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ABSTRACT
Facility location is a well-studied problem in social choice literature,

where agents’ preferences are restricted to be single-peaked. When

the number of agents is treated as a variable (e.g., not observable a

priori), a social choice function must be defined so that it can accept

any possible number of preferences as input. Furthermore, there

exist cases where multiple choices must be made continuously

while agents dynamically arrive/leave. Under such variable and

dynamic populations, a social choice function needs to give each

agent an incentive to sincerely report her existence. In this paper

we investigate facility location models with variable and dynamic

populations. For a static, i.e., one-shot, variable population model,

we provide a necessary and sufficient condition for a social choice

function to satisfy participation, as well as truthfulness, anonymity,

and Pareto efficiency. The condition is given as a further restriction

on the well-known median voter schemes. For a dynamic model, we

first propose an online social choice function, which is optimal for

the total sum of the distances between the choices in the previous

and current periods, among any Pareto efficient functions. We then

define a generalized class of online social choice functions and

compare their performances both theoretically and experimentally.
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1 INTRODUCTION
Facility location is a well-studied problem in the literature of social

choice and known as a special case of voting [23]. In the prob-

lem, each agent (voter) is located at a point on an interval, which

represents the set of social alternatives. Under the realization of

a social alternative as the outcome of a social choice function, an

agent’s cost is defined as the distance between the outcome and

her location. In other words, agents’ preferences are restricted to

single-peaked ones. This restriction on their preferences guarantees

the existence of a Condorcet winner. Actually the alternative most

preferred by the median voter, i.e., the agent whose location is the

⌊(n + 1)/2⌋-th smallest among n agents, is a Condorcet winner.

In the literature of mechanism design, truthfulness is one of

the most important properties that a social choice function should

preserve. It requires that telling the location honestly to the social
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choice function is a dominant strategy for every agent. Clarifying

the necessary and sufficient condition for a social choice function

to satisfy truthfulness has greatly attracted considerable attention

of researchers. Themedian voter schemes, which contains the above

median rule as a special case, are the only social choice functions

that satisfy truthfulness, Pareto efficiency, and anonymity [23].

The traditional model of facility location problems assumes that

a social choice function knows the number n of agents a priori, or at

least, the parameter n is given as a fixed constant. In practice, how-

ever, the number of agents is sometimes not previously observable.

For instance, in a poll on a social networking service, it is hard for

the organizer to know the exact number of votes beforehand. It may

be even possible that agents in the market can partially manipulate

the population. Therefore, the behavior of a social choice function

for different sets of agents must be carefully analyzed.

One such situation is the case where agents’ participation is

voluntary, like political elections or the above online poll. An agent

would choose not to participate in a social choice function if she

benefits by doing so. To appropriately reflect agents’ preference

in the outcome, a social choice function should guarantee that

participation by reporting true location is weakly better than not

participating. This property is known as participation, or abstention-
proofness, and has been studied in the literature of social choice [11].

However, to the best of our knowledge, there has been no work

that addressed a necessary and sufficient condition for a social

choice function to satisfy participation, together with truthfulness,

in facility location problems.

Analyzing participation could be very important, especiallywhen

the behavior of a social choice rule drastically depends on the car-

dinality of agents. In practice, political elections in many coun-

tries consider the voter turnout, i.e., the percentage of eligible vot-

ers/agents who actually cast a ballot, and the election is made

invalid if the voter turnout does not exceed a threshold. The status-

quo outcome is, however, usually not Pareto efficient for those

agents. Therefore, a natural question is, if we assume that a certain

Pareto efficient alternative is chosen for the case where the voter

turnout does not exceed the threshold, does such a social choice

function appropriately incentivise agents to cast a ballot? A more

formal and detailed example will be presented in Section 4.

Another possibility is to face the dynamic participation of agents,

where the outcome space is divided into periods and each agent

arrives and departs over time. Consider how to decide the temper-

ature of an air conditioning system equipped in a room. People

using the room are asked to report, when they enter the room, to

which temperature it should be set, which corresponds to their

ideal locations. They are also allowed not to report, since they may

be indifferent on the temperature. Further, it is natural to assume

that their arrivals and departures are also private information, and

therefore a social choice function needs to be defined for any num-

ber of agents participating in the market during a period. For this
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setting, the participation condition requires that reporting one’s

preferable temperature does not harm her. At the same time, the

truthfulness property also becomes stronger, which requires that

participating only at their true active periods by reporting their

true locations is a dominant strategy.

When we consider such a dynamic model, it is very common and

also important to compare the solution of a social choice function

with the one by the offline optimal algorithm. From this perspective,

we define a new measure, so-called replacement cost, for evaluating
the performance of dynamic social choice functions. The replace-

ment cost of a social choice function for a given profile of types

is defined as the total sum of the distances between the choices

in previous and current periods, where the choice at the very first

period 0 is commonly fixed as α for all those rules. For example, in

the above air conditioning situation, the replacement cost is a good

approximation of electricity consumption; the more the procedure

changes the temperature, the more it uses the electricity.

In this paper we study such variable population in both static

and dynamic facility location models, where the latter is a general-

ization of the former. The static model is an extension of Moulin’s

model [23]. The dynamic model is inspired from the concept of

online mechanism design, which was originally proposed by Haji-

aghayi et al. [17], to facility location. For both models, our analysis

is based on a perspective of mechanism design, where these four

properties, i.e., truthfulness, participation, Pareto efficiency and

anonymity, are treated as desiderata.

