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ABSTRACT
In certain situations, such as elections in the Euclidean domain, it
is possible to specify clear requirements for the operation of a mul-
tiwinner voting rule, for it to provide committees that correspond
to some desirable intuitive notions (such as individual excellence
of the committee members or their diversity). We formally describe
several such requirements, which we refer to as “utopias”. Supplied
with such utopias, we develop an optimization-based mechanism
for constructing committee scoring rules that provide results as
close to these utopias as possible; we test our mechanism on weakly
separable and OWA-based rules. In particular, using our method
we recover some connections between known multiwinner voting
rules and certain applications.
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1 INTRODUCTION
Multiwinner voting is a formalism for selecting a set of items (a com-
mittee), based on the preferences of a group of agents (the vot-
ers) [12, 20, 21]. For example, a group of judges may need to select
a set of finalists of a competition, a hiring committee may need
to select a set of people to invite for on-site interviews, and an
Internet store may need to decide which items to present on its
homepage (depending on how the preferences of its customers are
perceived). In each of these examples, we need committees with
different properties; the judges should select individually best can-
didates, the Internet store should select a diverse set of items that
covers interests of as many of its customers as possible, and the
hiring committee should, in a certain sense, balance these two re-
quirements (on the one hand, we certainly wish to invite as good
candidates as possible, but we also wish to maintain some diversity;
e.g., a computer science department is likely to interview candidates
working in several areas, and not only in the “hottest” one).

More generally, following the recent overview of Faliszewski
et al. [20], multiwinner elections might be categorized into three
classes, based on what their goals are: Individual Excellence, for
selecting individually best candidates (as in the judges example
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above); Proportional Representation, for accurately and proportion-
ally representing the electorate views; and Diversity, for reflecting
a wide spectrum of voters’ views (as in the Internet store above).

So far, to address these varied goals and needs researchers typ-
ically analyzed existing multiwinner voting rules, studied their
computational complexity [4, 5, 8, 24, 30, 32], analyzed their ax-
iomatic properties [1, 12, 17, 31, 34], evaluated them experimen-
tally [6, 10, 11, 19, 35], and—based on this evidence—argued which
rules are best for which application (e.g., the k-Borda rule [9] is
seen as appropriate for choosing individually excellent candidates,
whereas the Chamberlin–Courant rule [7] is appropriate for identi-
fying diverse committees that cover a wide spectrum of opinions;
the references provided here are meant to present the wide range
of results obtained, and are certainly not complete). In other words,
typically, researchers analyzed existing rules and checked which
ones behave appropriately for a given setting. There are also cases
where researchers hand-designedmultiwinner rules to achieve their
goals (e.g., for situations such as the hiring committee above, Fal-
iszewski et al. [19] designed a spectrum of rules achieving various
levels of compromise between the goals of excellence and diver-
sity; Elkind et al. [14], Aziz et al. [2] and Sekar et al. [32] proposed
multiwinner variants of the Condorcet rule).

In this paper we take a radically different approach from the
previous ones: Given a specification of the kind of committees one
is interested in, we use an optimization algorithm to automatically
design—in a principled way—rules that match this specification.
(Related to our approach, we mention the position paper of Xia [37],
which takes a normative approach and suggests the use of machine
learning to automatically design voting rules.)

Motivation. Our work is driven by two main motivations. The
first one, suggested above, is that we wish to develop a methodol-
ogy for designing voting rules which would satisfy certain desired
properties. There are many multiwinner rules (such as k-Borda [9],
Bloc, Chamberlin–Courant [7], Proportional Approval Voting [36],
Monroe [26], and many others) that seem to have good proper-
ties for some idealized goals (recall the three types of multiwinner
elections discussed above), but here we wish to develop a general
mechanism that, when supplied with any arbitrary goal (specified
in an appropriate way), can output a multiwinner rule appropriate
for this goal. Indeed, designing voting rules which satisfy certain
properties is in the heart of social choice. As a proof of concept, in
this paper we focus on (two subclasses of) the class of committee
scoring rules [12] and design an algorithm that searches for an
appropriate rule among them. We focus on the rules from these
classes because they are parameterized through sets of numeric
values that we can tweak to manipulate their properties; this aspect
is important for our optimization-based approach.
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Our second motivation relates to the richness of the class of
committee scoring rules. So far, researchers have analyzed the
general structure of committee scoring rules [34], considered a few
of their subclasses [12, 17, 18], and studied several specific rules [1,
12, 33] or spectra of rules [19]. However, as there are so many
committee scoring rules, it might be that, in spite of the effort
outlined above, some important rules might have been missed. Our
mechanism of designing rules tailored for particular goals explores
specified subclasses of committee scoring rules and, for each setting,
either finds one of the already-known rules (thus confirming that
it is highly appropriate for a given setting) or discovers a new rule.

Methodology. Providing intuitive descriptions of what kinds of
committees are appropriate for certain types of multiwinner elec-
tions is quite easy and, indeed, above we only needed a few words
to provide several examples. Providing formal specifications is far
less trivial because there are many ways to understand intuitions
and many ways to implement them. Here we take an approach in-
spired by a recent work of Elkind et al. [11] and consider Euclidean
elections, in which it is relatively easy to interpret election results;
this allows us to formally specify the goals of our rules.

