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ABSTRACT
Users have various attributes, and in user-based markets there

are buyers who wish to buy a target set of users with specific

sets of attributes. The problem we address is that, given a set of

demand from the buyers, how to allocate users to buyers, and how

to price the transactions. This problem arises in online advertising,

and is particularly relevant in advertising in social platforms like

Facebook, LinkedIn and others where users are represented with

many attributes, and advertisers are buyers with specific targets.

This problem also arises more generally in selling data about online

users, in a variety of data markets.

We introduce arbitrage-free pricing, that is, pricing that prevents
buyers from acquiring a lower unit price for their true target by

strategically choosing substitute targets and combining them suit-

ably. We show that uniform pricing – pricing where all the targets

have identical price – can be computed in polynomial time, and

while this is arbitrage-free, it is also a logarithmic approximation to

the maximum revenue arbitrage-free pricing solution. We also de-

sign a different arbitrage-free non-uniform pricing – pricing where

different targets have different prices – solution which has the same

guarantee as the arbitrage-free uniform pricing but is empirically

more effective as we show through experiments. We also study

more general versions of this problem and present hardness and

approximation results.
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1 INTRODUCTION
User-based markets are a central part of the Internet Economy.

In user data markets, many companies are selling opt-in email

addresses. In online advertising markets, advertisers want to buy

the impressions of users with specific sets of attributes, e.g. a luxury

car company may prefer to show ads to rich users.

In such user-based markets, the core value of a user arises from

her attributes. In TowerData, buyers can purchase the emails of

users with specific demographics. Google AdWords, for example,

the largest online ad network, allows advertisers to target users

based on demographics and search terms. Ad markets run by online

social networks, including Facebook, LinkedIn and Twitter, offer

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
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much finer targeting controls over user attributes with detailed

information which is shared directly by users, inferred from user

daily activities or purchased from third parties. This includes users’

educational records, past and present employment experience, sig-

nificant life events like changes in marital status or birth of a baby,

etc. Twitter allows advertisers to target users by topics that the

users are interested in.

In such markets, buyers can purchase their target users1 through
the query system provided by the market. Let qi denote a simple se-

lection querywith conditions over user attributes, e.g.qi =“Gender:1”
returns all the male users. LetUi be the set of all the users satisfying
query qi . A buyer can specify the users with a query and purchase

them. Therefore, the market owner needs to solve a pricing problem

– how to price all the queries from buyers that return users with

different attributes? In this paper, we consider the following posted

pricing model. Let pi denote the price of query qi , i.e. the price of
any user u satisfying query qi (i.e. u ∈ Ui ). A buyer needs to pay

n ·pi if he purchasesn ∈ {1, . . . , |Ui |} users inUi . The practical need
behind this pricing model is that a single target user can provide

positive utility to the buyer. Moreover, we assume that it would not

cause much trouble to the buyer if he gets additional users that do

not satisfy his target query
2
.

The above pricing model benefits from the versioning theory for

pricing information goods [24]. This theory proposes that different

buyers may use an information product in different ways, and

the market should provide different versions for such a product

at different prices. In user-based markets, a user with multiple

attributes can potentially have different versions. For example, a

user who is a programmer interested in cars, can be priced and sold

as at least two versions, including as a user interested in cars as

one version for car dealers and as a programmer as another version

for IT companies on hiring. Versioning theory is needed in such

user-based markets because a user may be retrieved by multiple

queries if she has more than one attribute.

We point out that such a pricing model, however, may suf-

fer version-arbitrage (see Definition 6). In user-based markets,

version-arbitrage occurs if two queries qi and qi′ return similar

user sets but pi and pi′ differ a lot. If version-arbitrage exists, a

buyer who really wants qi (or qi′ ) might purchase qi′ (or qi ) instead.
Version-arbitrage is caused by the fact that a user with multiple

attributes potentially satisfies many queries. We use an example to

illustrate the version-arbitrage and its difference from determinancy
arbitrage in [17].

Example 1. Let q1 =“Income >100” and q2 =“Income >101” be
two queries, i.e. q1 (or q2) returns all the users with income higher

1
“Buying a user” is short for buying, for example, the impression of a user in

advertising markets.

2
This assumption is obviously true in advertising markets, i.e. showing an ad to a

non-target user will not decrease the sale. In data markets, it is true if the buyer does

not want aggregate results.
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than 100 (or 101). If p2 < p1, the version-arbitrage exists: a savvy
buyer who wants to buy a user satisfying q1 will buy a user satisfying
q2 instead (assuming U2 , ∅) because any user satisfying q2 satisfies
q1 with probability 1. However, in non-trivial databases, q1 (or q2)
does not determine q2 (or q1) [17]. □

Motivated by the discussion above, we study pricing queries

with conditions over user attributes, and seek revenue-maximizing

pricing for a given demand. In particular, we formulate arbitrage-
free pricing problem in user-based markets and our contributions

are:

• Any uniform pricing where all the queries have identical

price is arbitrage-free. We show that the optimal uniform

pricing can be computed in polynomial time. We also show

that this is anO(logmin{U,
∑B
j=1 dj }) approximation to the

optimal, possibly non-uniform arbitrage-free pricing, where

U is the total number of users and

∑B
j=1 dj is total number

of users requested by the buyers. Besides, we show that this

approximation bound is tight for uniform pricing solutions.

• We design a different, efficient greedy algorithm to com-

pute the arbitrage-free non-uniform pricing with the same

O(logmin{U,
∑B
j=1 dj }) guarantee. But by experiments, we

show that its revenue is significantly larger than that of the

optimal uniform pricing.

• We consider a generalized setting where a buyer has a mini-
mal demand on his target users. In previous setting, the allo-

cation problem (given a pricing) is polynomial time solvable.