For the static model, we give a necessary and sufficient condi-

tion for a social choice function to satisfy participation, as well as

truthfulness, anonymity, and Pareto efficiency. The condition is

given as a further refinement of the parameters of a median voter

scheme, and gives a novel insight on how the voter turnout should

be implemented to incentivise agents to participate. A quite similar

approach by Todo et al. [32], addresses a property called false-name-

proofness, instead of participation. The condition obtained in our

paper is strictly weaker than that obtained by them. Note that, how-

ever, we also clarified that participation and false-name-proofness

themselves have no inclusion relation, by presenting a social choice

function that is false-name-proof and violates participation.

For the dynamic model, we propose an online social choice

function, the so-called dynamic target rule, which satisfies all four

desiderata. It is inspired from well-known target rules for a static

model [9, 19], which is actually the social choice function obtained

by the above condition by Todo et al. [32]. For the static model,

the target rule works as follows: it has a pre-defined parameter p
and returns, for a given profile of reported locations, the closest

alternative to p among the Pareto efficient ones if p is not Pareto

efficient, and returns p otherwise. The idea of the dynamic target

rule for the dynamic model is that, a target rule (in the static sense)

is used for each period, where the outcome at the current period t
is set as the parameter for the next period t + 1.

We analyze the dynamic target rule from this perspective and

show that it is optimal among online Pareto efficient social choice

functions in terms of the replacement cost. On the other hand, it

performs poorly in terms of another well-known measure called

social cost, which is optimized by choosing the median point at

each period. Therefore, we propose a class of online social choice

functions, which has these two as two extremes, and show that

they perform reasonably well on average in terms of social cost,

although there is no dominance in terms of social cost between any

two of them (except for the dynamic median).

2 RELATEDWORKS
Moulin [23] proposes a necessary and sufficient condition for a

social choice function to satisfy truthfulness, anonymity, and Pareto

efficiency, which can also be considered as a characterization of

median voter schemes. Procaccia and Tennenholtz [29] initiated

the worst-case analysis of a social choice function, which is also

known as approximate mechanism design. Besides them, there are

quite a few works on voting in dynamic situation. Tennenholtz [31]

studied a voting model where agents arrive dynamically, but it

focused on analyzing social rankings instead of social choice. Both

Parkes and Procaccia [28] and Freeman et al. [13] studied dynamic

preferences, without considering the dynamic arrival of agents.

Munie and Shoham [25] formalized the evolution of an article in

wiki-like system as a game theoretic model that is similar to ours,

where an article itself is represented as a value over [0,1] and each

editor of the article tries to move the value. However, they focused

on equilibrium and best response dynamics in the game, and there

was no discussion on truthfulness. Further, they assumed that at

each period only one agent takes an action, while in our model all

the agents simultaneously take an action, i.e. report their types.

Median voter schemes have also been widely studied in the liter-

ature of social choice. Ching and Thomson [9] proposed a class of

social choice functions called target rules as a subclass of the median

voter schemes, and give a characterization of them by Pareto effi-

ciency and another consistency property called population mono-

tonicity. However, they did not consider any strategic manipulation

by agents. Arribillaga and Massó [1] compared a superclass of me-

dian voter schemes, called generalized median voter schemes, in
terms of manipulability by preference misreports. However, they

focused on a fixed population model.

Fishburn and Brams [11] and Moulin [24] initiated discussion on

participation in social choice. However, their analysis is for general

voting situations with unrestricted preferences, instead of single-

peaked preferences. Participation has also recently been attracting

much attention. Bochet and Gordon [3] dealt with the property in

locating multiple facilities. Brandl et al. [6] studied the participa-

tion property in the problem of assigning indivisible objects, which

requires that reporting that all the items are indifferent is not benefi-

cial for each agent. Some properties that are relative to participation,

including partially hiding information, have also been studied in

various social choice and mechanism design environments, such as

voting [4, 5, 7] and assignment [2, 14, 16, 34].

In social choice literature, some works focused on manipulations

in situations with variable populations, especially known as false-

name manipulations [8, 20, 26, 30, 32]. Conitzer [10] also tackled a

property called anonymity-proofness as a combination of false-name-

proofness and participation and proposed a randomized anonymity-

proof voting rule for general preferences; but his work did not focus

on participation. In general, to the best of our knowledge, there

has been no work focusing on the participation property in facility

location with variable or dynamic populations.
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3 PRELIMINARIES
We first introduce general notations and definitions commonly used

in our two different models to avoid redundant explainations of

essentially identical ideas. Each specified model will be explicitly

explained at the beginning of Sections 4 and 5, respectively.

Let N be the set of potential agents and let N ⊆ N be a set

of participating agents. A participating agent i ∈ N has a true

type θi ∈ Θi , where Θi is the set of potential types of agent i . Let
θ := (θi )i ∈N ∈ ΘN := ×i ∈NΘi be a profile of the types of a set

N of agents, where θ−i := (θ j )j,i indicates a profile that consists
of all the types in θ except for the agent i’s type. Let O be the set

of social alternatives and let o ∈ O be a social alternative. A cost

function c is in common among all the potential agents, where

the cost incurred to an agent i with true type θi when a social

alternative o is achieved is represented as c(θi ,o) ∈ R≥0.

A social choice function f = (fN )N ⊆N is defined as a family of

functions, each fN of which is a mapping fromΘN toO. This means

that, each function fN takes a profile θ of types jointly reported by

the set N of agents as an input, and returns a social alternative o as
an outcome. We write fN as f if it is clear from the context. LetM
be a misreport correspondence that restricts an agent’s reportable

types, for a given agent’s true type. Formally,M(θi ) ⊆ Θi indicates

the set of types reportable by agent i with true type θi . We assume

that θi ∈ M(θi ) holds for any i and θi , meaning that each agent can

always report her true type.

Now we introduce the four desiderata, truthfulness, anonymity,

Pareto efficiency, and participation. Truthfulness requires that for

each agent, truthfully reporting her type is weakly better than

reporting any false type, regardless of the other agents’ reports.

