
Deep Learning for Revenue-Optimal Auctions with Budgets
Zhe Feng

Harvard University
Cambridge, MA

zhe_feng@g.harvard.edu

Harikrishna Narasimhan
Harvard University
Cambridge, MA

hnarasimhan@seas.harvard.edu

David C. Parkes
Harvard University
Cambridge, MA

parkes@eecs.harvard.edu

ABSTRACT
The design of revenue-maximizing auctions for settingswith private
budgets is a hard task. Even the single-item case is not fully un-
derstood, and there are no analytical results for optimal, dominant-
strategy incentive compatible, two-item auctions. In this work, we
model the rules of an auction as a neural network, and use ma-
chine learning for the automated design of optimal auctions. We
extend the RegretNet framework (Dütting et al.’17) to handle private
budget constraints, as well as Bayesian incentive compatibility. We
discover new auctions with high revenue for multi-unit auctions
with private budgets, including problems with unit-demand bidders.
For benchmarking purposes, we also demonstrate that RegretNet
can obtain essentially optimal designs for simpler settings where
analytical solutions are available [12, 24, 29].
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1 INTRODUCTION
The design of revenue-optimal auctions in settings where bidders
have private budget constraints is important yet poorly understood
problem. Budget constraints arise when bidders have financial con-
straints that prevent them from making payments as large as their
value for items. They are important in many economic settings,
including spectrum auctions and land auctions, and are an integral
part of the kinds of expressiveness provided to bidders in internet
advertising [2, 13].

The design problem is not fully understood even for selling a
single item. The technical challenge arises because this is a multi-
dimensional mechanism design problem: a bidder’s private informa-
tion is her value for an item as well as her budget. This provides an
obstacle to using Myerson’s [26] characterization results. Even for
selling a single item and with two bidders, the optimal dominant-
strategy incentive compatible (DSIC) design with private budget
constraints is not known. No revenue-optimal designs are known
for selling two or more items to even a single bidder.

In this paper, we build upon the approach of Dütting et al. [16],
and use deep neural networks for the automated design of optimal
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auctions with budget constraints. We represent an auction as a feed-
forward neural network, and optimize its parameters to maximize
expected revenue. We need to include design constraints, namely
individual rationality (IR), budget constraints (BC) and incentive
compatibility (IC).1 To the best of our knowledge, this is the first
paper on automated mechanism design for settings with private
budget constraints.

We design both DSIC and Bayesian Incentive Compatible (BIC)
auctions. In DSIC auctions, reporting truthfully is the optimal strat-
egy for a bidder no matter what the reports of others. In a BIC
auction, truth-telling is the optimal strategy for a bidder in expec-
tation with respect to the types of others, and given that the other
bidders report truthfully. The literature has also considered two ad-
ditional variations in the context of budget constraints: conditional
IC and unconditional IC [12]. We can support both of these within
our framework.

1.1 Main Contributions
Our main contributions are summarized below:

• We extend the RegretNet framework of Dütting et al. [16]
to incorporate budget constraints, as well as, handle BIC
and conditional IC constraints. A new aspect is that the
utility of an agent can be unbounded in the presence of
budgets (whenever an agent’s payment exceeds her budget,
her utility goes to negative infinity). To handle this, we refine
the definition of regret to filter out misreports that would
lead to budget violations.

• We show that our approach can be used to design new auc-
tions with high revenue, including for the problem of sell-
ing multiple identical items to bidders with additive valu-
ations and selling multiple distinct items to bidders with
unit-demand valuations. In both cases, we consider continu-
ous valuation distributions, which is a setting for which the
problem cannot be solved through linear programming.

• We benchmark our approach in single-item settings for
which analytical solutions exist, showing that neural net-
works can be used to learn essentially optimal auctions [12,
24, 29].

1.2 Related Work
The high-level approach that we follow is one of automated mech-
anism design (AMD) [14]. Early approaches to AMD involved the
use of integer programs, and did not scale up to large settings, or
heuristics to search over specialized classes of mechanisms known

1We consider hard budget constraints for bidders, which means no bidder can pay
more than her budget regardless of the bidder’s value for the allocation. The literature
also considers the case of soft budget constraints, where the bidders are allowed to
gain additional funds from markets [22].
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to be IC [30]. In recent years, efficient algorithms have been devel-
oped for BIC design, but they do not address problems with budget
constraints or problems of DSIC design [7–9]

The use of machine learning for AMDwas introduced by Dütting
et al. [17], who use support vector machines for learning payment
rules but not allocation rules, seeking payments that make the re-
sulting mechanism maximally IC. Narasimhan et al. [27] also use
support vector machines to learn social choice and matching rules
from a restricted class of mechanisms. Narasimhan and Parkes [28]
develop a statistical framework for learning assignment mecha-
nisms without providing a computational procedure. Dütting et al.
[16] first use deep neural networks for the automated design of opti-
mal auctions. This approach, which we extend in the present paper,
is more general, does not require specialized characterization re-
sults, and uses off-the-shelf deep learning tools. Very recently, [20]
generalize the RegretNet in Dütting et al. [16] for the multi-facility
location mechanisms.