In this setting, we prove that both the allocation problem

and pricing problem are not only NP-hard, but also hard to

approximate. We present anO(D) approximate allocation al-

gorithm where D is the largest minimal demand. Turning to

the pricing problem, we present a polynomial algorithm, that

– based on the approximate allocation – computes a uniform

pricing and we show that it is an O(D logmin{U,
∑B
j=1 dj })

approximation to the optimal arbitrage-free pricing.

Due to space limitation, the missing proofs for some theories are

available in the full technical report
3
.

2 RELATEDWORK
Revenue maximizing and envy-free pricing. Pricing is a well-
studied area in Economics. In particular, the envy-free pricing

[12, 13, 20] in Walrasian Equilibrium [23] is relevant to our work.

In recent years, envy-free pricing is studied in various settings

[4, 5, 9, 10, 14, 15]. [13] first addresses the computational issue of

envy-free pricing. They show that the problem is NP-hard even for

the two special cases where the buyers are either unit-demand or

single-minded. For the latter case, the uniform pricing provides a

logarithmic approximation in terms of the number of buyers and

the number of items. In the unlimited supply setting, [1] uses a

randomized single price to achieve expected revenue within a log-

arithmic factor of the total social welfare for buyers with general

valuation functions. [2] proves that the envy-free pricing problem

in a graph where items are edges is NP-hard, and provides a better

approximation algorithm than [13] for sparse instances. [25] claims

some equivalency between envy-free pricing and a pricing free of

3
http://paul.rutgers.edu/~cx28/papers/user_pricing_full.pdf

determinancy-arbitrage in data markets. However, envy-free pric-

ing is essentially different from the arbitrage-free pricing in the user

markets we considered, because not every (revenue-maximizing)

envy-free pricing is a pricing free of version-arbitrage, and it is

unclear how to convert an envy-free pricing to an arbitrage-free

pricing while maximizing the revenue.

Arbitrage-free pricing in data markets. The issue of query-
based price arbitrage has gained much attention in data markets

[6, 17, 18, 21, 22, 25]. [17] introduces the notion arbitrage-freeness
to query pricing. They define that a query q is determined by a

set Q of queries on database instance D if the answer of q can

be inferred from the answer of Q on D. Determinancy-arbitrage

occurs if q is determined by Q and the price of q is less than the

total price of all the queries inQ . However, determinancy-arbitrage

is foundamentally different from version-arbitrage, which can be

easily seen in Example 1 and Definition 6.

Price arbitrage in OSN advertising markets. Price arbitrage
has been discovered and exploited in OSN advertising markets. [8]

first exploits price arbitrage in topic targeting, and [7] proposes a

more complex arbitrage strategy through path combination. [26]

shows through data analysis that arbitrage exists in both Facebook

and LinkedIn ad markets, and proposes strategies to exploit arbi-

trage to benefit advertisers. Our work is partially motivated by

these arbitrage strategies, and our arbitrage-free pricing can make

these strategies infeasible in online advertising markets.

3 PRELIMINARIES
3.1 Pricing Model
The market provides N queries for buyers. Let qi be a query where

i ∈ {1, . . . ,N }. For example, qi=“Income>100k ∧ Gender:Female”

returns all the female users with income higher than 100k. Different

from a general database query, the notion query in this paper can

be viewed as a simplified selection rule over user attributes. A user

is said to satisfy qi if she can be retrieved by qi . For a buyer, we
assume that there exists a query that represents his true target. The

pricing is over queries, and the price pi of query qi is the unit price,
i.e. the price per user retrieved by qi . For example, if pi = $2, a

buyer needs to pay $10 for 5 users satisfying qi .

3.2 Other Notations
[n] denotes the integer set {1, . . . ,n}. Let U be the set of all the

users, and we define thatU ≜ |U |. Let u ∈ U be a user. ui = 1 if u
satisfies qi where i ∈ [N ], otherwise u

i = 0. LetM be the quantity

that M ≜
∑N
i=1 |{u|u

i = 1, u ∈ U }|. Let B be the set of buyers,

and we define that B ≜ |B |. Buyer j ∈ [B] is denoted by a triplet

(tj ,dj , c j ) indicating that he wants to buy at most dj ∈ Z+ users

(as demand) satisfying qtj (as target) where tj ∈ [N ], and c j ∈ R+
is the maximum cost that he is willing to pay for each target user.

c j · dj can be viewed as the budget constraint of buyer j.
Let A = (A1, . . . ,AB) be an allocation of (indivisible) users to

buyers where Aj is the set of users allocated to buyer j . We assume

that any user can be either sold to one
4
buyer or unsold.

4
In our full technical report (see footnote

3
), we also discuss a more general setting

where a user can be sold to multiple buyers with limited times. The algorithms for

that setting are almost the same, so are the corresponding analyses.
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Definition 2. An allocation A is feasible if the three constraints
are all satisfied ∀j ∈ [B]:
• Target Constraint: ∀u ∈ Aj , utj = 1;
• Demand Constraint: |Aj | ≤ dj ;
• Uniqueness Constraint: ∀j ′ , j, Aj′ ∩Aj = ∅.

Let P = (p1, . . . ,pN ) be the pricing function over the N queries.

Definition 3. (P,A) is feasible if A is feasible and ∀Aj , ∅,
ptj ≤ c j .

Given (P,A)5, the revenue is R(P,A) ≜
∑B
j=1 |Aj | · ptj . In this

paper, we define and solve the following pricing problem.

Definition 4 (Pricing Problem). Given (N ,U ,B) as the input,
compute P and A such that P is arbitrage-free (see Definition 7) and
R(P,A) is maximized.

To solve the pricing problem, we need to define and solve the

allocation problem.