In the Euclidean election model we assume that each candidate
and each voter is represented by an ideal point in a given Euclidean
space. The closer a candidate’s point is to a given voter’s point, the
more this voter likes this candidate [15, 16] (e.g., in the context of
politics, positions on a 2-dimensional plane may indicate the level
of a person’s belief in personal and economic freedom).

To design a new voting rule, we proceed as follows. First, we
assume some distribution of ideal points of the candidates and the
voters (we use the uniform distribution on a 1D interval). Second,
we specify the desired distribution of committee members; we refer
to this distribution as the utopic distribution (e.g., as suggested by
the experiments of Elkind et al. [11], for committees with individu-
ally excellent candidates we use the distribution that puts all the
weight on the single center point, whereas for the case of diverse
committees, we use the uniform distribution over the whole inter-
val). Third, for a given multiwinner voting rule we evaluate how
closely its results follow the utopic distribution (using a measure
inspired by the Earth mover’s distance). We perform this evaluation
on rules from a given class, and seek one whose distance to the
utopic distribution is the smallest. Specifically, to identify the rule
which is “the closest to Utopia”, we use an optimization algorithm.
(Our work is close in spirit to that on distance rationalizations of
voting rules [13, 23, 25, 27], but completely different technically.)

Search Space of Voting Rules. We focus on two subclasses of
committee scoring rules, the class of weakly separable rules and the
class of OWA-based rules (within which we consider Borda-based
rules only). Briefly put, a weakly separable rule is defined by a vector
of points that the voters assign to the candidates, depending on how
highly they rank them. We add up the points that the candidates
receive from the voters and the candidates with the highest scores
form the winning committee. This class includes, for example, the
well-known k-Borda, SNTV, and Bloc rules.

OWA-based rules are defined by vectors of points associated
with how highly a voter ranks a given candidate (as in the previ-
ous case) and the ordered-weighted average operators (the OWA
vectors), which specify the importance of the committee members,

depending on their ranking by a voter. OWA-based rules include,
e.g., the Chamberlin–Courant rule and the PAV rule (see, e.g., the
works of Skowron et al [33] and Aziz et al. [3]). Indeed, together
the classes of weakly separable rules and OWA-based rules cover a
very large fraction of the committee scoring rules analyzed to date.
Our Contribution. We believe that our most important contri-
bution is a proof of concept: We show that it is possible to use
optimization algorithms that minimize the distance from utopic
distributions as a tool for designing rules with given properties.
This is witnessed by the following results, which confirm previous
studies and intuitions:

(1) When we look for a weakly separable rule that selects can-
didates as close to the center of our Euclidean distribution
as possible, our algorithm, in essence, finds the k-Borda rule.
Similarly, when we look for a rule closest to a utopic distri-
bution that models the behavior of the Bloc rule, we indeed
find a very similar rule.

(2) When we look for an OWA-based rule whose winners are
spread as uniformly over our Euclidean distribution as possi-
ble, we recover the Chamberlin–Courant rule (as expected).
As we change the utopic distribution to be more and more
focused on the center of the interval (corresponding to rules
achieving compromises between individual excellence of
committee members and their diversity), we discover rules
similar to those analyzed for this scenario by Faliszewski
et al. [19]; interestingly, our algorithm also discovers some
new, intuitively appealing, rules for this scenario.

Besides confirming good performance of already observed rules,
our algorithm demonstrates that, among weakly separable rules,
SNTV is the best diversity-oriented rule. Since SNTV is believed not
to perform very well for this task (because of its focus on top pref-
erences), the fact that it is the best our algorithm can find suggests
that there are simply no truly good diversity-oriented rules among
weakly separable ones. While this is somewhat disappointing—we
hoped to discover a diversity-oriented weakly separable rule (and,
hence, polynomial-time computable) that could be used instead of
the Chamberlin–Courant rule (which is NP-hard [5, 24, 30])—our
results indicate that we should look for polynomial-time diversity-
oriented rules someplace else.

2 PRELIMINARIES
An election E = (C,V ) consists of a set of candidates C =

{c1, . . . , cm } and a collection of voters V = (v1, . . . ,vn ), where
each voter vi has a linear order ≻vi , ranking the candidates from
the one thatvi appreciates most to the one thatvi appreciates least.
We refer to ≻vi as the preference order of voter vi (and, sometimes,
as the vote of vi ). For a voter v and a candidate c , we write posv (c )
to denote the position of c in v’s preference order (the top-ranked
candidate has position 1, the next one has position 2, and so on).
A multiwinner voting rule is a function R that, given an election
E = (C,V ) and an integer k , 1 ≤ k ≤ |C |, outputs a family of size-k
subsets ofC (i.e., a family of committees) that tie as winners of this
election.

