 = {â1 = 1, ˆd1 = 2, α̂1 =

1, ˆβ1 = 2, r̂1 = 1,v̂1 = 0,v̂2 = cmax (2,1)}; in other words, this

agent derives a value of cmax (2,1) if it receives two units and 0

otherwise. Furthermore, assume that the (known) cost at time 1 is

c (1,1) < cmax (2,1).
Now, any mechanism Y needs to decide whether to allocate

a unit to agent 1 at time 1 or not. If y1,1 = 0, then assume that

c (2,1) < cmax (2,1) − c (1,1). In this case, SWY ( ˆθ ) ≤ 0 (regardless

of y1,2), as the agent can no longer be allocated two units. However,

with perfect foresight, the optimal solution allocates two units, so

SWOPT ( ˆθ ) = cmax (2,1) − c (1,1) − c (2,1) > 0. Hence, there is no

bounded competitive ratio p > 0. On the contrary, if y1,1 = 1, then

assume that c (2,1) > cmax (2,1) − c (1,1). In this case, SWY ( ˆθ ) < 0

(regardless of y1,2). The optimal solution allocates no units, so

SWOPT ( ˆθ ) = 0. Hence, there is no bounded ratio either. �
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