Definition 5 (Allocation Problem). Given (N ,U ,B, P) as the
input, compute A = argmaxA′ R(P,A′).

Let R(P) ≜ maxA R(P,A) be the optimal revenue of P (when the

allocation is optimal).

3.3 Arbitrage-Free Pricing
In this part, we first formally introduce version-arbitrage and then

define the arbitrage-free pricing. Note that, our arbitrage-free pric-

ing is free of version-arbitrage, different from the arbitrage-free

pricing in Koutris et al. [17] which is free of determinancy-arbitrage.

In user markets, version-arbitrage is the opportunity that a buyer

is able to get a lower unit price (in expectation) of his target users

by strategically choosing a substitute target (i.e. query) other than

his true target. Assuming that any query is satisfied by at least one

user, let π (i |i ′) be the conditional probability that a user satisfies

qi if she satisfies qi′ :

π (i |i ′) =
|{u|ui = 1,ui

′

= 1, u ∈ U }|
|{u|ui′ = 1, u ∈ U }|

We assume that a buyer, whose true target is qi , has the prior
belief that buying a user satisfying qi′ is equivalent (in expecta-

tion) to buying a fraction π (i |i ′) of a user satisfying qi . Although
this assumption is not necessarily practical in all the user-based

markets due to unpredictable allocation rules, strategies based on

this assumption (or similar ones) were studied for advertisers in

online advertising markets [7, 8, 26]. Based on this assumption, we

define the version-arbitrage as follows.

Definition 6 (Version-Arbitrage). In a market with U , the
pricing P contains version-arbitrage if ∃i, i ′ ∈ [N ], pi′ < π (i |i ′) · pi .

It is easy to see that Example 1 is a special case where π (1|2) = 1

and p2 < p1, so arbitrage exists. Next, we define the arbitrage-free

pricing.

Definition 7 (Arbitrage-free). In a market withU , the pricing
P is said to be arbitrage-free if ∀i, i ′ ∈ [N ], pi′ ≥ π (i |i ′) · pi .

5
By default, we require (P, A) to be feasible and we will not explicitly mention

this requirement later.

Notably, the arbitrage-free constraints are independent of buyers

B, but only depends onU in the market. This is a desirable property

that no matter whether buyers report their parameters truthfully

[23] or not, the market can always make the pricing arbitrage-free.

4 UNIFORM PRICING
In this section, we first show that any uniform pricing is arbitrage-

free. Then we show the optimal uniform pricing can be computed

in polynomial time. Finally we prove that the optimal uniform pric-

ing provides an O(logmin{U,
∑B
j=1 dj }) guarantee to the optimal

arbitrage-free pricing. A pricing is uniform if all its entries are iden-

tical, otherwise non-uniform. Let pξ denote the uniform pricing

that ∀i ∈ [N ], pi = ξ .

Proposition 1. Any uniform pricing is arbitrage-free.

It is easy to verify Proposition 1. Although we do not know

whether to find the optimal arbitrage-free pricing is NP-hard or

has polynomial time solutions, Proposition 1 provides a class of

feasible solutions.

Theorem 2. The optimal uniform pricing pξ ∗ can be computed in
polynomial time O(UBM +UB2).

To prove this theorem, it is enough to prove Lemma 3 and Corol-

lary 5. Basically, Lemma 3 states that given any uniform pricing

pξ , the optimal allocation can be computed in polynomial time.

Following Lemma 4, Corollary 5 shows that the optimal uniform

price ξ ∗ must be one of the maximum costs of buyers.

Lemma 3. The allocation problem for uniform pricing can be solved
in polynomial time O(UM +UB).

Proof. We model the allocation problem when the pricing is

pξ as a maxflow problem as follows. We introduce s and t as the
source and sink respectively.We then introduceN nodesy1, . . . ,yN .

Assuming all the users are indexed from 1 toU and uk denotes thek-
th user. For each k ∈ [U]: (1) we introduce a node xk and a directed

edge from s to xk with capacity 1; and (2) ∀i ∈ [N ], we introduce a
directed edge from xk toyi with capacity 1 ifu

i
k = 1. For each buyer

j that c j ≥ ξ , introduce a node zj , a directed edge from ytj to zj
and a directed edge from zj to t with capacity dj . It is easy to verify

that the amount of the maximum flow f ∗ is the maximum number

of sold users when the pricing is pξ , thus producing the revenue
R(pξ ) = ξ · f ∗. The allocation can also be easily inferred from the

residual graph after the maxflow algorithm completes. We use the

Ford-Fulkerson algorithm that runs in O(|E | · f ∗). Since f ∗ ≤ U
and |E | ≤ M + 2B, the time complexity is O(UM +UB). □

Next we show that it only needs to solve at most B allocation

problems to compute the optimal uniform price ξ ∗ in Corollary 5.

Before showing Corollary 5 that is specific to uniform pricing, we

show a general result for any pricing in Lemma 4, which imme-

diately implies Corollary 5 and will be used for proving Lemma 8

later.

Lemma 4. C ≜ {c j |j ∈ [B]}. For any P that ∃pi < C , there
exists P′ (not necessarily arbitrage-free) that R(P′) ≥ R(P) and ∀i ∈
[N ],p′i ∈ C .
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Proof. W.l.o.g., we assume that the distinct values θ1, . . . ,θC in

C are: θ0 < θ1 < . . . < θC where θ0 = 0 is a dummy variable. Given

such a P, we construct the corresponding P′ as follows. ∀pi ∈ C ,
we still set p′i = pi ; ∀pi > θC , we set p′i to θC , and clearly no

revenue is lost since no user can be sold at the price higher than

θC ; ∀pi ∈ (θk−1,θk ), we set p′i to θk , and no revenue is lost because
any user who can be sold at pi can be sold at θk . It is easy to verify

that R(P′) ≥ R(P) and ∀i ∈ [N ], p′i ∈ C . □

Lemma 4 implies the fact that there exists a pricing (not neces-

sarily arbitrage-free) with the optimal revenue and every entry in

C . With similar proof (omitted), we have Corollary 5.