Che and Gale [12] design the optimal single-item auction for a
single bidder. Pai and Vohra [29] design the optimal BIC auction for
a single item andmultiple bidders.2 Malakhov and Vohra [24] design
the optimal auction for a single-item setting with two bidders, but
consider a weaker, constrained form of DSIC. Che and Gale [11]
develop a revenue ranking of three standard single-item auctions.
Maskin [25] and Laffont and Robert [23] consider the problem of
bidders with identical, known budgets.

In regard to approximation results: Borgs et al. [6] provide a
multi-unit auction for private budget constraints with revenue
that converges to the optimal, posted-price auction in the limit
of a large population of bidders. Bhattacharya et al. [4] propose a
constant approximation for revenue for selling multiple items to
additive bidders with private budgets (BIC) and publicly known
budgets (DSIC) respectively, adopting an approach that use linear
programming relaxations. Chawla et al. [10] propose a multi-item
auction with a constant approximation for revenue for bidders with
identical, known budgets.

Budget constraints have been handled for the setting of alloca-
tive efficiency, with positive results for various multi-item settings,
including for bidders with unit-demand valuations [1, 2, 15, 18, 19].3

2 PROBLEM SETUP
In this section, we describe the problem setup, starting with the
simpler setting of single-item auctions.

2.1 Single-item auctions
There are n risk neutral bidders interested in a single indivisible
good. Each bidder has a private (unknown to other bidders) value
vi ∈ R≥0 for the item, and a private budget bi ∈ R≥0 on the amount
she can pay. We let ti = (vi ,bi ) denote the type of bidder i and use
t = (t1, t2, ..., tn ) to denote a type profile. Let Ti denote the space
of possible types for bidder i , and T the space of type profiles. We
assume that bidder i’s type is drawn from distribution Fi , and that
Fi is known to both the auctioneer and, in the case of BIC, the other
bidders. Let F =

∏n
i=1 Fi and F−i =

∏
j,i Fj . Further, let v−i =

2They focus on the case of independent values and budgets, but mention that they
can handle positive correlation in budget and value.
3The VCG mechanism is not incentive compatible for the budget-constrained case,
even when modified in the natural way to truncate valuations by a bidder’s budget.

(v1, ...,vi−1,vi+1, ...,vn ) denote the valuation profile without vi ,
b−i = (b1, ...,bi−1,bi+1, ...,bn ) denote the budget profile without
bi , and t−i = (v−i ,b−i ).

Each bidder reports (perhaps untruthfully) a value and budget.
An auction (a,p) consists of a randomized allocation rule a : T →
[0, 1]n and a payment rule p : T → Rn≥0. Given a reported type
profile t ′ ∈ T , ai (t ′) ∈ [0, 1] denotes the probability of bidder
i being allocated the item and

∑n
i=1 ai (t ′) ≤ 1, and pi (t) ∈ R≥0

denotes the expected payment by bidder i .4
The utility of bidder i with type ti = (vi ,bi ) for a reported type

profile t ′ ∈ T is the difference between the value and payment if
the payment is within the budget, and −∞ otherwise:

ui (ti , t ′) =
{
vi · ai (t ′) − pi (t ′) if pi (t ′) ≤ bi ,

−∞ if pi (t ′) > bi .
(1)

We consider auctions (a,p) that satisfy the budget constraints
(BC), i.e. charge each agent no more than her budget:

∀i ∈ [n], t ∈ T : pi (t) ≤ bi (BC)

An auction that satisfies these budget constraints is dominant
strategy incentive compatible (DSIC) if no bidder can strictly improve
her utility by misreporting her type, i.e.5

∀i ∈ [n], t ∈ T , t ′i ∈ Ti : ui (ti , (ti , t−i )) ≥ ui (ti , (t ′i , t−i )). (DSIC)

The revenue from an auction is
∑
i pi (t). We are interested in de-

signing auctions that maximize expected revenue, while satisfying
BC as well as ensuring ex post individual rationality (IR), i.e. that
each bidder receives non-zero utility for participating:

∀i ∈ [n], t ∈ T : ui (ti , (ti , t−i )) ≥ 0. (IR)

We will also be interested in the design of BIC auctions because
this will provide for benchmarking against some known analytical
results. In practice, DSIC auctions are more preferred, at least when
the effect on achievable revenue relative to BIC designs is small
(and there are no other robustness concerns such as those that can
arise in DSIC combinatorial auctions [3]) , because they are more
robust— the equilibrium does not rely on common knowledge of
the type distribution or common knowledge of rationality.