Anonymity requires that any permutation of agents’ types does not

change the outcome, even though the agents’ names are changed.

Pareto efficiency requires that there is no other outcome that is

weakly preferred to the outcome chosen by a social choice function

by all the agents, and strictly preferred to by at least one agent.

Finally, participation requires that for each agent, participation by

reporting her true type is weakly better than not participating.

Definition 3.1 (Truthfulness). A social choice function f is truth-
ful if for any N , any θ ∈ ΘN , any i ∈ N , and any θ ′i ∈ M(θi ), it
holds that c(θi , f (θ )) ≤ c(θi , f (θ

′
i ,θ−i )).

Definition 3.2 (Anonymity). A social choice function f is anony-
mous if for any pair N ,N ′

s.t. |N ′ | = |N |, any θ ∈ ΘN , and any

θ ′ ∈ ΘN ′ , the existence of permutation π : N → N ′
of N s.t.

θi = θ
′
π (i) for every i ∈ N implies f (θ ) = f (θ ′).

Definition 3.3 (Pareto efficiency). An outcome o ∈ O Pareto domi-
nates another outcome o′ under profile θ ∈ ΘN if c(θi ,o) ≤ c(θi ,o

′)

for all i ∈ N and c(θ j ,o) < c(θ j ,o
′) for at least one j ∈ N . A social

choice function f is Pareto efficient if for any N and any θ ∈ ΘN ,

there exists no outcome o ∈ O that Pareto dominates f (θ ).

Definition 3.4 (Participation). A social choice function f satisfies

participation if for any N , any θ ∈ ΘN , and any i ∈ N , it holds that

c(θi , f (θ )) ≤ c(θi , f (θ−i )).

Let us also define the median function med, which is used in

several places in this paper. The median function takes any odd

number of values as input and returns the unique median value.

Actually, in this paper, any use of the median function takes an odd

number of values as input.

4 FACILITY LOCATION IN STATIC MODEL
In this section, we first formally define our static model of facility

location, by specifying the notation introduced in the previous

section. Let I := [0, 1] be an interval. We then define Θi := I

for every i ∈ N , M(θi ) := Θi for every θi ∈ Θi , O := I, and

c(θi ,o) := |θi − o |. In other words, in this static model, each agent

is located at a point θi on the interval [0, 1], and her cost incurred

from a social alternative o is defined as the distance between o and
θi . It is easy to see that the agents’ preference, i.e., the minus of

their costs, is single-peaked 1
.

Moulin [23] provided a necessary and sufficient condition for a

social choice function defined for a fixed N to satisfy truthfulness,

anonymity, and Pareto efficiency
2
. This result can be straightfor-

wardly extended to our static model with variable populations as

the following corollary.

Corollary 4.1. A social choice function f is truthful, anonymous,
and Pareto efficient if and only if it has, for any positive integer
n ∈ N, n − 1 parameters pn = (pn

1
, . . . ,pnn−1

) ∈ In−1 such that
pn

1
≤ . . . ≤ pnn−1

and for any set N such that |N | = n and any
θ ∈ ΘN ,

fN (θ ) = med(θ1, . . . ,θn ,p
n
1
, . . . ,pnn−1

). (1)

Such a social choice function is known as a median voter scheme,

where those n − 1 parameters are called “phantom voters” and it

chooses the median point out of 2n − 1 points in total. For example,

if we set pn = (0, . . . , 0), it chooses the location of the leftmost

agent among n agents. Similarly, if we set pn = (0, . . . , 0, 1), it

chooses the location of the second agent from the left, and so on.

The following example, which reflects the motivating example

mentioned in Section 1, shows that participation does not always

hold when there is no restriction on those parameters.

Example 4.2. Let us assume that there is a status quo outcome

α ∈ I and let |N | = 11. First, consider the following social choice

function: return the status quo α if there are less than six partici-

pating agents, i.e., the voter turnout is set to 50 %, and the median

location among all participating agents otherwise. This is obviously

not always Pareto efficient; it returns α when there is only one

agent at 1, which violates Pareto efficiency if α , 1.

To guarantee Pareto efficiency, consider the following slight mod-

ification of the above social choice function: returnmed(α ,mini ∈N θi ,
maxi ∈N θi ) if there are less than six participating agents and the

median location among all participating agents otherwise. This

can be represented as a social choice function described in Eq. 1

with the following parameters: pn = (α , . . . ,α) when n < 6, and

pn = (0, . . . , 0︸  ︷︷  ︸
⌊n/2⌋

, 1, . . . , 1︸  ︷︷  ︸
n−1−⌊n/2⌋

) when n ≥ 6. It is obvious from Corol-

lary 4.1 that this social choice function satisfies Pareto efficiency,

as well as anonymity and truthfulness.

1
Note that our analysis holds as is for general single-peaked preferences that

Moulin [23] considered, as all the proofs in this section do not depend on the agents’ ac-

tual costs. On the other hand, the agents’ cost for the dynamic model is not well-defined

for general single-peaked preferences.

2
Massó and Moreno de Barreda [22] proved that the result also holds for the case of

symmetric preferences, including the Euclidean preferences.
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Figure 1: Relationship between two sets of parameters, for n
agents and n − 1 agents, of a median voter scheme satisfying
participation.

However, it violates participation. Assume there are six agents

such that the profile of their true types is θ = (0, 0, 1, 1, 1, 1), i.e.,

two are located at 0 and the other four at 1. When all six agents

participate and truthfully report their types, the outcome is 1. If an

agent at 0 does not participate, the outcome is α . Thus the agent at
0 has an incentive to avoid participating for any α ∈ [0, 1).

