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ABSTRACT
We consider a social setting where p public resources/objects are

to be allocated among n competing and strategic agents so as to

maximize social welfare (the objects should be allocated to those

who value them the most). This is called allocative efficiency (AE).

We need the agents to report their valuations for obtaining these

resources, truthfully referred to as dominant strategy incentive

compatibility (DSIC). Typically, we use auction-based mechanisms

to achieve AE and DSIC. However, due to Green-Laffont Impossibil-

ity Theorem, we cannot ensure budget balance in the system while

ensuring AE and DSIC. That is, the net transfer of money cannot

be zero. This problem has been addressed by designing a redistri-

bution mechanism so as to ensure minimum surplus of money as

well as AE and DSIC. The objective could be to minimize surplus

in expectation or in the worst case and these p objects could be

homogeneous or heterogeneous. Designing of such mechanisms is

non-trivial. Especially, designing redistribution mechanisms which

perform well in expectation becomes analytically challenging for

heterogeneous settings.

In this paper, we take a completely different, data-driven ap-

proach. We train a neural network to determine an optimal redistri-

bution mechanism based on given settings with both the objectives,

optimal in expectation and optimal in the worst case. We also pro-

pose a loss function to train a neural network to optimize worst

case. We design neural networks with the underlying rebate func-

tions being linear as well as nonlinear in terms of bids of the agents.

Our networks’ performances are same as the theoretical guaran-

tees for the cases where it has been solved. We observe that a

neural network based redistribution mechanism for homogeneous

settings which uses nonlinear rebate functions outperforms lin-

ear rebate functions when the objective is optimal in expectation.

Our approach also yields an optimal in expectation redistribution

mechanism for heterogeneous settings.
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1 INTRODUCTION
In this paper, we address the problem of allocating public resources/ob-

jects amongmultiple agentswho desire them. These strategic agents

have their private values for obtaining the resources. The allocation

of the objects should be such that the society, as a whole, gets the

maximum benefit. That is, the agents who value these resources

the most should get them. This condition is referred to as Alloca-
tive Efficient (AE). To achieve this, we need the true valuations of

the agents, which the strategic agents may misreport for personal

benefit. Thus, there is a need for an auction-based mechanism. A

mechanism ensuring truthful reporting, is called Dominant Strategy
Incentive Compatible (DSIC). The classical Groves mechanisms [11]

satisfy both of these properties.

Groves mechanisms achieve DSIC by charging each agent an

appropriate amount of money known as Groves’ payment rule.

The most popular among Groves mechanism is VCG mechanism

[3, 11, 32]. Use of VCG mechanism results in collection of money

from the agents. It should be noted that our primary motive in

charging the agents is to elicit their true valuations and not to make

money from them as the objects are public. Hence, we need to look

for the other Groves mechanisms. Moreover, the mechanism cannot

fund the agents. Thus, we desire a mechanism that incurs neither

deficit nor surplus of funds; it must be Strictly Budget Balanced
(SBB). However, due to Green-Laffont Impossibility Theorem [10],

no mechanism can satisfy AE, DSIC, and SBB simultaneously. Thus,

any Groves payment rule always results in either surplus or deficit

of funds.

To deal with such a situation, Maskin and Laffont [26] suggested

that we first execute VCG mechanism and then redistribute the

surplus among the agents in a manner that does not violate DSIC.

This mechanism is referred to as a Groves’ redistribution mechanism
or simply redistribution mechanism (RM) [12, 15] and the money

returned to an agent is called it’s rebate. The rebates are determined

through rebate functions. Thus, designing a RM is same as designing

an underlying rebate function.

In the last decade, a lot of research focused on dealing with the

Green-Laffont Impossibility theorem and on designing an optimal

redistribution mechanism (RM) that ensures maximum possible

total rebate [2, 4, 6, 12–17]. An optimal RM could be optimal in

expectation or optimal in the worst case. The authors of [16, 19, 27]

address the problem of finding the optimal RM when all the objects

are identical (homogeneous). Guo and Conitzer [18, 19] model an

optimization problem and solve for an optimal linear rebate function

which guarantees maximum rebate in the worst-case (WCO) and

optimal in expectation for a homogeneous setting. The authors of

[12, 15] extend WCO to a heterogeneous setting where the objects

are different and propose a nonlinear rebate function called as
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HETERO. Despite HETERO being proved to be optimal for unit

demand in heterogeneous settings, in general, it is challenging to

come up with a nonlinear RM analytically. Analytical solutions

for an optimal in expectation RMs in heterogeneous settings is

elusive. Moreover, the possibility of a nonlinear rebate function

which is optimal in expectation for homogeneous setting has not

been explored yet. Thus, there is a need for a new approach towards

designing RMs. In this paper, we propose to use neural networks

and validate its usefulness.

Neural networks have been successful in learning complex, non-

linear functions accurately, given adequate data [22]. There is a

theoretical result which states a neural network can approximate

any continuous function on compact subspace of Rn [23]. How-

ever, designing such a network has been elusive until recent times.