For each integer t , we write [t] to denote the set {1, . . . , t }. In
particular, if m is the number of candidates, we often interpret
the set [m] as the set of positions that candidates may take in a
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preference order. A single-winner scoring function (for an elec-
tion withm candidates) is a non-increasing function γm : [m]→ R
that associates each position in a vote with a score value. We de-
fine the γm-score of a candidate c in an election E = (C,V ) to
be γ -scoreE (c ) =

∑
v ∈V γm

(
posv (c )

)
. We use normalized scoring

functions, so that γm (1) = 1 and γm (0) = 0. For example, the Borda
scoring function (denoted βm ), is defined as βm (i ) = m−i/m−1, and
the t-Approval scoring function (denoted αt , where t ∈ [m] is a
parameter) is a function that associates score 1 with the first t posi-
tions, and score 0 with the remaining ones (note that the subscript
t does not refer to the number of candidates in the election).

Committee scoring functions are defined analogously to the
single-winner ones, but for a generalized notion of a position. Let
us fix committee size k . Then, given a committee S and a votev , we
define the position of S in v , denoted posv (S ), to be the sequence
of positions of the members of S inv , sorted in the increasing order
(i.e., we obtain posv (S ) by sorting the set {posv (s ) | s ∈ S } in the
increasing order). We write [m]k to denote the set of all length-
k increasing sequences of elements from [m] (and we interpret
elements of [m]k as committee positions). We say that commit-
tee position I = (i1, . . . , ik ) weakly dominates committee position
J = (j1, . . . , jk ), denoted I ⪰ J , if for each t ∈ [k] it holds that
it ≤ jt . A committee scoring function (form candidates and com-
mittee size k) is a function fm,k : [m]k → R, such that for each
two committee positions I , J ∈ [m]k , if I ⪰ J then f (I ) ≥ f (J ).
The fm,k -score of committee S in election E = (C,V ) is defined as∑
v ∈V fm,k

(
posv (S )

)
. For a family f = ( fm,k )k≤m of committee

scoring functions (one for each number of candidates and commit-
tee size), we define the committee scoring rule Rf as follows: Given
an election E = (C,V ) withm candidates and committee size k , it
outputs all size-k committees S with the highest fm,k -score.

Example 2.1. Let us fix an election E with m candidates and
committee size k . The SNTV rule is defined by committee scoring
functions of the form f sntvm,k (i1, . . . , ik ) = α1 (i1). This means that the
rule selects a committee of k candidates that are ranked first most
frequently (or several such committees, in case of ties). The Bloc rule
uses functions of the form f blocm,k (i1, . . . , ik ) = αk (i1) + · · · + αk (ik ),
which can be interpreted as saying that each voter gives one point
to each of his or her k most favorite candidates, and the k candidates
with the highest score form the winning committee. The k-Borda
rule chooses k candidates with the highest Borda scores and is
defined through the functions f kbm,k (i1, . . . , ik ) = βm (i1) + · · · +

βm (ik ). The Chamberlin–Courant rule (the CC rule) uses scoring
functions of the form f ccm,k (i1, . . . , ik ) = βm (i1). This means that
given a committee S , each voter associates it with the Borda score
of this member of S that he or she ranks highest (this candidate is
called the representative of the voter). Finally, the Harmonic-Borda
rule [19] (the HB rule) uses the scoring function f ccm,k (i1, . . . , ik ) =

βm (i1) + 1/2βm (i2) + · · · + 1/kβm (ik ).

Consider a setting withm candidates, where the desired com-
mittee size is k , and where R is a committee scoring rule:

(1) We say that R is weakly separable if its committee scoring
function is of the form f (i1, . . . ik ) = γ (i1) + · · · + γ (ik ),
where γ is a single-winner scoring function.

(2) We say thatR isOWA-based if its committee scoring function
is of the form f (i1, . . . , ik ) = λ1γ (i1) + · · · + λkγ (ik ), where
Λ = (λ1, . . . , λk ) is a sequence of non-negative real numbers
and γ is a single-winner scoring function (we refer to the
vector Λ as the OWA vector).

Note that every weakly separable rule is OWA-based (with the all
1s OWA vector). For the purpose of this paper, we normalize OWA
vectors, so that λ1 is always 1. We say that a committee scoring
rule is OWA/Borda-based if it is OWA-based, uses the Borda scoring
function and a non-increasing OWA-vector.

Example 2.2. The k-Borda and Bloc rules are both weakly sep-
arable (and k-Borda is also OWA/Borda-based). The CC and HB
rules are OWA/Borda-based (using OWA vectors (1, 0, . . . , 0) and
(1, 1/2, . . . , 1/k ), respectively). The SNTV rule is both OWA-based
and weakly separable, but it is not OWA/Borda-based.

3 METHODOLOGY
In this section we describe our technique of designing voting rules
that match given utopic distributions. First we describe the model
of Euclidean elections and the corresponding way of presenting
election results, then we present our utopic distributions and our
measures of closeness to these distributions, and finally, we describe
our algorithm(s) for finding rules that match given utopias. In
Section 4 we apply this methodology to design specific rules.