The following theorem is our main result for the static model,

which clarifies a necessary and sufficient condition for a social

choice function to satisfy participation as well as truthfulness,

anonymity, and Pareto efficiency. Figure 1 illustrates the condi-

tion on parameters.

Theorem 4.3. A social choice function f is truthful, anonymous,
Pareto efficient, and satisfies participation if and only if it is described
in Eq. 1 and its parameters are such that for any positive integer
n ∈ {2, . . . , |N |} and anym ∈ {1, . . . ,n − 2},

pnm ≤ pn−1

m ≤ pnm+1
. (2)

Proof. We first show the if part, i.e., we confirm that any such

f satisfies all the desiderata. From Corollary 4.1, f is obviously

truthful, anonymous, and Pareto efficient. Now assume for the

sake of contradiction that there exist N , θ ∈ ΘN , and i ∈ N such

that i benefits by not participating. Letting q := f (θ ), we assume

without loss of generality that θi < q. Here, let L be the number

of points strictly smaller than q in the profile of 2n − 1 points

(θ ,pn ), L′ be the number of types out of L, and L′′ be the number

of parameters out of L. By definition, L = L′ + L′′, L′ ≥ 1, and

1 ≤ L ≤ n − 1. We also analogously define K , K ′
, and K ′′

for the

case where i does not participate. It is then obvious that K ′ = L′−1,

since i’s type is removed in θ−i . Furthermore, Eq. 2 guarantees

that L′′ − 1 ≤ K ′′ ≤ L′′ holds for the number of parameters.

Therefore, K ≤ L − 1 ≤ n − 2 holds, which means that when i does
not participate, the median (the n − 1-th smallest) of the 2n − 3

points (θ−i ,p
n−1) must be at least as large as q. This violates the

assumption that i is better off by not participating.

We next prove the only if part by showing that the participa-

tion property, combined with the other three, implies Eq. 2. For

the sake of contradiction, assume that a social choice function f ,
described in Eq. 1, satisfies participation and for some n and some

m ∈ {1, . . . ,n − 2}, either pn−1

m < pnm or pnm+1
< pn−1

m holds for its

parameters. When pn−1

m < pnm holds, consider a profile θ ∈ ΘN of

n locations such that n −m agents are located at 0 andm agents

are located at 1. By the definition of the median function med, the
outcome when all the agents participate in and report truthfully is

f (θ ) = pnm . When an agent i at 0 does not participate, the outcome

becomes f (θ−i ) = med(θ−i ,pn−1) = pn−1

m . Since pn−1

m < pnm holds,

c(0,pn−1

m ) < c(0,pnm ) also holds, which violates participation. The

same argument holds for the case of pnm+1
< pn−1

m from symmetry,

which completes the proof. □

To confirm the independence of these four conditions, we show

four social choice functions, each of which violates one of the four

properties and still satisfies the remaining three. The center rule,

choosing the average of the leftmost and rightmost locations, is not

truthful, but it is anonymous, Pareto efficient, and satisfies participa-

tion. The dictatorship rule, which chooses the participating agent

with the alphabetically youngest identity as a dictator, violates

anonymity, but it is truthful, Pareto efficient, and satisfies partic-

ipation. A social choice function that chooses a pre-determined

fixed point as the outcome regardless of the input is not Pareto

efficient, but it is truthful, anonymous, and satisfies participation.

Finally, the social choice function presented in Example 4.2 violates

participation, but it still satisfies the remaining three properties.

Back to Example 4.2, which social choice function could be used

to guarantee both Pareto efficiency and participation? One easiest

way is to stop using the voter turnout and just choose the left-

median location regardless of the cardinality of participating agents.

Such a social choice function is represented by the set of parameters

pn = (0, . . . , 0︸  ︷︷  ︸
⌊n/2⌋

, 1, . . . , 1︸  ︷︷  ︸
n−1−⌊n/2⌋

) for any n. Another way, which puts the

same value on the status quo for the cases under the threshold but

also makes the outcome as close to the median as possible, is to

decide those parameters in an inductive way by incrementing n,
something like:

pn =



(α . . . ,α︸  ︷︷  ︸
n−1

) if n < threshold

pn−1 ∪ (0, 1) \ α if threshold ≤ n ≤ 2 × threshold

pn−1 ∪ (0) if 2 × threshold ≤ n ∧ n is even

pn−1 ∪ (1) if 2 × threshold ≤ n ∧ n is odd

where the union operator (∪) returns a merged sorted profile of

parameters from its two arguments given as sorted profiles of pa-

rameters, and the complement operator (\) removes the second

argument given as a value from the first argument given as a sorted

profile. It is easy to see that those parameter satisfies the condition

given in Eq. 2.

The condition given in Eq. 2 can also be treated as a neces-

sary and sufficient condition for a median voter scheme to sat-

isfy participation. It is weaker than the necessary and sufficient

condition for them to satisfy false-name-proofness [32], which

requires the existence of a parameter p∗ ∈ I such that for any

n, pn = (p∗, . . . ,p∗) holds. This implies that under the assump-

tion of truthfulness, anonymity, and Pareto efficiency, false-name-

proofness is stronger than participation. However, these two proper-

ties themselves have no inclusion relation. Consider a social choice

function that performs the above rule with parameter p∗ = 1 when
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n < 6 and returns 1 regardless of the input when n ≥ 6. This rule

satisfies false-name-proofness and anonymity, but neither Pareto

efficiency nor participation.

The above theorem also works as a characterization of a subclass

of median voter schemes that is “monotonic” on the market popu-

lation. The monotonicity here means that, assuming an outcome

o ∈ I for the current population, the new arrival of an agent i
with θi ≤ o does not push the outcome to the right. Indeed, any

median voter scheme that violates participation does not preserve

this monotonicity property. For instance, in the above example,

adding a new agent at 0 moves the outcome from 0 to 1.