Corollary 5. The optimal uniform price ξ ∗ ∈ {c j |j ∈ [B]}.

Based on Lemma 3 and Corollary 5, the optimal uniform price ξ ∗

can be computed by Algorithm 1 that solves at most B allocation

problems, which proves Theorem 2.

Algorithm 1 Optimal Uniform Pricing

Input: N ,U and B
Output: ξ ∗

1: C ← {c j |j ∈ [B]}
2: ξ ∗ ← argmaxξ ∈C R(pξ )
3: return ξ ∗

Theorem 6. The optimal uniform pricing computed by Algo-
rithm 1 is an O(logmin{U,

∑B
j=1 dj }) approximation to the optimal

arbitrage-free pricing.

Proof. Let C ≜ {c j |j ∈ [B]}. W.l.o.g., we assume that the dis-

tinct values θ1, . . . ,θC in C are θ1 < . . . < θC . Let Ok denote

the maximum number of sold users when the uniform price is θk .
It is true that ∀k ∈ [C], R(pθk ) = θkOk . Besides, it is true that

O1 ≥ . . . ≥ OC , but the sequence of revenues θ1O1, . . . ,θCOC is

not necessarily monotone. Let P∗ be the optimal pricing without

the arbitrage-free constraint. R(P∗) is a trivial upper bound of the

revenue of the optimal arbitrage-free pricing. To prove the theorem,

we first prove Lemma 7 and Lemma 8.

Lemma 7. In any feasible allocation for a pricing, the number of
users sold at the price no less than θk is bounded by Ok , ∀k ∈ [C].

Proof. Assume there exists P for which we can find a feasible

allocation A such that ∃k ∈ [C], the number of sold users at prices

no less than θk is larger than Ok . We can create an allocation A′

from A as follows. For the users sold at the price no less than θk in

A, we allocate them to the same buyers in A′ at the price θk . For
other users, we discard them. It is easy to verify that A′ is feasible
for the uniform price θk and |A′ | > Ok , contradicting with that Ok
is the maximum number of sold users for the uniform price θk . □

Lemma 8. R(P∗) ≤ θCOC +
∑C−1
k=1 θk (Ok −Ok+1).

Proof. Let ok denote the number of users sold at the price no

less than θk in the optimal allocation for P∗. Thus, ok − ok+1 is the
number of users sold at the exact price θk . From Lemma 4, we know

that every entry of P∗ is in C , so its revenue can be formulated as:

R(P∗) = θCoC +
C−1∑
k=1

θk (ok − ok+1) =
C∑
k=2

ok (θk − θk−1) + o1θ1

≤

C∑
k=2

Ok (θk − θk−1) +O1θ1 (a)

= θCOC +
C−1∑
k=1

θk (Ok −Ok+1)

Inequality (a) is because (1) from Lemma 7, ∀l ∈ [N ], ok ≤ Ok
and (2) ∀k ∈ {2, . . . ,C}, θk ≥ θk−1. □

Nowwe can prove Theorem 6. SinceR(pξ ∗ ) = max {θ1O1, . . . ,θCOC},

it is true that ∀k ∈ [C], θk ≤ R(pξ ∗ )
Ok

. Replacing θk by

R(pξ ∗ )
Ok

in

Lemma 8, we complete the proof as follows:

R(P∗) ≤ R(pξ ∗ )
(
1 +

C−1∑
k=1

Ok −Ok+1

Ok

)
≤ R(pξ ∗ )

(
1 +

C−1∑
k=1

(
1

1 +Ok+1
+ . . . +

1

Ok
)

)
= R(pξ ∗ )

(
1 +

O1∑
i=OC+1

1

i

)

≤ R(pξ ∗ )
( OC∑
i=1

1

i
+

O1∑
i=OC+1

1

i

)
= R(pξ ∗ ) · HO1

≤ R(pξ ∗ )(lnO1 + 1)

≤ R(pξ ∗ )(lnmin {U,
∑B
j=1 dj } + 1)

□

Proposition 9. The O(logmin{U,
∑B
j=1 dj }) revenue guarantee

is tight for uniform pricing solutions.

Proof. We show a worst case. ∀i ∈ [N ]: (1) there are 2i users
that only satisfy qi , and (2) exists buyer i represented as (i, 2i , 2−i ).

ThusU =
∑B
j=1 dj = 2

N+1 − 1. It is easy to see that the revenue of

any uniform pricing is less than 2, but the revenue of the optimal

arbitrage-free pricing is N (any pricing is arbitrage-free in this

case). □

5 NON-UNIFORM PRICING
Based on uniform pricing, in this section we study arbitrage-free

non-uniform pricing, which is more practical for real markets. We

first devise a greedy algorithm to produce an arbitrage-free non-

uniform pricing of which the revenue is guaranteed to be no less

than the revenue of the optimal uniform pricing. In order to speed

up the algorithm for large markets, we propose an approximate

algorithm to solve the allocation problem efficiently for any pricing

while preserving the same performance guarantee.

Definition 8. Given P, αi ≜ max{π (i ′ |i) · pi′ |i
′ ∈ [N ], i ′ , i}

and βi ≜ min{
pi′

π (i |i′) |i
′ ∈ [N ], i ′ , i}. We call [αi , βi ] the arbitrage-

free interval
6 of pi .

6
W.l.o.g. we assume that βi always exists, i.e. {i′ |i′ ∈ [N ], i′ , i, π (i |i′) >

0} , ∅ , otherwise, the arbitrage-free interval of pi becomes [αi , ∞).