3.1 Euclidean Elections
In the t-dimensional Euclidean model of elections, each individ-
ual u (i.e., each candidate and each voter) is represented by a point
p (u) ∈ Rt in the t-dimensional space. Intuitively, the coordinates of
this point may correspond to u’s position regarding some t issues.
E.g., in the 1-dimensional model this single issue may be the accept-
able level of taxation, while in the 2-dimensional model the two
issues may indicate the levels of belief in personal and economic
freedom [15, 16]. Each voter forms his or her preference order by
sorting the candidates in increasing order of the distances of the
candidates’ ideal points from the voter’s ideal point (i.e., the closer
a candidate is to a voter, the higher the voter ranks the candidate).

In our computations, we use either 1-dimensional Euclidean elec-
tions, where we generate the ideal points of candidates and voters
by drawing them uniformly at random from the [0, 1] interval, or
2-dimensional elections, where we draw the ideal points uniformly
at random from a disc centered at point (0.5, 0.5) with radius 0.5.
We refer to the former as the interval model and to the latter as the
disc model. We always generate elections with 100 candidates and
100 voters, and we seek committees of size 10. We chose these pa-
rameters to ensure that our results are comparable to those already
present in the literature [11, 19].

We use the interval model throughout the whole process of
designing voting rules, and we use the disc model to check whether
the rules that we produce maintain their features after changing
(and, in a sense, generalizing) the setting. Arguably, the disc model
is very similar to the interval one, and the reason for choosing it was
that, on the one hand, we wanted to test our rules in a (somewhat)
different setting, but, on the other hand, we wanted this setting to
be sufficiently similar, so we could maintain the same intuitions
while observing how the behavior of our rules changes.
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(a) Weakly separable rules and their scoring functions.
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(b) OWA/Borda-based rules and their OWA vectors.

Figure 1: Visualization of election results under various
rules. Histograms for the interval model are on top and scat-
ter plots for the discmodel are on the bottom. To the left, we
show scoring-functions/OWA-vectors defining the rules.

Following Elkind et al. [11], we present the results of our elec-
tions visually. For a given voting rule R and a given election model
(interval or disc), we generate a number of elections according to
the model, compute the R winning committee for each election (if
there are ties, we break them arbitrarily), and—depending on the
model—present them as follows:

(1) For the interval model, we partition the [0, 1] interval into
subintervals, count howmany times a candidate from a given
subinterval was in a winning committee, and present these
numbers as a histogram. Note that we do not normalize the
histograms; different ones have different scales (the point
of these histograms is to show the “shape” of the election
results).

(2) For the disc model, we show a scatter plot, where each mem-
ber of a winning committee is indicated as a blue dot (thus,
as opposed to the work of Elkind et al. [11], our plots for
the disc model are not histograms; this way fewer election
results suffice to obtain a meaningful figure). In addition to
the blue dots, we also show the gray disc from which the
candidates’ and voters’ points are drawn.

As an example—and for future comparisons—in In Figure 1 we
show visualizations of the results of k-Borda, SNTV, Bloc, CC, and
Harmonic-Borda (HB). All 1D plots are based on 1000 interval
elections and all 2D plots are based on 2000 disc elections; for 1D
histograms we use 40 subintervals. For weakly separable rules, we
show plots of their scoring functions (so on the x-axis we have the

100 possible positions in a vote), and for OWA/Borda-based rules,
we show their OWA vectors (so on the x-axis we have 10 entries);
k-Borda is shown in both plots as it belongs to both classes of rules.

To compute results of weakly separable rules, we use their direct
polynomial-time algorithms. For OWA/Borda-based rules, we com-
pute winning committees by solving integer linear programs (ILPs)
provided for this task by Peters [29] (we use the CPLEX ILP solver).
Peters showed that using his formulations gives a polynomial-time
algorithm for the case of single-peaked elections; since elections
generated for the interval model are single-peaked, we enjoy this
guaranteed efficiency (but this no longer holds for the disc model).

3.2 Utopic Distributions and Distance Measures
We model the requirements regarding our rules as utopic distribu-
tions, that is, as probability distributions over the [0, 1] interval that
represent how, ideally, we would like the winners of our interval
elections to be distributed (or, roughly speaking, how we would like
their visualization to look like). For example, the utopic distribution
that models the goal of individual excellence associates the whole
probability mass with the center of the interval, whereas the distri-
bution associated with covering the whole spectrum is, simply, the
uniform distribution over the interval. (We also use several other
utopic distributions, which we describe later.)

Let U be some utopic distribution. Given a committee W =

{w1, . . . ,wk } for some interval election, we define dW , the distri-
bution associated withW , so that for each x ∈ [0, 1]:

dW (x ) =
∥{wi | p (wi ) = x }∥

k
.