5 FACILITY LOCATION IN DYNAMIC MODEL
In this section, we formally define our dynamic model of facil-

ity location. Let I := [0, 1] be an interval again, and let T :=

{1, . . . , t , . . . ,T } be the sequence of T periods in the market. We

then define Θi ⊂ I × 2
T
for every i ∈ N . An agent’s type θi

is represented as a 2-tuple (xi ,Ai ), where xi ∈ I is her location

and Ai ∈ 2
T
is the set of active periods, i.e., the periods at which

she is present in the market. Furthermore, let O := IT , and let

o := (o1, . . . ,ot , . . . ,oT ) ∈ O be an outcome, where ot ∈ I indi-

cates the location of the facility at period t under the outcome o. For
given θi = (xi ,Ai ) and o = (ot )1≤t ≤T , the cost of an agent i with
type θi under outcome o is given as c(θi ,o) :=

∑
t ∈Ai |xi − ot |. In

other words, in this dynamic model, each agent i enters the market

at the beginning of the earliest period in Ai , reports her location
xi on the interval [0, 1] to a social choice function, and stays in

the market in each period in Ai . Note that Ai is not assumed to be

convex over T , i.e., temporal absence in the market is also allowed.

The agent’s cost incurred from an outcome o is defined as the sum

of the distances between ot and xi for each period t where she stays
in the market. Also, let α ∈ I be the status quo social state at the

very beginning period 0, e.g., the original location of the facility at

the beginning of the facility location problem.

We assume that a social choice function must be online, meaning

that a decision at period t only depends on the information available

during the first t periods, i.e., the set of types reported by agents who
arrives on or before period t . For notation simplicity, we sometimes

refer to the leftmost location at period t when the profile of all the

agents is θ as l(t ,θ ), and the rightmost location as r (t ,θ ). That is, for
given N and θ ∈ ΘN , N t

:= {i ∈ N | t ∈ Ai }, l(t ,θ ) := mini ∈N t xi
and r (t ,θ ) := maxi ∈N t xi . Note that in this dynamic model, an

outcome is Pareto efficient if and only if it returns a Pareto efficient

location at every period. Formally, o = (ot )1≤t ≤T is Pareto efficient

under profile θ if and only if l(t ,θ ) ≤ ot ≤ r (t ,θ ) for every t ∈ T .

Here we define the replacement cost, as a new measure for evalu-

ating the performance of online social choice functions. Intuitively,

the replacement cost is a quantitative measure that reflects the cost

of changing the social state, such as making a new political decision

in an election or rebuilding a train station like the facility location.

In practice, choosing an social alternative that is quite different

from the current one is more costly for society, for instance, due to

an enforcement of new rules by the government.

Definition 5.1 (Replacement cost). For given θ , the replacement
cost of a social choice function f , denoted as RC(f ,θ ), is defined by∑

t ∈T

| f t (θ ) − f t−1(θ )|,

where f 0(θ ) := α .

5.1 Assumption on Misreport Correspondence
In the above definition of our dynamic model, we focused on social

choice functions, where each agent report their types to a social

choice function only once. In general, however, we can consider

much complicated platforms for aggregating agents’ preferences,

which are so-called indirect mechanisms. The revelation principle
guarantees that if we would like to obtain indirect mechanisms hav-

ing dominant strategy equilibrium, it is without loss of generality

to focus only on truthful social choice functions (for more detail,

please see some textbook such as Mas-Colell et al. [21]).

Green and Laffont [15] showed that in a general model of mech-

anism design without money, which includes ours as a special case,

the revelation principle holds if and only if the restriction on mis-

report satisfies a kind of transitivity condition, so-called the nested

range condition (NRC)
3
. Formally, a misreport correspondence M

satisfies NRC if for any i ∈ N and any three types θi , θ
′
i , θ

′′
i ∈ Θi ,

[θ ′i ∈ M(θi ) ∧ θ ′′i ∈ M(θ ′i )] ⇒ θ ′′i ∈ M(θi ).

We therefore introduce the NRC condition into our model and focus

without loss of generality on social choice functions.

Assumption 1. An agent i , whose true set of active periods is Ai ,
cannot stay in any other period than Ai . Formally, for any i ∈ N

and any θi = (xi ,Ai ) ∈ Θi ,

M(θi ) := {θ ′i = (x ′i ,A
′
i ) ∈ Θi | x

′
i ∈ I ∧A′

i ⊆ Ai }

Intuitively, this assumption requires that each agent cannot re-

port that she is present when she is absent (but still allows agents

to keep silent even though they are present). One can easily ob-

serve that the above misreport correspondenceM satisfies the NRC

condition. This is an extension of the no-early-arrival and no-late-

departure assumption in online mechanism design [17, 27, 33]. In-

deed, if the set of active periods are restricted to convex ones,

Assumption 1 coincides with it.

5.2 Proposed Mechanism
If an online social choice function independently runs a truthful

social choice function (in the static sense) for each period, it is

truthful even though agents can misreport their active periods.

Actually, any combination of the above social choice rules in Eq. 2

satisfies all these properties. In this section, however, we propose a

new online social choice function that is not just such a combination,

which utilizes the current location of the facility to decide the

location for the next period.

Mechanism 1 (Dynamic target rule). The dynamic target rule τ is

a social choice function such that for any N ⊆ N and any θ ∈ ΘN ,

τ t (θ ) = med(τ t−1(θ ), l(t ,θ ), r (t ,θ )),

3
Yu [36] also proposed a slight different condition under which the revelation principle

holds. However, she focused on the models where monetary compensation is allowed

such as auctions, while in our model such compensation is prohibited.
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where τ t represents a function that returns the location of the

facility for period t ∈ T and τ 0(θ ) := α for any θ .