Session 9: Auctions and Mechanism Design 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

330



Proposition 10. If P is arbitrage-free and only one entry is varied
within its arbitrage-free interval, i.e. updating pi into any value in
[αi , βi ], the resulting pricing is still arbitrage-free.

Although Proposition 10 is straightforward to verify, it connects

uniform pricing which is naturally arbitrage-free with arbitrage-

free non-uniform pricing. Most importantly, Proposition 10 pro-

vides valid operations to update the pricingwhile keeping it arbitrage-

free. It is easy to see that with proper preprocessing, αi and βi can
be computed in O(N ) time. Based on Lemma 4 and Proposition 10,

we have Corollary 11.

Corollary 11. Ci (P) ≜ {αi , βi } ∪ {c j |j ∈ [B], tj = i, c j ∈
[αi , βi ]}. For any arbitrage-free pricing P that ∃i ∈ [N ], pi < Ci (P),
there exists an arbitrage-free pricing P′ that R(P′) ≥ R(P) and ∀i ∈
[N ], p′i ∈ Ci (P

′).

With Proposition 10, the proof of Corollary 11 is similar to the

proof of Lemma 4, thus omitted. Corollary 11 reveals the desirable

property of the optimal arbitrage-free non-uniform pricing, which

implies that any algorithm only needs to search over O(B) values
(because |Ci (P)| ≤ B + 2) other than the entire real interval [αi , βi ]
for pi . Based on this, we propose Algorithm 2 that iteratively up-

dates the optimal uniform pricing to arbitrage-free non-uniform

pricing. First, we show a polynomial subroutine to solve the alloca-

tion problem for a non-uniform pricing as follows.

Lemma 12. For any non-uniform pricing, the optimal allocation
can be computed in polynomial time O(UM +UB + B logB).

Proof. We model the allocation problem for non-uniform pric-

ing as a minimum cost maximum flow problem. The network is

constructed as follows. We introduce s and t as the source and sink

respectively. We introduce N nodes y1, . . . ,yN . Assuming all the

users are indexed from 1 to U and uk denotes the k-th user. For

each k ∈ [U]: (1) we introduce a node xk and a directed edge from

s to xk with capacity 1 and cost 0; and (2) ∀i ∈ [N ], we introduce
a directed edge from xk to yi with capacity 1 and cost 0 if uik = 1.

For each buyer j that c j ≥ ptj , introduce a node zj , a directed edge

from ytj to zj with cost 0 and a directed edge from zj to t with
capacity dj and a negative cost −ptj . We can verify that there is no

directed cycle with negative cost.

Letw(f ) > 0 be the absolute value of the minimum cost when

the amount of the required s-t flow is f . Clearly, it is true thatw(f )
is the maximum revenue when exactly f users are sold. Since the

costs are all negative,w(f ) is maximized when f = f ∗ where f ∗ is
the amount of the maximum s-t flow.

Since only the edges from zj to t are associated with non-zero

costs, to find the augmenting path with the smallest cost is O(|E |)
(after sorting buyers by c j ) where |E | ≤ M + 2B. Since f ∗ ≤ U, the

overall complexity is O(UM +UB+ B logB). □

Now we present Algorithm 2. It starts with the optimal uniform

pricing, then iteratively and greedily updates the pricing and finally

outputs an arbitrage-free non-uniform pricing. In each iteration,

the algorithm greedily updates the price of a query if the update

increases the revenue. To update pi , it picks up the new price from

Ci (P) that greedily maximizes the revenue. Let P−i,p denote the

resulting pricing when we only change the i-th entry of P to p.

Algorithm 2 Arbitrage-free Non-uniform Pricing

Input: N ,U , B and pξ ∗
Output: An arbitrage-free non-uniform pricing P
1: P← pξ ∗
2: ∀i ∈ [N ], compute αi and βi
3: repeat
4: for i ∈ [N ] do
5: p∗ = argmaxp∈Ci (P) R(P−i,p )
6: if R(P−i,p∗ ) > R(P) then
7: P← P−i,p
8: ∀i ′ ∈ [N ], re-compute αi′ and βi′

9: end if
10: end for
11: until no price changes

12: return P.

Proposition 13. Algorithm 2 always converges; in each itera-
tion of Repeat-Loop (lines 4-10), it solves at most B + 2N allocation
problems for non-uniform pricing.

Proof. Since the revenue of any pricing is trivially bounded

by

∑B
j=1 c jdj and after each iteration except the last one the rev-

enue always increases, the algorithm will always converge. Since

|
⋃N
i=1Ci (P)| ≤ B + 2N , there will be at most B + 2N allocation

problems of non-uniform pricing in each iteration. □

Let T be the number of iterations, the overall complexity is

O(T (B+N )(UM+UB+B logB)).We leave the theoretical analysis

of T for future work, however, we will see in experiments that

Algorithm 2 converges very quickly, i.e. T < 4 on average. We

next analyze its performance in Proposition 14. Experiments show

that the arbitrage-free non-uniform pricing has significantly larger

revenue in practice, however, the fact that the arbitrage-free interval

of any entry is dynamic in each iterationmakes it difficult to analyze

the theoretical improvement of the arbitrage-free non-uniform

pricing.

Proposition 14. Assume that Algorithm 2 converges after T ≥
1 iterations (of Repeat-Loop, i.e. lines 4-10). Let Pt be the pricing
computed after t ∈ [T ] iterations. The following statements are true:

(a) ∀t ∈ [T ], Pt is arbitrage-free.
(b) ∀t ∈ [T ], R(Pt ) has O(logmin{U,

∑B
j=1 dj }) performance

guarantee to the optimal arbitrage-free pricing;
(c) If T > 1, Pt is non-uniform, ∀t ∈ [T ].
(d) Unless breaking the arbitrage-free constraints, changing any

entry of PT alone cannot increase the revenue.