To measure how closelyW fits utopia U , we use the intuitions
underlying the Earth mover’s distance [28]: We view the probabil-
ity mass associated with each point (each interval) as the number
of “grains of sand” that lie on this point (this interval). Moving a
grain of sand from point x to point y costs |x − y |. The distance
between two distributions is the lowest possible cost of moving the
“grains of sand” needed to transform one of them into the other.
While this intuition is discrete in its nature, our utopic distributions
are sometimes continuous (in other words, sometimes we consider
probability density functions). Instead of providing a general defi-
nition of our distance, below we describe the utopic distributions
that we consider and for each we derive the appropriate distance
measure based on the above intuition.1

In the descriptions below, we let k be the committee size and
W = {w1, . . . ,wk } be a committee, whose members have ideal
points p (w1) . . . ,p (wk ) ∈ [0, 1]. We assume that these points are
sorted, i.e., p (w1) ≤ p (w2) ≤ · · · ≤ p (wk ).
Individual Excellence (UIE ). The individual excellence utopic
distribution, UIE , is defined as concentrating all the probability
mass in the center of the interval, at point 0.5; see Figure 2a (this is
inspired by the k-Borda rule, which is regarded as very good for
the excellence goal, and which chooses candidates in the center).

1The reader can rightfully complain that we wanted to deal with arbitrary goal spec-
ifications and not only specific ones. We provide two answers. First, our reasoning,
in essence, applies to all utopic distributions and what we do can be seen as deriving
closed form formulas, to speed up computations. Second, instead of following our
method, given a utopic distribution one may generate discrete histograms for it and
for dW and directly use the Earth mover’s distance to measure their similarity.
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0.50 1

(a) Individual Excellence utopia
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(b) 0.25-Twin Peaks utopia
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(c) Diversity utopia (k = 6 subintervals)

0.2 0.80 10.3 0.4 0.5 0.6 0.7

(d) 0.2-Diversity utopia (k = 6)
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(e) 0.1-Triangle utopia (k = 6)

Figure 2: Several utopic distributions.

We define the distance between UIE and dW to be
EMD(U ,dW ) =

∑k
i=1 1/k |p (wi ) − 0.5|. That is, for each member

of the committee we pay the cost of moving him or her to the
center of the interval (we multiply each |p (wi ) − 0.5| by 1/k as each
member of the committee is associated with probability mass 1/k).

Twin Peaks (Uϵ
TP

). The Bloc rule motivates the study of the twin
peaks utopic distributions (see Figures 1 and 2b). An ϵ-twin peaks
utopic distribution for parameter ϵ , denotedUϵ

TP , places half of the
probability mass on point ϵ and half on point 1 − ϵ ; see Figure 2b.
We let the distance betweenUϵ

TP and dW be:

EMD(Uϵ
TP ,dW ) =

∑k/2
i=1 1/k |p (w1)−ϵ |+

∑k
i=k/2+1

1/k |p (w1)− (1−ϵ ) |

(we assume that k is even; recall that the ideal points of the com-
mittee members are sorted); we assign the left half of committee
members to the left peak, and the right half to the right peak.

Diversity (UD). The diversity (or, coverage) utopic distribution,
denoted asUD and defined to be the uniform distribution over [0, 1],
models the idea that a diverse committee should cover the whole
interval as uniformly as possible. Our reasoning for the distance
EMD(UD,dW ) is that the committee members are supposed to be
distributed evenly along the interval [0, 1] and, so, each of them
is responsible for covering a 1/k-length subinterval. We assign the
subintervals to committee members so thatw1 is assigned to [0, 1k ],
w2 is assigned to [ 1k ,

2
k ] and so on; see Figure 2c.

p (wi ) ℓ(i − 1) ℓi

(a) Case (1)

p (wi )ℓ(i − 1) ℓi

(b) Case (2)

p (wi )ℓ(i − 1) ℓi

(c) Case (3)

Figure 3: The cases for the cost of EMD(UD,dW ). The cost
associated with committee memberwi is the gray area.

Let ℓ = 1/k be the length of the subintervals. For eachwi , i ∈ [k],
we define the cost of “spreading” his or her probability mass from
dW over the assigned subinterval [ℓ(i − 1), ℓi] as follows:

(1) If the committee member is to the left of his or her interval
(i.e., p (wi ) < ℓ(i − 1)), then we need to pay the cost (ℓ(i −
1) − p (wi ))ℓ for moving his or her probability mass (which
also is equal to ℓ) to the point ℓ(i − 1), and then the cost
1/2ℓ2 =

∫ ℓ
ℓ(i−1)

(
1 − x−ℓ(i−1)

ℓ

)
dx for “spreading” his or her

weight over the interval (note that this latter cost equals to
the area of a triangle; see Figure 3).

(2) If the committee member is to the right of his or her interval
(i.e., p (wi ) > ℓi), then we proceed analogously: Moving his
or her probability weight to the point ℓi costs ℓ(p (wi ) − ℓi )
and “spreading” this weight over the interval costs 1/2ℓ2.

(3) If the committee member is in his or her interval (i.e., ℓ(i −
1) ≤ p (wi ) ≤ ℓi), then it suffices to “spread” the p (wi )−ℓ(i−1)

ℓ
fraction of his or her probability mass to the part of the
interval left of him, at cost 1

2 (p (wi ) − ℓ(i − 1))2 (analogously
to the previous cases, this can be expressed as the area of a
right triangle, with two sides of length p (wi ) − ℓ(i − 1); see
Figure 3), and the remaining mass, to the part of the interval
to the right of him or her, at cost 1

2 (ℓi − p (wi ))
2.