The latest theoretical developments ensure that stochastic gradient

descent (SGD) converges to globally optimal solutions [24, 30]. In

recent times, with advent in computing technology, neural net-

works have become one of the most widely used learning models.

They have outperformed many of the traditional models in the

tasks of classification and generation etc. [9, 21]. In the context of

game theoretic mechanism design, Dütting et.al. [5] have proposed
neural network architectures for designing optimal auctions. Con-

verse to ours’, their goal is to design the network for maximizing

the expected revenue. Tang [31] uses deep reinforcement learning

for optimizing a mechanism in dynamic environments. Their goal,

unlike ours is not to design a mechanism, but to find the optimal

parameters for the existing mechanism. Our goal in this paper

is to study: Can we train neural networks to learn optimal RMs

with the help of randomly generated valuation profiles, rather than

analytically designing them? The following are our contributions.

Contributions. To the best of our knowledge, this paper is a first

attempt towards learning optimal redistribution mechanisms (RM)

using neural networks.

• To begin with, we train neural networks for the settings

where researchers have designed RMs analytically. In partic-

ular, we train networks, OE-HO-L and OW-HO-L for optimal

in expectation for homogeneous settings with linear rebate

functions and optimal in the worst case for homogeneous

settings with linear rebate functions respectively. Both the

neural networks match the performance of theoretically op-

timal RMs for their respective settings.

• Next, we train a network, OW-HE-NL to model nonlinear

rebate function for optimal in worst case RM in heteroge-

neous settings, discarding the need to solve it analytically.

Note that, traditionally, neural networks have been mostly

used for stochastic approximation of an expectation, but our

model is also able to learn a worst-case optimal RM as well.

• Motivated by the network performance in above, we train

OE-HO-NL, an optimal in expectation RM with nonlinear

rebate function for the homogeneous setting. We find that

this model ensures greater expected rebate than the optimal

in expectation RM with linear functions, proposed by Guo

and Conitzer [18].

• We also train OE-HE-NL, an optimal in expectation for het-

erogeneous setting with nonlinear functions and we experi-

mentally observe that it’s performance is reasonable.

Organization. In Section 2, we describe the related work. In Sec-

tion 3, we explain the notation used in the paper and preliminaries of

Groves redistribution mechanism. We develop our neural network

approach in Section 4. We discuss the training of neural networks

and the experimental analysis in Section 5. We conclude the paper

with the possible future directions in Section 6.

2 RELATEDWORK
In this section, we discuss the research related to our work.

Auction Based Mechanism. To obtain the required private infor-

mation from strategic agents truthfully, mechanism design theory is

developed [7, 28]. The key idea is to charge the agent appropriately

to make mechanisms truthful or DSIC. The most popular auction-

based mechanisms are VCG and Groves mechanisms [3, 11, 32]

which satisfy the desirable properties, namely, allocative efficiency

(AE) and dominant strategy incentive compatibility (DSIC). An-

other desirable property is the net transfer of the money in the

system should be zero, i.e., it should be strictly budget balanced
(SBB). Green and Laffont [10] showed no mechanism can satisfy

AE, DSIC, and SBB simultaneously. As we cannot compromise on

DSIC, we must compromise on one of AE or SBB.

Faltings [6] and Guo and Conitzer [17] achieved budget balance

by compromising on AE. Hartline and Roughgarden [20] proposed

a mechanism that maximizes the sum of the agents’ utilities in-

expectation. Clippel et. al. [4] used the idea of destroying some of

the items to maximize the agents’ utilities leading to approximately

AE and approximately SBB. A completely orthogonal approach

was proposed by Parkes et. al. [29], where the authors propose an
optimization problem which is approximately AE, SBB and though

not DSIC, it is not easy to manipulate the mechanism. However,

an aggressively researched approach is to retain AE and DSIC and

design mechanism that is as close to SBB as possible. These are

called redistribution mechanisms (RM).

Redistribution Mechanisms. Maskin and Laffont [26] first pro-

posed the idea of redistribution of the surplus as far as possible

after preserving DSIC and AE. Bailey [1], Cavallo [2], Moulin [27],

and Guo and Conitzer [16] considered a setting of allocating p
homogeneous objects among n competing agents with unit de-

mand. and Guo and Conitzer [19] generalized their work in [16]

to multi-unit demand to obtain worst-case optimal (WCO) RM. In

[18], Guo and Conitzer designed RM that is optimal in expectation

for homogeneous settings.

Gujar and Narahari [12] proved that no linear RM can assure non-

zero rebate in worst case and then generalized WCO mechanism

mentioned above to heterogeneous items, namely HETERO. Their

conjecture that HETERO was feasible and worst-case optimal was

proved by Guo [15] for heterogeneous setting with unit-demand.