5.1 Faster Allocation
In Algorithm 2, the minimum cost maximum flow solver (described

in the proof for Lemma 12) that computes the optimal allocation for

a non-uniform pricing is called frequently, i.e. up to B + 2N times

in each iteration. Although to our best knowledge, it is faster than

most of general mincost maxflow solvers for integral flows and

non-unit capacity (see details in the survey [19]), it still does not

scale for large inputs. By generalizing the online bipartite matching

[16], we propose an approximation as Algorithm 3 to the allocation
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problem. Algorithm 3 greedily sells users satisfying queries with

the highest price.

Algorithm 3 Efficient Approximate Allocation

Input: N ,U , B and P
Output: Â
1: ∀j ∈ [B], Âj ← ∅

2: Re-order all the buyers such that pt1 ≥ . . . ≥ ptB
3: for j ∈ [B] do
4: if c j ≥ ptj then
5: while |Âj | < dj and ∃u ∈ U , utj = 1 do
6: Âj ← Âj ∪ {u}
7: U ← U − {u}
8: end while
9: end if
10: end for
11: return Â.

Proposition 15. For any pricing, Algorithm 3 produces an allo-
cation in polynomial time O(M + B logB).

Algorithm 3 is much faster than the mincost maxflow solver in

Lemma 12, i.e. by at least a factor
U

log B
. In real user markets, the

number of users to sell is significantly larger than the number of

buyers, i.e.U ≫ B, andU could be billions, so the improvement is

significant. We next show the performance guarantee of Algorithm

3 in Lemma 16, which will be also used for proving Theorem 21

later.

Lemma 16. Algorithm 3 is a 2-approximation to the allocation
problem for any pricing.

Proof. Let A∗ be the optimal allocation for P. Consider some

u who is allocated to buyer j in A∗ (i.e. u ∈ A∗j ) by the mincost

maxflow solver, but is allocated to a different buyer j ′ in Â (i.e.

u ∈ Âj′ ) or not allocated to any buyer in Â. There are three cases.

Case 1: if u is finally unallocated in Â, it is true that |Âj | = dj ≥ |A
∗
j |

because if |Âj | was less thandj , umust have been allocated to buyer

j . Consider that u is allocated to buyer j ′ in Â. Case 2: if ptj > ptj′ , it

must be true that |Âj | = dj ≥ |A
∗
j | for the same reason as Case 1. In

Case 1 and 2, the revenue contributed by Âj is no less thanA
∗
j . Case

3: if ptj ≤ ptj′ , it is true that we might lose the revenue ptj because
u is not allocated to j. In this case, however an equal or higher

revenue ptj′ is produced. This implies that the total revenue loss

R(P,A∗)−R(P, Â) is bounded by the total revenue produced R(P, Â).
Therefore we prove the lemma that 2R(P, Â) ≥ R(P,A∗) = R(P). □

We construct Algorithm 2.1 with the faster allocation in Algo-

rithm 3, to compute an arbitrage-free non-uniform pricing. Algo-

rithm 2.1 is the same with Algorithm 2 except that we replace the

optimal allocation (mincost maxflow solver R(P−i,p ) in line 5) with

the approximate allocation computed by Algorithm 3.

Theorem 17. LetT be the number of iterations that Algorithm 2.1
needs to converge. Algorithm 2.1 runs inO(T (B + N )(M + B logB))

and has all the properties (a)-(d) claimed for Algorithm 2 in Proposition
14.

6 A GENERALIZED SETTING: MINIMAL
DEMAND

Previously, we assumed that any buyer only restricts the maximum

number dj of target users he will buy. In this section, we consider a

general setting where a buyer also has a minimum demand. That is,

buyer j now becomes (tj ,d j ,dj , c j ) where d j and dj (d j ≤ dj ) are

the minimum and maximum number of target users that buyer j
will buy respectively. In this setting, the Demand Constraint in Def-

inition 2 for a feasible allocation A becomes: |Aj | ∈ {0,d j , . . . ,dj }.

This means that, for buyer j , we either allocate 0 or at least d j users

to him. Note that, the pricing problem in previous setting is indeed

a special case that ∀j, d j = 1 of this setting.

This generalized setting is also practical in many user markets.

For example, a business wants to trigger a cascade of promotion

for its product in an online community. If the initial seed size is

too small, the growth of cascade would be very slow or even not

triggered [3, 11] at all. Therefore the business needs some guarantee

of the seed size by specifying a large enough d j . Another example

is that, a buyer wants to purchase the contacts of users with certain

attributes for survey. If he is not able to reach enough number of

target users, the survey results lack statistical significance. There-

fore, he is not willing to buy any data set with size less than his

minimum demand.

However, the minimum demand constraint makes the allocation

problem and the pricing problem harder to solve, which can be seen

in Theorem 18 and Corollary 19.

Theorem 18. In the generalized setting, the allocation problem
(even if the pricing is uniform at 1) is (1) NP-hard and (2) hard to
approximate (unless P=NP) withinU

1

2
−ϵ or B1−ϵ , ∀ϵ > 0.

Corollary 19. In the generalized setting, the pricing problem is
both NP-hard and hard to approximate (unless P=NP) withinU

1

2
−ϵ

or B1−ϵ , ∀ϵ > 0.

Next, we first propose an approximate algorithm for the alloca-

tion problem, and then based on this approximation, we propose

another approximate algorithm for the pricing problem.