Overall, the cost associated withwi is:

cost(wi ) =




(ℓ(i − 1) − p (wi ))ℓ +
ℓ2

2 if p (wi ) ≤ ℓ(i − 1)
(p (wi )−ℓ(i−1))2+(ℓi−p (wi ))

2

2 if ℓ(i − 1) < p (wi ) < ℓi

(p (wi ) − ℓi )ℓ +
ℓ2

2 if ℓi ≤ p (wi )

and we define EMD(UD,dW ) to be
∑k
i=1 cost(wi ).

Diversity/Excellence Compromises (Uϵ
D
andUϵ

T
). We also

consider two families of utopic distributions that achieve a certain
level of compromise between the ideals of individual excellence and
diversity. Let ϵ be a number in [0, 0.5]. We define the ϵ-diversity
utopic distribution, denoted byUϵ

D , to be the uniform distribution
over the interval [ϵ, 1 − ϵ].; see Figure 2d.

Each committee memberwi is responsible for covering interval
Ii = [ϵ + ℓ(i − 1), ϵ + ℓi] of length ℓ = 1/k (1 − 2ϵ ). Using the same
reasoning as forUD , we define EMD(UD,d

ϵ
W ) to be

∑k
i=1 cost(wi ),

where:

cost(wi )=




(ϵ + ℓ(i − 1) − p (wi ))
1
k +

ℓ
2k for p (wi )≤ϵ+ℓ(i−1)

(p (wi )−ϵ−ℓ(i−1))2+(ϵ+ℓi−p (wi ))
2

2kℓ for p (wi ) ∈ Ii

(p (wi ) − ϵ − ℓi )
1
k +

ℓ
2k for ϵ + ℓi ≤p (wi ).

Our second way of capturing a compromise between individual
excellence and diversity is via a distribution whose probability
density function, for a given ϵ ∈ [0, 0.5], is a triangle with a peak at
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0.5, set over the interval [ϵ, 1− ϵ] (the area of the interval is always
one). We call it the ϵ-triangle utopic distribution and denote it by
Uϵ

T . Again, each committee member is associated with an interval
for which the probability mass equals exactly to 1/k ; see Figure 2e.
We derive the value EMD(Uϵ

T ,dW ) following the same logic as in
the previous cases (we omit the calculations due to limited space).

3.3 Search Algorithms
The final component of our method is an algorithm that, given a
utopic distribution U and one of our two families of committee
scoring rules, finds a rule R as close toU as possible.
General Setup. Form candidates, a weakly separable rule is de-
fined via a non-increasing vectorX = (x1, . . . ,xm ), such that x1 = 1
and xm = 0; the vector X specifies the values of the underlying
single-winner scoring function γ for the possible positions in a pref-
erence order. Given a committee size k , an OWA/Borda-based rule
is defined by its non-increasing OWA vector (λ1, . . . , λk ), where
λ1 = 1. Correspondingly, given a vector V of appropriate size, we
write RV to denote the rule defined by this vector (when we con-
sider weakly separable rules, V gives the score values; when we
consider OWA/Borda-based rules, it is the OWA vector). Given a
vector V ′, by normalizing it we mean sorting it, setting its first
coordinate to 1, replacing all > 1 values with 1s and all < 0 values
with 0, and—for weakly separable rules—setting its last coordinate
to 0 (so that the vector describes a legal rule from the relevant class).

Let us fix the class of rules and the utopic distributionU . Our
goal is to find a vectorV so that the winning committees under RV
followU as closely as possible. To make this notion precise, our
algorithms first compute a given number N of interval elections
E1, . . . ,EN (these are fixed throughout the whole optimization pro-
cess). To evaluate the rule RV , for each election Ei we compute
the winning committeeWi (if there are ties, then we break them
arbitrarily). Then we compute the average distance of these commit-
tees from the utopia, EMD(U ,RV ) = 1/N

∑N
i=1 EMD(U ,dWi ); this

value is referred to as the score of the rule (the lower, the better).
Brute-Force Search. This algorithm tries all rules defined by
vectors with values from the set {0, 1/t , . . . , t−1/t , 1}, where t is a
parameter defining the resolution of the search, and outputs the
rule with the lowest score. We used it only to verify the quality of
the local search algorithm below on small elections.
Local Search. We use a simple local search algorithm with the
following parameters: (a) the number of iterations T , (b) the proba-
bility ω (i ) ∈ [0, 1] of changing a given vector’s coordinate, depend-
ing on the iteration number i , (c) the range parameter r (i ) ∈ [0, 1],
specifying how much vector coordinates can change, depending
on the iteration number i . The algorithm works as follows:

(1) We select a vector V uniformly at random, with coordinates
from [0, 1], and normalize it.