3 PRELIMINARIES
Let us consider a setting comprising p public resources/objects

and n competing agents who assign a certain valuation to these

objects. Each agent desires at most one out of these p objects. These

objects could be homogeneous, in which case, agent i has valuation
vi = θi for obtaining any of these p resources. It could also be

the case that the objects are distinct or heterogeneous and each
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agent derives different valuation for obtaining different objects

(vi = (θi 1,θi 2, . . . ,θi p )). These objects are to be assigned to those

who value it the most, that is, it should be allocatively efficient (AE).

The true values v = (v1,v2 . . . ,vn ) that the agents have for the
objects are based on their private information θ = (θ1,θ2, . . . ,θn ) =
(θi ,θ−i ) and the strategic agents may report them as (θ ′

1
, . . . ,θ ′n ).

In the absence of appropriate payments, the agents may boast their

valuations. Hence, we charge agent i a paymentmi (θ ′) based on

the reported valuations.

We need to design a mechanismM = (A,P), an allocation rule

A and a payment rule P. A selects an allocation k(θ ′) ∈ K where

K is the set of all feasible allocation and P determines the payments.

With this notation, we now explain the desirable properties of a

mechanism.

3.1 Desirable Properties
One of our primary goals is to ensure allocative efficiency.

Definition 3.1 (Allocative efficiency (AE)). - A mechanismM is

allocatively efficient (AE) if it choses in every given type profile,

an allocation of objects among the agents such that sum of the

valuations of the allocated agents is maximized. That is, for each

θ ∈ Θ,

k∗(θ ) ∈ argmax

k ∈K

n∑
i=1

vi (k,θi ).

The most desirable property is that the agents should report

their valuations truthfully to the mechanism. Formally, it is called

dominant strategy incentive compatibility (DSIC).

Definition 3.2 (Dominant Strategy Incentive Compatibility (DSIC):).
We say amechanismM to be dominant strategy incentive compatible
(DSIC), if it is a best response for each agent to report their type

truthfully, irrespective of the types reported by the other agents.

That is,

vi (k(θi ,θ−i ),θi ) −mi (θi ,θ−i ) ≥ vi (k(θ ′i ,θ−i ),θi ) −mi (θ ′i ,θ−i )
∀θ ′i ∈ Θi ,∀θi ∈ Θi ,∀θ−i ∈ Θ−i ,∀i ∈ N .

Given an AE allocation rule, Groves proposed a class of mech-

anisms known as Groves’ mechanisms that ensure DSIC. Groves’
payment rule ismi (θ ) = −

∑
j,i

vj (k∗(θ ),θ j )+hi (θ−i ), where hi is an

arbitrary function of reported valuations of the agents other than

i . Clarke’s payment rule is a special case of Groves’ payment rule

where hi (θ−i ) =
∑
j,i

vj (k∗−i (θ−i ),θ j ) where k∗−i is an AE allocation

when the agent i is not part of the system. Thus, Clarke’s payment

rule is give by Equation (1)

ti (θ ) =
∑
j,i

vj (k∗−i (θ−i ),θ j ) −
∑
j,i

vj (k∗(θ ),θ j ) ∀i = 1, . . . ,n (1)

And,mi = ti . This payment scheme is referred to as VCG payment.
The total payment by all the agents is, t(θ ) = ∑

i ∈N ti (θ )
Another property we desire is budget balance condition.

Definition 3.3 (Budget Balance condition or Strictly Budget balance
(SBB)). We say that a mechanism M is strictly budget balanced
(SBB) if for each θ ∈ Θ,m1(),m2(), . . . ,mn () satisfy the condition,∑
i ∈N mi (θ ) = 0

It is weakly budget balanced if

∑
i ∈N mi (θ ) ≥ 0.

One can implement AE allocation rule and charge the agents VCG

payments. In the case of auctions settings, the seller collects the

payments. In our setting, the goal is not to make money as these

objects are public resources. However, in general, due to Green-

Laffont Impossibility Theorem [10], no AE and DSIC mechanism

can be strictly budget balanced. That is, the total transfer of money

in the system may not be zero. So, the system will be either left

with a surplus or incur deficit. Using Clarke’s mechanism, we can

ensure under fairly weak conditions, that there is no deficit of

money (that is, the mechanism is weakly budget balanced) [3]. The

idea proposed by Maskin and Laffont [26] is to design a payment

rule as to first collect VCG payments and then redistribute this

surplus (rebate) among the agents while ensuring DSIC. This leads

to Groves’ Redistribution Mechanism, in which the rebate is given

by a rebate function r ().

3.2 Groves’ Redistribution Mechanism
Since SBB cannot coexist with DSIC and AE, we would like to

redistribute the surplus to the participants as much as possible,

preserving DSIC and AE. Such a mechanism is referred to as Groves
redistribution mechanism or simply redistribution mechanism. De-

signing a redistribution mechanism involves designing an appro-

priate rebate function. We desire a rebate function which ensures

maximum rebate (which is equivalent to minimum budget imbal-

ance). In addition to DSIC, we want the redistribution mechanism

to have following properties:

(1) Feasibility (F): the total payment to the agents should be less

than or equal to the total received payment.