Under the dynamic target rule, if the location chosen in the

previous period is still Pareto efficient in the current period, the

location does not change. Otherwise, the closest Pareto efficient

location from the previous location is chosen. The example below

demonstrates how it works for a given profile of types.

Example 5.2. Let α = 0.4 and T = 6, and there are seven

agents, whose true types are given as θ1 = (0.1, {3, 4, 5}), θ2 =

(0.2, {6}), θ3 = (0.3, {3, 4}), θ4 = (0.4, {1}), θ5 = (0.5, {1, 2}),

θ6 = (0.6, {1, 2, 3}), and θ7 = (0.7, {2, 6}). Note that the set of

active periods of the seventh agent, {2, 6}, is not convex.

In period 1, there are three agents, each of which is located at

0.4, 0.5, and 0.6. The dynamic target rule therefore locates the facil-

ity at τ 1 = med(α , 0.4, 0.6) = 0.4 for period 1. In period 2, agents

are located at 0.5, 0.6, and 0.7. Thus the facility is located at τ 2 =

med(τ 1, 0.5, 0.7) = med(0.4, 0.5, 0.7) = 0.5. We can analogously cal-

culate the sequence of locations, which is (0.4, 0.5, 0.5, 0.3, 0.1, 0.2).

The following theorem shows that the dynamic target satisfies

all four desiderata. The most surprising part is its truthfulness and

participation; although the dynamic target rule utilizes the current‘

location to decide the future location, it does not provide any chance

for agents to improve by any possible manipulation.

Theorem 5.3. The dynamic target rule is anonymous and Pareto
efficient, and satisfies participation. Furthermore, it is truthful under
Assumption 1.

Proof Sketch. Both anonymity and Pareto efficiency obviously

hold. To show participation and truthfulness, we first observe two

key properties of the functions used in each period, which is the

target rule for the static model and has parameters satisfying Eq. 2.

The first property is that, any possible manipulation by an agent

in the static model, i.e., misreporting her location and not participat-

ing, moves the outcome to the opposite side. More precisely, letting

i be such a manipulator, u ∈ I be the original outcome under her

truth-telling, and v ∈ I be the manipulated outcome, we can show

that either xi ≤ u ≤ v or xi ≥ u ≥ v holds. For misreporting, this is

a well-known property commonly preserved by any median voter

scheme. For not participating, it is essentially a special case of what

we shown in the proof of Theorem 4.3. The second property is a

kind of monotonicity on the parameter. For any two different points

β , β ′(< β) ∈ I, and any profile of reported locations x = (xi )i ∈N ,

med(β ,mini xi ,maxi xi ) ≥ med(β ′,mini xi ,maxi xi ) holds.
To show both the participation and truthfulness of the dynamic

target rule τ , it obviously suffices to show that no agent can benefit

by any manipulation, even if she can, at each period, report any

location (or even choose not to participate) regardless of her reports

in the previous periods. At period 1, the target rule τ uses τ 0 = α
as the parameter. Then, from the above first property, the outcome

by truth-telling is closer to xi than that by any manipulation. Let

us then assume that, in period t ∈ T , the location u ∈ I of the

facility under truth-telling and the location v ∈ I under such a

manipulation satisfies either xi ≤ u ≤ v or xi ≥ u ≥ v . Then let

u ′ be the location returned by τ t+1
with parameter u and v ′

be

the location returned by τ t+1
with parameter v , under the truth-

telling of the manipulator i . From the second property, either xi ≤

Figure 2: The outcomes of the dynamic target rule τ , indi-
cated by blue, and the dynamic median rule µ that always
chooses themedian location among participating agents, in-
dicated by orange, for the profile given in Example 2.

u ′ ≤ v ′
or xi ≥ u ′ ≥ v ′

. Furthermore, from the first property

again, for both u ′ and v ′
, no manipulation draws them closer to xi .

By recursively applying this argument, we show that there is no

beneficial manipulation. □

Assumption 1 is crucial for guaranteeing the revelation princi-

ple. However, due to the simplicity of social choice functions, it

may still be worth discussing how the behavior of social choice

functions varies when we do not introduce Assumption 1. Actually,

although any combination of the median voter schemes that satisfy

Eq. 2 satisfies all these properties even without Assumption 1, the

dynamic target rule violates truthfulness without the assumption.

Example 5.4. Let α = 1 and T = 2. Assume there are two partic-

ipating agents, whose true types are given as θ1 = (0, {1, 2}) and

θ2 = (0.5, {2}). Under truth-telling, the outcome is (0, 0), i.e., the

facility is located at 0 in both periods 1 and 2. However, if agent

2 reports θ ′
2
= (0.5, {1, 2}), which is not allowed by misreport cor-

respondenceM satisfying Assumption 1, the outcome changes to

(0.5, 0.5). The agent 2 can better off by this misreport.

5.3 Replacement-Cost Optimality
There might still be some other way to utilize the current location to

decide the future location. However, the following results show the

optimality of the dynamic target rule in terms of the replacement

cost among all (possibly not online) Pareto efficient ones. Note

that the restriction to Pareto efficient rules is essential; otherwise

choosing α for every period minimizes the replacement cost.

Theorem 5.5. The dynamic target rule is optimal for replacement
cost among all Pareto efficient social choice functions. Formally, for
any Pareto efficient (possibly not online) social choice function f , any
N ⊆ N and any θ ∈ ΘN ,

RC(τ ,θ ) ≤ RC(f ,θ ).