Algorithm 4 computes the approximate allocation in two steps,

each of which produces a partial allocation. The first partial al-
location process (lines 1-9), first re-orders all the buyers so that

pt1d1 ≥ . . . ≥ ptBdB . Then starting from j = 1, it allocates d j tar-

get users (if enough) to buyer j, in sequence. After that, the second
partial allocation process (lines 10-16) discards buyers who received
no user in the first partial allocation. For each of the remaining

buyers, it creates a dummy buyer without the minimum demand

as (tj ,dj − d j , c j ). Then it calls Algorithm 3 with the remaining

users, the dummy buyers and the same pricing as the input. Finally,

the two partial allocations are merged as the whole approximate

allocation.

Proposition 20. In the generalized setting, Algorithm 4 computes
an approximate allocation Â for any pricing in polynomial timeO(M+
B logB).

Theorem 21. Let D ≜ max{d j |j ∈ [B]}. The approximate allo-

cation Â produced by Algorithm 4 is an O(D)-approximation to the
optimal allocation.
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Algorithm 4 Approximate Allocation With Minimal Demand

Input: N ,U , B and P
Output: An approximate allocation Â
1: Re-order B buyers so that pt1d1 ≥ . . . ≥ ptBdB
2: Let Â1

and Â2
be two empty allocations

3: for j ∈ [B] do
4: Uj ← {u|utj = 1, u ∈ U }
5: if c j ≥ ptj and |Uj | ≥ d j then
6: Â1

j ← arbitrary d j users from Uj

7: U ← U − Â1

j
8: end if
9: end for
10: B′ ← ∅
11: for j ∈ [B] do
12: if |Â1

j | = d j and dj , d j then
13: B′ ← B′ ∪ {(tj ,dj − d j , c j )}

14: end if
15: end for
16: Â2 ← Call Algorithm 3 with N ,U , B′ and P as input

17: ∀j ∈ [B], Âj ← Â1

j ∪ Â
2

j
18: return Â

Proof. Let A∗ be the optimal allocation. W.l.o.g. we assume

that ∀j ∈ [B], the number of users satisfying qtj is no less than

d j , otherwise we can remove buyer j. This theorem is implied by

Lemma 22 and Lemma 16. In short, Lemma 22 implies that for every

unit of revenue generated by the first partial allocation (lines 1-9),

A∗ can generate at mostD+1 units of revenue. According to Lemma

16, it is true that for every unit of revenue generated by the second

partial allocation (lines 10-16), A∗ can generate at most 2 units of

revenue. Therefore, we have R(P, Â) ≥ R(P,A∗)
max{D+1,2} , which implies

the theorem. We only need to prove Lemma 22. □

Lemma 22. If buyer j is allocated with d j target users in the first
partial allocation, the loss of revenue (compared to A∗) is bounded by
ptj (d j )

2.

We next show that the O(D)-approximation is tight for Algo-

rithm 4. Consider the following example. There ared+1 queries and
d2 users. ∀i ∈ [d], all thed−1 users indexed between (d−1)·(i−1)+1
and (d − 1) · i (both inclusive) only satisfy qi . The last d users, in-

dexed between d2 − d + 1 and d2, satisfy all the queries. There are

d + 1 buyers, and buyer j is (j,d,d,∞). Let the pricing be: ∀i ∈ [d],
pi = 1 and pd+1 = 1 + ϵ . Algorithm 4 will only allocate d users

to buyer d + 1 while all the other buyers are allocated with 0 user,

thus the revenue is d · (1 + ϵ). However, the optimal solution that

∀i ∈ [d], allocates buyer i with d users has revenue d2.
With Theorem 21, we propose Algorithm 5 to produce a uni-

form pricing in this setting. Let Âξ be the approximate alloca-

tion output by Algorithm 3 when the input uniform price is ξ .
Similar to Algorithm 1, Algorithm 5 outputs the uniform price

ˆξ = argmaxξ ∈C R(pξ , Âξ ) where C = {c j |j ∈ [B]}. We analyze it

as follows.

Theorem 23. Algorithm 5 runs inO(BM +B2
logB) to compute

a uniform pricing which is an O(D logmin{U,
∑B
j=1 dj }) approxi-

mation to the optimal arbitrage-free pricing in the generalized setting.

Compared with the previous setting where buyers have no mini-

mum demand, we do not find a polynomial time solution to compute

the optimal uniform pricing in this setting. Because the allocation

problem is NP-hard, the guarantee of the uniform pricing drops.

However, as Algorithm 5 does not call any maxflow optimization,

its time complexity is lower than that of Algorithm 1. We leave the

arbitrage-free non-uniform pricing in this setting as future work.

7 EXPERIMENTS
In this section, we use synthetic data to evaluate Algorithms 1,

2, 2.1 and 3. To randomly generate instances of the pricing prob-

lem, we first set the values of U, B, N , m and c where m is the

maximal number of queries that any user can satisfy and c is the
upper bound of buyers’ maximum costs. For each buyer j ∈ [B],
tj , dj and c j are independently and uniformly sampled from the

integer sets [N ], [⌊ 4U
B
⌋] and [c] respectively. For each user ui ∈

U ,mi is independently and uniformly sampled from the integer

set [m], and we randomly make her satisfy mi distinct queries.

We generate instances of the pricing problem of three different

sizes: small size where (U,B,N ,m, c) = (100, 20, 10, 4, 5), medium
size where (U,B,N ,m, c) = (1000, 100, 50, 20, 1000) and large size
where (U,B,N ,m, c) = (106, 1000, 500, 200, 1000).

7.1 Optimal Arbitrage-free Pricing
In this part, we compare the optimal arbitrage-free pricing, the op-

timal uniform pricing computed by Algorithm 1 and the arbitrage-

free non-uniform pricing by Algorithm 2. Since we haven’t found

any (even pseudo) polynomial algorithm to compute the optimal

arbitrage-free pricing, we use an exponential algorithm with grid

search and backtracking to compute the numerically optimal arbitrage-

free pricing. Thus the experiment can be only conducted on in-

stances of small size, and we randomly generate 1000 such instances.