(2) Individual Rationality (IR): each agent’s utility by participat-

ing in the mechanism should be non-negative.

(3) Anonymity: rebate function is same for all the agents, ri () =
r j () = r (). This may still result is different redistribution

payments as the input to the function may be very different.

While designing redistribution mechanism for either homogeneous

or heterogeneous objects, we may have linear or nonlinear rebate

function of the following form,

Theorem 3.4. [12] In the Groves redistribution mechanism, any
deterministic, anonymous rebate function f is DSIC iff,

ri = f (v1,v2, . . . ,vi−1,vi+1, . . . ,vn ) ∀i ∈ N

where, v1 ≥ v2 ≥ . . . ≥ vn .

Definition 3.5. [Linear Rebate Function] The rebates to an agent

follow a linear rebate function if the rebate is a linear combination

of bid vectors of all the remaining agents. Thus, ri (θ , i) = c0 +
c1v−i,1 + . . . + cn−1v−i,n−1.

There may exist a family of redistribution mechanisms which

satisfy the above constraints, but the aim is to identify the one

mechanism that redistributes the greatest fraction of the total VCG

payment. To measure the performance of redistribution mechanism

[19], defines redistribution index,

Definition 3.6. [Redistribution Index] The redistribution index of

a redistribution mechanism is defined to be the worst case fraction

of VCG surplus that gets redistributed among the agents. That is,
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Table 1: Optimization problem formulation

OE OW

Variables : c0, c1,....,cn−1 eow , c0, c1,....,cn−1
Maximize : E

∑n
i=1 ri eow

Feasibility :

∑n
i=1 ri <= t

∑n
i=1 ri ≤ t

Other constraints

For worst-case :

∑n
i=1 ri ≥ eow t

IR : ri ≥ 0

eow = in fθ :t (θ ),0

∑
ri (θ−i )
t(θ )

With the notation defined above and Green-Laffont Impossibil-

ity theorem in backdrop, we now explain existing redistribution

mechanisms in the following subsection.

3.3 Optimal Redistribution Mechanisms
It may happen that, one mechanism might redistribute higher re-

bate at θ1 and another mechanism at θ2. Hence, we use the two
kinds of evaluation metrics defined to select a mechanism. One

metric compares the rebate functions based on maximum expected

total redistribution, to find the mechanism which is optimal in

expectation. The other metric finds the optimal in worst-case redis-

tribution mechanism, based on the lowest redistribution index it

guarantees

3.3.1 Optimal in Expectation. (OE): If the prior distributions

over agents’ valuations are available we can compare the mecha-

nisms based on total expected redistribution. In [18] the authors

derive the mechanism and prove its optimality for homogeneous

setting with linear rebate function. We define a redistribution index

for OE setting as follows:

eoe =
E
∑
i ri (θ−i )
E
∑
θ t (θ )

Maximizing eoe is equivalent to maximizing the expected total

rebate. The authors formulated the problem as given in Table 1.

The OE objective for heterogeneous objects as well as with non-

linear rebate function has not been addressed yet.

3.3.2 Optimal in Worst-case. (OW) : The redistribution mecha-

nism is better if it ensures higher rebate to the agents on average.

In the absence of distributional information, we would evaluate

a mechanism by considering the worst redistribution index that

it guarantees. In [19] the authors gave the following model and

analytically solved it for homogeneous setting with linear rebate

functions. They also claim the worst-case optimal mechanism is

optimal among all redistribution mechanisms that are deterministic,

anonymous and satisfy DSIC, AE and F. The optimization problem

is formulated as given in Table 1.

For heterogeneous setting, [12] defines a nonlinear redistribution

mechanism which is called HETERO and [15] proves the optimality

of HETERO. There is no optimal mechanism with linear rebate

function for heterogeneous setting as established by the following

theorem,

Theorem 3.7. [12] If a redistribution mechanism is feasible and
individually rational, then there cannot exist a linear rebate function

which is simultaneously DSIC, deterministic, anonymous and has
non-zero redistribution index.

Equipped with the knowledge of the existing approaches and

above theorem, we describe our approach for designing the optimal

rebate function using neural networks.

3.4 Our Approach
As mentioned, for a homogeneous setting the linear rebate func-

tions that are OE and OW can be analytically found by formulating

redistribution mechanism as a linear program. However, for het-

erogeneous settings, linear redistribution mechanism need not be

a good choice (Theorem 3.7). Even though [15] has solved for re-

distribution mechanisms in heterogeneous by proving HETERO to

be OW, an OE mechanism for heterogeneous settings has not been

formulated yet. Moreover, OW mechanism (HETERO) is not simple

to describe. In addition, for homogeneous settings, it is not known

whether nonlinear redistribution mechanisms can do better than

linear for OE objective.

In this paper, we address these issues, using a novel data-driven

approach to approximate a rebate function for a given setting, with-

out analytically solving for it. That is, we generate a large number

of bid profiles randomly and train a neural network to determine

the rebates for the agents so as to achieve the given objective, either

OE or OW. We consider both the rebate functions, linear and non-

linear for homogeneous objects as well as heterogeneous objects.