(2) We repeat the following steps T times:
(a) Create a vectorV ′ using the following procedure. SetV ′ =

V . Then, for each of its coordinates v ′i , compute v ′′i by
adding to v ′i a value drawn uniformly at random from
[−r (i ), r (i )]. With probability ω (i ), replace the value of v ′i
with v ′′i . Normalize V ′.

(b) If EMD(U ,RV ′ ) < EMD(U ,RV ) then replace V with V ′.
Otherwise, keep V as is.

(3) We output the rule RV .
For weakly separable rules, we use T = 3000 iterations, ω (i ) =

max(T−i2T , 0.05), r (i ) = 0.5ω (i ), and N = 400 test elections. For
OWA/Borda-based rules, we use T = 300 iterations, ω (i ) =
max(T−i2T , 0.1), r (i ) = 0.3 · max(T−i2T , 0.05), N = 40 test elections.
To speed up the algorithm for the case of OWA/Borda-based rules,
we first run it for elections with 50 candidates, 50 voters, and com-
mittee size 10, and only then we re-run it for full-sized elections
(with 100 candidates, 100 voters, and committee size 10), using the
result of the first run as the input for the second one.

Naturally, we could have chosen any other algorithm for multi-
dimensional optimization. We chose the simplest effective solution.

4 RESULTS
We used our search algorithm to find the best weakly separable and
OWA/Borda-based rules for the individual excellence, ϵ-diversity
(with ϵ ∈ {0, 0.1, 0.2}), ϵ-twin peaks (with ϵ ∈ {0.167, 0.25, 0.333}),
and ϵ-triangle (with ϵ ∈ {0, 0.1, 0.2}) utopic distributions.

The results are given in Table 1 (where we show EMD distances
for the best rules we computed using our algorithm, and for the
five rules from Example 2.1; we used other elections than in the
optimization process) and in Figures 4–9. Each figure shows results
for four utopic distributions: the individual excellence utopia, which
is a border case for the other distributions, and either ϵ-diversity,
ϵ-twin peak, or ϵ-triangle distributions, for appropriate values of
ϵ . The largest plot on the left of each figure, marked (a), shows
vectors computed for the respective four utopias. Next to it, as
Plot (b), we show graphical representation of the respective utopia
(drawn as a gray area over the [0,1] interval) and a sample result of
a single interval election (the blue dots). As Plot (c), we show the 1D
histograms achieved by the computed rules (we remind the reader
that different histograms have different y-axis scales, as they only
show the “shape” of the result). Finally, as Plot (d), we show the
scatter plots computed for disc elections according to our four rules.
The vectors computed for the utopias are marked with a number
(1–4) and the respective figures in (b)–(d) are marked accordingly.
EMD Results Versus Histograms. The EMD results in Table 1
show that generally our best OWA/Borda-based rules are much
closer to respective utopias than our best weakly separable rules.
While this is in agreement with intuition, it may sometimes be
surprising that weakly separable rules achieve far more visually
appealing histograms for some settings than the OWA/Borda-based
ones (e.g., for the twin-peaks distributions), in spite of having worse
EMD values. The reason for this discrepancy is that weakly sepa-
rable rules achieve good histograms “in the aggregate” (averaged
over many elections), whereas OWA/Borda rules perform well (but
not great) for every election instance.
Weakly SeparableRules. Next we discuss the results for weakly
separable rules. For individual excellence (see Figure 4) we obtained
a nearly linear vector, very close to the Borda scoring function
(vector 1). On the other extreme, for the diversity utopia, we found a
rule very close to SNTV (vector 4, which is 0 for most positions, then
slowly increases, and jumps to value 1 for the first position2). We
view it as a negative result: our hope for finding a weakly separable
2For the elections used in the optimization process, our rule was a bit better than
SNTV, but SNTV was better for other randomly chosen elections (see Table 1).
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Table 1: EMD values for the best weakly separable and
OWA/Borda-based rules computed for our utopias, and for
the rules from Example 2.1 for the same utopias.

Utopia Weakly Sep. OWA/Borda SNTV Bloc Borda CC HB

UD 0.104 0.042 0.092 0.215 0.227 0.044 0.094
U0.1

D 0.098 0.042 0.100 0.205 0.178 0.059 0.053
U0.2

D 0.073 0.044 0.126 0.210 0.130 0.100 0.044

U0.167
TP 0.235 0.135 0.159 0.237 0.307 0.140 0.172
U0.25

TP 0.185 0.060 0.144 0.222 0.224 0.124 0.116
U0.333

TP 0.135 0.081 0.156 0.221 0.141 0.136 0.093

UT 0.139 0.043 0.113 0.213 0.150 0.082 0.043
U0.1

T 0.136 0.045 0.137 0.220 0.127 0.116 0.051
U0.2

T 0.122 0.054 0.174 0.238 0.105 0.160 0.083

UIE 0.041 0.049 0.248 0.264 0.049 0.244 0.168

rule that would robustly implement the diversity utopia turned out
to be unrealistic (SNTV does not implement this utopia robustly as
its results seem to be a statistical artifact: SNTV chooses candidates
from areas with lower density of candidates and increased density
of voters, which, statistically, happen equally often in each area of
the interval).