Let P∗ be the optimal arbitrage-free pricing. For each test case,

we record two revenue ratios r1 =
R(pξ ∗ )
R(P∗) and r2 =

R(P)
R(P∗) where

pξ ∗ is the optimal uniform pricing computed by Algorithm 1 and

P is the arbitrage-free non-uniform pricing by Algorithm 2. The

results are shown in Fig 1 where the x-axis denotes the interval
of revenue ratios and y-axis denotes the proportion of the test

cases of which the revenue ratios fall into the interval denoted by

x . The red bar is for r1 and the blue bar is for r2. Among all the

cases, r1 ∈ [0.732, 0.983] and r2 ∈ [0.796, 0.997]. The mean values

of r1 and r2 are 0.849 and 0.948 respectively. We observe that the

actual revenue ratios of the optimal arbitrage-free uniform pricing

and the non-uniform pricing are both significantly larger than the

theoretical guarantee which is 1/(1 + logmin{U,
∑B
j=1 dj }) ≈ 0.18.

In particular, the arbitrage-free non-uniform pricing is remarkably

close to the optimal arbitrage-free pricing.

7.2 Approximate Allocation
In this part, we compare the approximation in Algorithm 3 with the

optimal one (i.e. the mincost maxflow solver in Lemma 12) for the

allocation problem. Note that in line 6, Algorithm 3 selects any user
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Figure 1: Uniform pricing vs. Non-
uniform pricing (with baseline)

Figure 2: The optimal allocation vs.
the approximate allocation

Figure 3: Compare the non-
uniform pricings by Algorithm 2
and 2.1

u satisfying qtj . For experiments, we use a heuristic to select such

a user: among all the users satisfying qtj , we select the one with
the least number of other queries that she satisfies. With proper

preprocessing, this heuristic does not increase the asymptotic time

complexity of Algorithm 3.

The experiments are conducted on the instances of medium size.

We first randomly generate 1000 cases of medium size and for each

case we randomly generate a pricing vector P where ∀i ∈ [N ],
pi is independently and uniformly sampled from [c]. We define

the revenue ratio as
R(P,Â)
R(P,A∗) where Â is the approximate allocation

computed by Algorithm 3 andA∗ is the optimal allocation computed

by the mincost maxflow solver in Lemma 12. We plot the results

in Fig 2 where x-axis denotes the ratio and y-axis denotes the

accumulated proportion of cases of which the revenue ratios are

less than or equal to x . Among all the 1000 cases, the least revenue

ratio is 0.79; the ratios of 76.6% cases are at least 0.95; 16% cases

reach the optimum, i.e. with ratio as 1. The average ratio is 0.968,

much larger than the theoretical guarantee 0.5.

Next, we randomly generate 1000 cases of medium size, for each

of which, we compute its arbitrage-free non-uniform pricing. Let P
and P′ be the pricing output by Algorithm 2 and 2.1 respectively. In

order to compare R(P) and R(P′), we still call the mincost maxflow

solver after P and P′ are produced. We plot the results in Fig 3

where x-axis denotes the revenue ratio R(P′)
R(P) and y-axis denotes the

accumulated proportion of cases of which the revenue ratios are

less than or equal to x . With the mean value 0.988, the ratios are in

[0.717, 1.023]. Among the 1000 cases, we find that in 94.1% cases,

the ratio is at least 0.95 and in 4.1% cases, the ratio is larger than 1

(because Algorithm 2 does not guarantee global optimum). Notably,

Algorithm 2.1 is faster than Algorithm 2 by at least a factor
U

log B
.

7.3 Uniform and Non-uniform Pricing
In this part, we first measure the convergence of Algorithm 2.1, and

then compare the arbitrage-free non-uniform pricing by Algorithm

2.1 with the optimal uniform pricing by Algorithm 1. We randomly

generate two datasets, 1000 cases of large size and 5000 cases of

medium size.

Convergence. We observe that Algorithm 2.1 converges very

quickly, as shown in Fig 4. Among all the all the 1000 instances of

large size, it converges after 3.77 iterations on average, and in the

Figure 4: Convergence of Al-
gorithm 2.1

Figure 5: Uniform pricing vs.
non-uniform pricing

worst case, 14 iterations. Among all the 5000 instances of medium

size, it converges after 2.96 iterations on average, and in the worst

case, 7 iterations.

Let R be the (approximate) revenue of the arbitrage-free non-

uniform pricing output by Algorithm 2.1, and the relative revenue

increment is calculated as
R

R(pξ ∗ )
− 1. We observe that R is signifi-

cantly larger than R(pξ ∗ ), shown in Fig 5. For each curve, x-axis is
the relative revenue increment and y-axis is the accumulated case

proportion of which the relative revenue increment is less than or

equal to x . For all the 1000 instances of large size, the increment

is in [0.25, 0.43], with 0.394 as the mean and 0.046 as the standard

deviation. For all the 5000 instances of medium size, the increment

is in [0, 0.596], with 0.281 as the mean and 0.112 as the standard

deviation. We conclude that the arbitrage-free non-uniform pricing

significantly outperforms the optimal uniform pricing, typically in

large markets.

8 CONCLUSION
In this paper, we addressed the pricing problem, in particular, rev-

enue maximizing arbitrage-free pricing in user-based markets. We

presented a variety of efficient algorithms for arbitrage-free pric-

ing with provable approximation guarantees on their revenue, and

hardness results for certain variations. We believe that there is a

real need to study mechanisms for allocation and pricing of users

based on multiple attributes as much of online user-based markets

rely on such systems.
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