The choice of neural networks is largely motivated by the universal

approximation theorem, which states that a feed-forward network

with single hidden layer containing a finite number of neurons can

approximate continuous functions on compact subsets.

4 DESIGN OF NEURAL NETWORKS
Neural Networks are biologically inspired paradigms which learn

optimal functions from data. The main components that customize

such a network for a specific task are its architecture and the objec-

tive function which guides its training. To design a rebate function

which is OE or OW, we define an appropriate neural network in

Section 4.2. We begin by describing an artificial neuron which is

the fundamental processing unit of a neural network.

4.1 Basic Structure
An artificial neuron receives inputs x0 to xm . If necessary, we apply

nonlinear activation function ϕ to obtain the output (y) from the

neuron. The activation function is for thresholding the output to

introduce nonlinearity in the network. Thus the output of a neuron

is,

y = ϕ(∑m
i=0wixi )

wherewi is the weight for i
th

input.

In any general network, we connect the neurons together in a

specific and useful manner. The neurons are grouped into primarily

three layers, input layer, hidden layer, and output layer. The weights

are randomly initialized before training. Given a set of training

input and output pairs, the model compares it’s own output with

the desired output and tries to learn the optimal set of weights by

back-propagating the error through the network. In our case, we

do not have a desired output, but we have an objective function
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Figure 1: Network model

that is to be maximized. That is, we need to determine optimal

weights such that the rebate function is OE or OW. In addition, our

mechanism should be Feasible and Individual Rational. The total

VCG payment by the agents is t , and the neural network parameters

are (w,b) then,

• Feasibility : д(w,b) : t −
n∑
i=1

ri (w,b) ≥ 0

• Individual Rationality : д′(w,b) : ri (w,b) ≥ 0, ∀i ∈ N

The above inequality constraints are added to the loss function dur-

ing training. Having defined a general network and the constraints,

we define the specific design of the network that we use.

4.2 Neural Network Architecture
4.2.1 Linear rebate function : To model the linear rebate func-

tion as given by Definition 3.5, we use a network consisting of

neurons with n input and n output nodes without any activation

function. The input nodes represent agents’ valuations and output

nodes represent their rebate. As required by Theorem 3.4, a rebate

function for an agent i should depend only on valuations of the

remaining agents. Hence, we connect the ith output node to all the

input nodes except ith input node as shown in Figure 1. We used a

total of n−1weights and 1 bias. Since the weights and the bias used

is same for calculating the rebate of each agent (represented by

each node in the output layer) we ensure that the r () is anonymous.

In addition to the weights (w) which model the c1 to cn in r (), there
is a same bias added (b), which models the c0, to each output.

ri =
n−1∑
j=1

viw j + b, ∀i = 1 → n

4.2.2 Nonlinear rebate function : The network consists of neu-

rons with n input and n output nodes and one hidden layer. The

input nodes represent agent valuations and output nodes represent

the rebate. The neurons in the input and hidden layer use ReLU

activation which returns 0 if the output of that neuron is negative

else returns the output itself. [12] defines the optimal nonlinear re-

bate function as the combination of marginal payments. We believe

that the rebate functions though nonlinear, should only contain

first degree terms for bid values as payments do not have higher

...
...
...

v1

v2

v3

vn

h11
h12 r1

r2

r3

rn

relu
relu

relu
relu

relu
relu

relu
relu

Figure 2: Nonlinear Network model

order terms, making the function piece-wise linear. Hence, we use

ReLU as our activation function.

As required by Theorem 3.4, a rebate function for an agent i
should depend only on valuations of the remaining agents. Hence,

we connect the ith output node to the ith layer of hidden nodes

which are connected to all the input nodes except the ith input node

as shown in Figure 2. The redistribution function being anonymous,

the weights of the connections entering each hidden layer and each

output are the same. The green thick lines in Figure 2 represent an

unique set of weights which are connected to the second agents’

output. The same weights are used for calculating the rebate of the

other agents as well. The first set of weights (w) connect the input

nodes to the hidden nodes and bias (b) is added to the hidden nodes.

The second set of weights (w ′
) connect the hidden nodes to the

output nodes and same bias added (b ′) to each output node.

ri =
h∑

k=1

relu(
n−1∑
j=1

viw jk + b)w ′
k + b

′
, ∀i = 1 to n,

h: Number of hidden neurons, relu(x) =max(0,x)

The defined network architectures can model different functions

depending on theweights. Hence, the training of the network guides

the network to learn appropriate weights. Prior to training, we

must recall Theorem 3.4 which necessitates the ordering of the

input valuations. Besides the ordering, the constraints defined in

Section 4.1 require the evaluation of t the VCG Payment. In the

following section, we mention the details about the same.

4.3 Ordering of Inputs and Payments
The ordering and calculation of VCG payment in both homogeneous

and heterogeneous cases are independent of the neural network.