Proof. Let N ⊆ N and θ ∈ ΘN respectively be an arbitrarily

chosen set of participating agents and arbitrarily chosen profile of

types. We assume without loss of generality that the first outcome

that differs from α is on the positive side from α . Formally, letting

s0 := 0 and s+
0

:= min{t ≥ s0 | τ t , α } ∈ T , we assume that τ s
+
0 >

α holds. Also, let s1 ∈ T be the first period where the sequence of lo-

cations changes the direction of the move from positive to negative,
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s2 be the first period where the sequence of locations changes the

direction of the move from negative to positive, and so on. Formally,

for an odd h ≥ 1, letting s̄h := mint ′{t
′ > sh−1

| τ t
′+1 < τ t

′

}, we

define sh := mint {sh−1
≤ t ≤ s̄h | τ t = τ s̄h }. For an even h ≥ 2,

we use s̄h := mint ′{t
′ > sh−1

| τ t
′+1 > τ t

′

}. By this procedure,

we obtain the sequence of period s = (s1, s2, . . . , sh , . . . , sH ). For

Example 5.2, the sequence is {s1, s2, s3} = {2, 5, 6}, e.g., at period

s1 = 2, it stops moving in a positive direction (see Figure 2).

To complete that proof, it suffices to show that for each h ∈

{0, . . . ,H −1} and for each sequence of periods {sh , . . . , sh+1
} ⊆ T

(where s0 is defined as zero for a technical reason), the replacement

cost of τ is less than that of any Pareto efficient rule f . Formally,

for any h ∈ {0, . . . ,H − 1},∑
t ∈{sh ...,sh+1

−1}

|τ t+1 − τ t | ≤
∑

t ∈{sh ...,sh+1
−1}

| f t+1 − f t |.

For Example 5.2, it compares the total moves for each subsequence

of periods: {0, 1, 2}, {2, 3, 4, 5}, and {5, 6}.

Assuming that h is even (or zero), we consider the sequence

of periods ending at sh+1
. Since sh is the first period where τ

changes the direction of its move from negative to positive, τ sh is

located at the right extreme of the Pareto efficient set at the period,

i.e., τ sh = r (sh ,θ ) holds. Since f is Pareto efficient, f sh ≤ τ sh

holds. Analogously, τ sh+1 is located at the left extreme of the Pareto

efficient set at the period, and thus both τ sh+1 = l(sh+1
,θ ) and

τ sh+1 ≤ f sh+1 hold. Moreover, since τ does not change direction

during the sequence of periods, we can obtain∑
t ∈{sh ...,sh+1

−1}

|τ t+1 − τ t | = |τ sh+1 − τ sh |.

Therefore, regardless of the actual move of f during the sequence

of periods, ∑
t ∈{sh ...,sh+1

−1}

| f t+1 − f t | ≥ | f sh+1 − f sh |

≥ |τ sh+1 − τ sh |

holds. It also holds for any odd h from symmetry. □

6 BALANCING TWOMEASURES IN AVERAGE
Social cost is a well-known evaluation criterion of social choice

functions in the literature of algorithmic mechanism design. In our

dynamic model, we can also straightforwardly define the social

cost of a social choice function.

Definition 6.1 (Social Cost). For given θ , the social cost of a social
choice function f , denoted as SC(f ,θ ), is defined by∑

i ∈N
c(θi , f (θ )) :=

∑
t ∈T

∑
i ∈N t

|xi − f t (θ )|.

Since agents have no time discount on their costs in our dynamic

model, we can change the order of summations (see the right-hand

side). Here, the inner summation corresponds to the social cost

for one particular period. This means that, for any input θ , the
social cost is minimized by choosing the median location at every

period. Let µ refer to such an online social choice function, called

the dynamic median rule. It is easy to see that the social cost of

the dynamic target rule can be arbitrarily worse than that of the

dynamic median rule. On the other hand, the replacement cost of

the dynamic median rule can be arbitrarily worse than that of the

dynamic target rule. Our purpose in this section is therefore to find

an online social choice function that balances the performance in

terms of these two measures.

The following class of online social choice functions contains

the dynamic median µ and the dynamic target τ as two extremes.

Mechanism 2 (k-shifted median). For any k ∈ N≥0, the k-shifted
median rule σk is an online social choice function such that for

any N ⊆ N , any θ ∈ ΘN , and any t ∈ T , σk,t (θ ) is a social choice
function defined in Eq. 1, where its parameters pn , for each n, are
defined as follows:

σk,t−1(θ ), . . . ,σk,t−1(θ )︸                          ︷︷                          ︸
k

, 0, . . . , 0︸  ︷︷  ︸
⌈(n−1−k )/2⌉

, 1, . . . , 1︸  ︷︷  ︸
⌊(n−1−k )/2⌋

where pn = (σk,t−1(θ ), . . . ,σk,t−1(θ )) if n ≤ k , and σk,0(θ ) := α
for any θ .

The basic idea of k-shifted median is as follows. In a median voter

scheme, we set the location of the previous period as the location

of k phantom voters; the location becomes less likely to move by

increasing k . We can easily observe that setting k = 0 corresponds

to the dynamic median rule and choosing a sufficiently large k
corresponds to the dynamic target rule. Note that any choice of the

parameters, as long as it follows the above manner, satisfies Eq. 2,

and thus it satisfies the truthfulness and participation properties,

as well as anonymity and Pareto efficiency, even in the dynamic

model. Here we can also clarify the relationships of any pair of the

k-shifted median rules in terms of replacement cost, which shows

that a k-shifted median rule with a smaller k dominates that with

any larger parameter k ′(> k).

Theorem 6.2. For any k ∈ N≥0, the k-shifted median rule σk is
anonymous and Pareto efficient, and satisfies participation. It is also
truthful under Assumption 1. Furthermore, for any k ∈ N≥0, any
N ⊆ N , and any θ ∈ ΘN , RC(σk+1,θ ) ≤ RC(σk ,θ ) holds.