Perhaps the most interesting results are those achieved for 0.1-
diversity and 0.2-diversity (vectors 2 and 3), as they show rules that,
if at all, are very rarely discussed in the literature. Both vectors 2
and 3 resemble functions of the form γ (i ) = (1 − x )α1 (i ) + xβm (i ),
where x ∈ [0, 1] is a parameter (and, in our case, is close to 0.2). In
other words, these functions give score 1 to position 1, score ≈0.2
to position 2, and then decrease linearly to 0. One could say that
their Borda-score component is too small to be relevant, but this is
not so. In our 1D elections we have 100 voters, which means that
there are only 100 points to be distributed for being ranked on the
first place, while there are ≈1000 points to be distributed for being
ranked on the following places. This way, the rules described by
vectors 2 and 3 achieve a compromise between SNTV and Borda.

The results for the ϵ-twin peaks utopic distribution (Figure 5) are
quite spectacular. For each ϵ ∈ {0.167, 0.25, 0.333} we find a rule
whose 1D histogrammatches the respective utopic distribution very
well. The twin-peaked distributions were inspired by the results for
the Bloc rule (recall Figure 1); indeed, we find vectors consisting of
several 1s followed by 0s (with a very rapid transition). However, as
opposed to Bloc, our vectors have many more 1s (Bloc would have
k of them, i.e., 10 in our case, but our rules have between 20 and 40).
Apparently, this is the reason why our rules match the twin-peaked
utopias better than Bloc, which selects more candidates “between
the peaks”. A final remark regarding the twin peaks distributions
regards individual excellence: Our results show that, as we put the
peaks closer to each other, we obtain vectors of more 1s, followed
by fewer 0s, but when the peaks finally coincide, we should obtain
the linear function. Apparently, either there is some sort of phase
transition between these two extremes, or we did not put the peaks
close enough to each other to observe a smooth transition.

For the triangle utopias (see Figure 6), we seem to find rules
whose scoring vectors resemble the shape of the harmonic sequence
1, 1/2, . . . , 1/m. These rules, indeed, seem to achieve a compromise

between individual excellence (i.e., choosing winners from the cen-
ter) and diversity (choosing winners from the whole interval/disc).
Further, on the intuitive level, these rules are more appealing than
the SNTV/Borda compromise obtained for ϵ-diversity. Indeed, this
suggests that studying a variant of k-Borda that uses harmonic
numbers instead of linearly decreasing scores might be interesting.
OWA/Borda-Based Rules. For individual excellence (see, e.g.,
Figure 7), our algorithm very quickly finds OWA vector of all 1s;
thus, we obtain the k-Borda rule. For diversity (Figure 7, vector 4),
we find a vector close to that of Chamberlin–Courant (a single 1
followed by 0s). For 0.1-diversity and 0.2-diversity we find, respec-
tively, a linearly decreasing vector 2, and vector 3 that resembles
(but, admittedly, quite poorly) the harmonic sequence. These two
results are intriguing. First, the linear vector is a very natural so-
lution to finding a compromise between excellence and diversity
(which, in this case, would mean finding a compromise between
k-Borda and Chamberlin–Courant) that has not been considered in
the literature yet (even though Faliszewski et al. [19] look for rules
that achieve such a compromise, they do not study this rule). On the
other hand, the harmonic vector has received extensive treatment,
both for Harmonic Borda [19] and for the PAV rule [1, 21, 22, 36]
(which is approval-based and has motivated the study of Harmonic
Borda). In fact, the OWA vectors that we have obtained for the tri-
angle distributions (see Figure 9) seem to be closer to the harmonic
sequence. This confirms the intuition of Faliszewski et al. [19] that
this sequence achieves a good excellence/diversity compromise.

Finally, we consider the results for the twin peaks distributions
(Figure 8). In this case we find OWA vectors that consist of 1s
followed by 0s (the number of ones depends on the distance between
the peaks). This means that the rules that we found are, in essence,
the t-Borda rules of Faliszewski et al. [19] (for a given t , the t-Borda
rule uses Borda scoring function and OWA vector of t 1s followed
by 0s). Faliszewski et al. studied these rules in their search for
excellence/diversity compromises, but concluded that they do not
seem to work well for this case. The fact that they implement the
twin peaks utopic distribution supports this conclusion.
Results for Disc Elections. Generally, our rules behave simi-
larly on interval and disc elections, but our OWA/Borda-based rule
for the 0.1-twin peaks distribution is an exception. For interval
elections it outputs winners on the peaks, as well as between them,
but for disc elections, it provides winners on the ring only.

5 CONCLUSIONS
We have developed a methodology for automatically designing mul-
tiwinner voting rules whose winning committees have properties
specified via distributions on a 1D interval. Testing our method on
weakly separable and OWA/Borda-based committee scoring rules,
we confirmed many intuitions about the applicability of certain
rules for certain tasks and discovered new rules to study. Our work
is a proof of concept and shows that our approach is indeed feasible.
A natural direction for future studies is to expand our framework
for other types of goals, such as proportional representation.
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