4.3.1 Homogeneous Objects : All the given p objects are similar

and each agent desires at most one object. The bids submitted are

θ where, θ ∈ Rn . We order the bids such that v1 ≥ v2 ≥ . . . ≥ vn .
Payment by agent i ,

ti =

{
vp+1 i ≤ p

0 i > p

Hence, t = pvp+1.
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4.3.2 Heterogeneous Objects : All the p objects are different,

each agent will submit his valuation for each of the objects. The bids

submitted are θ where θ ∈ Rp×n . We define a particular ordering

among these vectors based on the overall utility of each agent and

the marginal valuations they have for each item. The allocation of

the goods is similar to a weighted graph matching problem and is

solved using Hungarian Algorithm. Once we get the allocation say,

k∗, we proceed to calculate the payments using the VCG payment

t =
∑
i ∈N ti , where each ti is given by Equation (1). The ordering of

bids for the winning p agents is determined based on their utilities.

The utility ui of agent i is given by,

ui =
∑
j ∈N

vj (k∗(θ ),θ j ) −
∑
j,i

vj (k∗−i (θ−i ),θ j ) , ∀i = 1, . . . ,n.

If two agents have same utility, their ordering is determined by their

marginal values for the first item, and if it is same, then by second

item and so on. Once their ordering is determined, we remove the

p agents and then run the VCG mechanism to get the next p win-

ning agents and calculate the ordering using the same procedure as

above. If the remaining agents are less than p we can still find the

allocation and hence order the remaining agents till none are left or

one is left. The time complexity of this ordering is polynomial in np.

With the given ordering of the inputs and payments, we use

the specified network models in both homogeneous and heteroge-

neous settings. For each setting, we model either OE or OWmecha-

nism. For both OE and OW the network architecture remains same

whereas the objective changes as defined in the following section.

4.4 Objective Function
During the forward pass the input valuations are multiplied by the

network weights and the corresponding rebate for each agent is

calculated. The initial weights being random, the rebate calculated

will not be optimal. In order to adjust the weights to obtain optimal

rebate function, we add an objective at the end of the network

which maximizes the rebate in both OW and OE. The loss function

essentially is the negative total rebate of all the agents. The objective

also takes case of the Feasibility 4.1 and Individual Rationality

condition 4.1

4.4.1 Optimal in Expectation (OE).

• Given that we need to maximize the total expected rebate,

the loss is defined as:

l(w,b) : 1
T

T∑
j=1

n∑
i=1

−r ji ,

T =total number of training samples

• Given Inequality constraint for Feasibility 4.1 we modify it

to equality as:

G j (w,b) =max(−д(w,b), 0), ∀j = 1, 2...,T

• The overall loss function:

L(w,b) = l(w,b) + ρ

2

T∑
j=1

G j (w,b)2 (2)

4.4.2 Worst case Optimal (OW).

• Given that in OW we are trying to maximize the worst

possible redistribution index, as defined in Definition 3.6, the

loss is given by:

l(k) : −k

such that д3 :
n∑
i=1

ri − kt ≥ 0

T = total number of training samples

• Given inequality constraint for Feasibility 4.1 we modify it

to equality as:

G
j
1
(w,b) =max(−д(w,b), 0)

Given inequality constraint for IR 4.1 wemodify it to equality

as:

G
j
2
(w,b) =max(−д′(w,b), 0)

The inequality condition for finding the worst case optimal

is modified as follows

G
j
3
(w,b) =max(−д3(w,b), 0)

∀j = 1, 2...,T
• The overall loss function for worst case:

L(w,b,k) = l(k) + ρ

2

T∑
j=1

[G j
1
(w,b)2 +G j

2
(w,b)2 +G j

3
(w,b)2] (3)

The network and objective together can be used to model any

mechanism which is either OW or OE. Taking the cue from Sec-

tion 3.3 we conduct few experiments in order to learn an optimal

mechanism which was analytically solved in theory for homoge-

neous settings. Further, our experiments for heterogeneous settings

with objective OW, try to model HETERO [12] and also OE nonlin-

ear mechanisms for homogeneous setting.

5 IMPLEMENTATION DETAILS AND
EXPERIMENTAL ANALYSIS

The proper training of neural networks is very crucial for its con-

vergence. Xavier initialization and Adam optimization guide us in

choosing appropriate initialization and optimizer which are cru-

cial for stabilizing the network. Given that we have two different

networks and two different objectives, we experimented on var-

ious combinations of these to validate the data-driven approach

with existing results. In the following subsections, we specify the

implementation details.