Proof Sketch. For all four desiderata, almost the same argu-

ment with the proof for the dynamic target rule holds for the follow-

ing two reasons: (i) any of these online social choice functions uses

the static social choice function described in Eq. 2 for each period,

and (ii) any such function has a property that any possible manipu-

lation by an agent, i.e., misreporting location and not participating,

always moves the outcome to the opposite side, as we already ob-

served in the proof of Theorem 5.3. For dominance on replacement

costs, a quite similar argument for the dynamic target rule also

holds, by first obtaining a sequence of periods from the move of

the k + 1-shifted median rule and comparing its replacement cost

to k + 1-shifted median rule for each subsequence. □

On the other hand, for any pair k,k ′(> k) ∈ N≥0, the k-shifted
median rule cannot dominate the k ′-shifted median rule with re-

spect to the social cost (except for k = 0). That is, we can find at

least one profile of types under which the social cost of the k-shifted
median rule is strictly larger than that of the k ′-shifted median rule.

Theorem 6.3. For any pair k(, 0),k ′(> k) ∈ N≥0, there is
N ⊆ N and θ ,θ ′ ∈ ΘN such that both SC(σk

′

,θ ) > SC(σk ,θ )
and SC(σk

′

,θ ′) < SC(σk ,θ ′) hold.
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Figure 3: The simulation result for ratio of replacement cost.
Each curve shows ratio of replacement cost of k-shifted me-
dian, where k = 0 corresponds to the dynamic median.
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Figure 4: The simulation result for ratio of social cost. Each
curve shows ratio of social cost of k-shifted median, where
k = n − 1 corresponds to the dynamic target.

Proof. The existence of such θ is obvious. We then focus on

finding such θ ′. Let α = 1 − ϵ for a sufficiently small ϵ and assume

there are 2k + 2 agents, whose types are given as follows: agent 1

has type (0, {1, . . . ,T }), agents 2, . . . ,k + 1 have type (1 − ϵ, {1}),
agents k + 2, . . . , 2k + 1 have type (ϵ, {2, . . . ,T }), and agent 2k + 2

has type (1, {1, . . . ,T }). In period 1, agents 1, 2, . . . ,k + 1, 2k + 2

participate. The k-shifted median σk then adds k + 1 phantom

voters, k of which are at α = 1 − ϵ and one is at 0. Thus, the facility

is built at ϵ , and the sum of the participating agents’ costs at this

period is 1. At every subsequent periods, k agents located at 1 − ϵ
participate, while the k agents located at ϵ no longer exist. The

facility is kept at ϵ , where the sum of the costs at each period is

1+k(1−2ϵ). Therefore, the social cost is 2+k(T −1)(1−2ϵ). On the

other hand, for any k ′ > k , the k ′-shifted median rule σk
′

builds

the facility at 1 − ϵ in period 1, and keeps it unchanged at every

subsequent period. Therefore, the social cost is k(1 − 2ϵ) + (T − 1),

which is strictly smaller than the above when T > 2 (and the gap

expands when T grows). □

In contrast, our simulation results show that such an “unfor-

tunate” example rarely occurs when agents’ types are sufficiently

distributed, and these social choice functions actually performs well

on average. We simulate some shifted median rules by changing

the parameters, as well as the dynamic target and dynamic median

rules, and compare their replacement and social costs. More specif-

ically, we set T = 100 and randomly generated 10,000 instances of

the dynamic facility location problem, where each agent’s location

xi is independently drawn from a predefined identical distribution

over [0, 1], the set Ai of her active period is assumed to be convex

over T , and the earliest period in Ai is also independently drawn

from a predefined identical distribution over [1,T ]. For these two
distributions, we used the uniform distributions. For the cardinal-

ity of Ai , we use both the uniform and exponential distributions

over [ai ,T ]. Figures 3 and 4 are based on the experiments with

the uniform distribution for the cardinality of Ai , while the one
with the exponential distribution also shows almost the same trend.

In both figures, the x-axis denotes the number of participating

agents, and the y-axis denotes the ratio of the replacement and

social cost against the optimal solution, i.e., the dynamic target and

the dynamic median, respectively.

One of the most important observation from our experiments

is that under any of the randomly generated 10,000 instances and

under both distributions for the cardinality of Ai , a shifted median

rule with a smaller k outperforms any shifted median rule with a

larger k in terms of social cost. This means that, if we can guarantee

that agents’ types are sufficiently distributed, the proposedk-shifted
median rule is a reasonable candidate that balances the quality of

the replacement and social costs. Furthermore, the figures show

that the performance of the k-shifted median rules in average varies

based on the choice of parameter k . The ratio of replacement cost

increases when the number of agents n raises, since the (k-shifted)
median location frequently changes. On the other hand, the ratio

of social cost converges to one for large n, since the optimal social

cost by the dynamic target rule is already very large.

7 CONCLUSION
We studied variable populations in the static and dynamic facil-

ity location models. For static model, we clarified a necessary and

sufficient condition for a social choice function to satisfy partici-

pation, as well as truthfulness, anonymity, and Pareto efficiency.

For dynamic model, we proposed a class of online social choice

functions and analyzed their performance in both theoretical and

experimental ways.

One obvious future work is to clarify the existence of online

social choice functions that theoretically outperform the dynamic

target for social cost and vthe dynamic median for replacement

cost. Studying a different measure, such as minimizing the number

of replacements, i.e., min #{t ∈ T | f t (θ ) , f t−1(θ )} would also be
a possible future direction. Considering more powerful manipula-

tions such as renaming in the dynamic model and slight difference

public choice model such as single-dipped preference [12], multiple

facilities [26, 30] and provisioning [18, 35] might also be interesting.
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