5.1 Initialization and Optimizer
5.1.1 Xavier initialization: [8] The right way of initialization

of a neural network is to have weights that are able to produce

outputs that follow a similar distribution across all neurons. This

will greatly help convergence during training and we will be able

to train faster and effectively. Xavier initialization tries to scale

the random normal initialized weights with a factor α , such that

there is unit variance in the output. α = 1√
n
, where n is the number
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Table 2: eoe for homogeneous and heterogeneous setting.

n,p Homogeneous Heterogeneous

OE-HO OE-HO OE-HO OE-HE OE-HE

Theoretical Linear Nonlinear Linear Nonlinear

NN NN NN NN

3,1 0.667 0.668 0.835 0.667 0.835

4,1 0.833 0.836 0.916 0.834 0.920

5,1 0.899 0.901 0.961 0.900 0.969

6,1 0.933 0.933 0.973 0.934 0.970

3,2 0.667 0.665 0.839 0.458 0.774

4,2 0.625 0.626 0.862 0.637 0.855

5,2 0.800 0.802 0.897 0.727 0.930

6,2 0.875 0.875 0.935 0.756 0.954

10,1 0.995 0.996 0.995 0.995 0.995

10,3 0.943 0.945 0.976 0.779 0.923

10,5 0.880 0.880 0.947 0.791 0.897

10,7 0.943 0.944 0.976 0.781 0.857

10,9 0.995 0.997 0.996 0.681 0.720

of input connection entering in that particular node. α =
√

2

n for

ReLU.

5.1.2 Adam optimizer: [25] Adam is a first order gradient-based

optimization of stochastic objective functions. The method com-

putes individual adaptive learning rates for different parameters

from estimates of first and second moments of the gradients. The

default values provided in the tensorflow library is used for beta1 =
0.9, beta2 = 0.999 and epsilon = 1e − 08.. The learning rates are

different for different cases as mentioned in their respective sec-

tions.

5.2 Different Settings for Training
5.2.1 Optimal in Expectation for Homogeneous Objects (OE-HO):.

The inputs form a matrix of (S × n), where S is the batch size, the

values are sampled from a uniform random distribution U [0, 1]. The
batch size is set to be as large as possible, for n < 10, S = 10000 and

n = 10, S = 50000. After that we apply the ordering and calculate

payments for the given input valuations as defined in Section 4.3.1.

Next, we feed it to the linear network model (Figure 1) whose

parameters are initialized using Xavier initialization (Section 5.1.1).

The objective function given by Equation (2) is applied to the output

of the network and parameters are updated using Adam optimizer

(Section 5.1.2), learning rate set to 0.0001. The nonlinear model

(Figure 2) is also trained in the similar manner. We used 1000 nodes

in the hidden layer and the network was trained with a learning

rate of 10e − 4.

5.2.2 Optimal inWorst-case for Homogeneous Objects (OW-HO):.
As in the OE case, linear network model is used and similar proce-

dure is followed. The input is sorted as given in Section 4.3.1 and

along with the calculated payments is fed to the linear network. The

objective given in Equation (3) is optimized with the learning rate

set to 0.0001 and the training is carried till the loss decreases and

saturates which happens when the redistribution index is optimal.

As discussed in Section 3.3.2 for homogeneous setting linear rebate

functions are optimal among all possible deterministic functions

Table 3: eow for Homogeneous and Heterogeneous setting.

n,p Homogeneous Heterogeneous

OW-HO OW-HO OW-HE
1

OW-HE

theoretical Linear NN Linear NN Nonlinear NN

3,1 0.333 0.336 0.332 0.333

4,1 0.571 0.575 0.571 0.571

4,2 0.250 0.250 0.0 0.250

5,1 0.733 0.739 0.733 0.732

5,2 0.454 0.460 0.0 0.454

5,3 0.200 0.200 0.0 0.199

6,1 0.839 0.847 0.839 0.838

6,2 0.615 0.620 0.0 0.614

6,3 0.375 0.378 0.0 0.375

7,1 0.905 0.910 0.905 0.904

7,2 0.737 0.746 0.0 0.736

7,3 0.524 0.538 0.0 0.523

8,1 0.945 0.949 0.945 0.943

8,2 0.825 0.834 0.0 0.825

9,1 0.969 0.972 0.968 0.968

9,2 0.887 0.894 0.0 0.886

10,1 0.982 0.985 0.982 0.982

10,2 0.928 0.936 0.0 0.927

which are DSIC and AE, hence we did not use nonlinear model for

this case.

5.2.3 Optimal in Expectation for Heterogeneous Objects (OE-HE):.
The inputs are again randomly sampled from a uniform distribution

U [0, 1], the input matrix is of the form, (S ×n ×p). Then the inputs

are ordered as defined in Section 4.3.2. Both the networks Figure 1,

Figure 2 are used for finding the optimal in expectation mecha-

nism. Just like in the homogeneous case, network parameters are

initialized using Xavier initialization. For the payment calculation,

we use the scipy library for linear sum assignment. This library

assigns objects such that the cost is minimized, whereas we want

the valuation to be maximized as per AE, hence we negate the bids

before passing it to the function. Besides, the Hungarian algorithm

for assignment works only when the number of objects to be as-

signed is same as the agents, hence we introduce dummy agents

or dummy objects with zero valuation so that the input matrix is a

square matrix. The objective function 2 is optimized using Adam

optimizer (described in Section 5.1.2) with learning rate 10e − 4 for

both the linear and nonlinear models. In the nonlinear network,

the number of nodes in the hidden layer was set to 1000.

5.2.4 Optimal in Worst-case for Heterogeneous Objects (OW-
HE):. For designing this particular mechanism, we use the same

inputs that we used in the OE setting for heterogeneous items.

The networks used and their initialization is also same. The only

difference is the objective function which is given by Equation (3)

and the optimizer used is Adam. For the linear network learning

rate is 10e − 4. In the nonlinear network, the number of hidden

nodes used were 100 and learning rate of 10e − 4 for all values of n,
with p = 1. When the values of p > 1, the number of hidden nodes

was increased to 1000 and a learning rate of 10e − 5 was used.

1
All values below 10e-3 are considered to be 0.0
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Figure 3: OE-HE-Nonlinear Vs OW-HE-Nonlinear Figure 4: OE-HO-Linear vs OE-HO-Nonlinear Figure 5: RI values with change
in epoch for n = 5, p = 2

5.3 Specific parameters used for training
• We used tensorflow library for all the implementations. We

used GPUs: Tesla K40c and GeForce GTX Titan X. The net-

work training time varies from few minutes to a whole day,

for the different n, p values.

• The number of input samples, T for binary settings ideally

should be 2
np

and way more than this for the real value

cases. So we use 10000 samples where np ≤ 13, 70000 for

np ≤ 16 and 100000 for the rest of the cases.

• All the experiments are run for a maximum of 400000 epochs

and the constant ρ as given in the overall loss functions (2,

3) is set to 1000.

• The number of nodes in the hidden layer for the network

given in Figure 2 is 1000 ideally. Even having 100 is sufficient

for the cases where the product of n and p is less than 10.

5.4 Results and Discussion
We now describe the results obtained from the networks trained

as discussed above. Table 2 compares the values of redistribution

index (eoe ) for all the experiments with OE objective for different

(n,p) values under homogeneous and heterogeneous settings. The

first column indicates theoretical bounds on OE RMs with linear

rebate functions. In the column heterogeneous, we compare the

redistribution indexes obtained by our OE-HE networks with lin-

ear and nonlinear networks. Similarly, Table 3 compares the OW

redistribution index (eow ) for all the networks under consideration

and theoretical values for different (n,p) values. With these tables,

the following are our observations:

Achieving the analytically solved bounds: For the OE objective

in homogeneous setting, our network OE-HO-Linear achieves the

theoretical values of eoe proposed in [18]. Similarly, the theoretical

eow values are achieved by the network OW-HO Linear.

OW nonlinear rebate function for heterogeneous setting : The
values from OE-HE-Linear NN illustrate the impossibility theorem

stated in [12] that there cannot be a linear rebate function with

non-zero redistribution index for heterogeneous settings. For p = 1,

there being no difference in homogeneous or heterogeneous, the

values remain the same, but are zero for p > 1. The network OW-

HE-Nonlinear achieves the theoretical values given in OW-HO

theoretical Table 3.

OE nonlinear rebate function for homogeneous setting : [18] have
only tried to find the OE linear rebate function. OE-HO Nonlinear

NN outperforms the linear counterpart. The graph in Figure 3 illus-

trates the comparison. This indicates the existence of a nonlinear

rebate function which guarantees higher eoe than the linear rebate

function for homogeneous setting.

OE nonlinear rebate function for heterogeneous setting : The values
from OE-HE-Linear NN is shows same results as OE-HO Linear for

p = 1 and different otherwise. OE-HE-Nonlinear NN outperforms

the linear network The graph in Figure 4 compares between the OW

and OE performance of the nonlinear network for heterogeneous

settings.

Figure 3 illustrates the significantly better performance of Op-

timal in Expectation RM wrt Optimal in Worst Case for heteroge-

neous settings for different (n,p) values. For reference, it also has

OE performance for homogeneous settings. We also observe that

performance of OE mechanisms with nonlinear rebates is signif-

icantly better as compared to OE mechanism with linear rebates

(Figure 4). The convergence of neural networks for n = 5,p = 2

with number of epochs while training can be found in Figure 5.

Typically, most of the networks studied here converge in less than

80000 epochs for n ≤ 10. (Whenever the objective value of a neural

network drops below zero, we skip them to plot).

6 CONCLUSIONS
In this paper, we considered a problem of designing an optimal

redistribution mechanism. We proposed a novel approach to this

problem: train a neural network with randomly generated valuation

profiles for a desired goal. Our neural network design takes care of

problem specific constraints. We showed that, it can learn optimal

redistribution mechanisms with proper initialization and a suitably

defined ordering over valuation profiles. Our analysis shows that

one can design nonlinear rebate functions for homogeneous set-

tings that perform better than optimal in expectation linear rebate

functions. We could design optimal in expectation rebate functions

for heterogeneous objects which is not solved analytically.

There are many challenges to be handled here. For example, can

we design a vanilla neural network that can learn linear, nonlinear

rebate functions without explicitly designing such architectures,

based on the problem specific needs? Can we come up with training

strategies independent of (n,p)?
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