For Bayesian incentive compatibility (BIC), define the interim
allocation for bidder i and report t ′i asAi (t ′i ) = Et−i∼F−i [ai (t ′i , t−i )]
and the interim payment as Pi (t ′i ) = Et−i∼F−i [pi (t ′i , t−i )]. Given
this, we can define the interim utility function for a bidder with type
ti and reported type t ′i as:

Ui (ti , t ′i ) =
{
viAi (t ′i ) − Pi (t ′i ) if Pi (t ′i ) ≤ bi ,

−∞ if Pi (t ′i ) > bi .
(2)

An auction (a,p) satisfies interim budget constraints if

∀i ∈ [n], ti ∈ Ti : Pi (ti ) ≤ bi . (interim BC)

In addition, an auction satisfying interim budget constraints is
BIC if:

∀i ∈ [n], ti , t ′i ∈ Ti : Ui (ti , ti ) ≥ Ui (ti , t ′i ) (BIC)

Pai and Vohra [29] show that, for any BIC auction that satisfies
interim budget constraints defined here, there exists an auction with
4This is equivalent in expectation to charging each agent i a payment pi (t ′)/ai (t ′)
when she wins the auction and 0 otherwise.
5This inequality is well-defined for an auction that satisfies the budget constraints.
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the same revenue that satisfies BIC for which the largest payment
in the support of the interim payment rule is never greater than an
agent’s reported budget.

We will also insist that auctions that are BIC satisfy the property
of interim individual rationality:

∀i ∈ [n], ti ∈ Ti : Ui (ti , ti ) ≥ 0 (interim IR)

There is also a weaker form of both DSIC and BIC, referred to
as conditional incentive compatibility [12]. Conditional IC assumes
that bidders can only underreport their budgets, and thus removes
one direction of the incentive constraints. DSIC and BIC become,
respectively,

∀i ∈ [n], t ∈ T , t ′i ∈ Ti :
ui (ti , (ti , t−i )) ≥ ui (ti , (t ′i , t−i )) if b

′
i ≤ bi (C-DSIC)

∀i ∈ [n], ti , t ′i ∈ Ti : Ui (ti , ti ) ≥ Ui (ti , t ′i ) if b
′
i ≤ bi (C-BIC)

Conditional IC is motivated by settings in which the auctioneer
can require each bidder to post a bond that is equal to her reported
budget. Where this is not practical, the more typical, unconditional
IC properties are required.

2.2 Multi-item auctions
We also consider a multi-item setting, with both additive and unit-
demand valuations on items.

In the additive setting, there arem identical units of an item for
sale, and each bidder i has a private value vi ∈ R≥0 for each unit of
an item, and a private budget bi ∈ R≥0 on the payment. Here the
valuation of bidder i for k units of the item is k · vi .

An allocation rule a : R2n
≥0 → [0, 1]nm maps a type profile

t ′ ∈ R2n
≥0 to a matrix of allocation probabilities a(t ′) ∈ [0, 1]nm ,

where ai j (t ′) ∈ [0, 1] denotes the probability of bidder i being
allocated the j-th unit of the item, and

∑
i ai j (t ′) ≤ 1, ∀j ∈ [m].

The payment rule p : R2n
≥0 → Rn≥0 defines the expected payment

pi (t ′) for each bidder.6 The utility of a bidder is given by:

ui (ti , t ′) =


m∑
j=1

vi jai j (t ′) − pi (̂t) if pi (t ′) ≤ bi ,

−∞ if pi (t ′) > bi .

(3)

In the unit-demand setting, there are multiple distinct items
{1, . . . ,m} for sale, and each bidder i has a private value vi j ∈
R≥0 for each item j, and a private budget bi . A bidder’s valuation
for a bundle of items T is the value of the most-valued item in
the bundle: vi (T ) = maxj ∈T vi j . Let ti = (vi1, . . . ,vim ,bi ) denote
bidder i’s type. The allocation rule a : Rn(m+1)

≥0 → [0, 1]nm maps
a type profile t ′ ∈ Rn(m+1)

≥0 to the probabilities ai j (t ′) that each
bidder i is allocated item j probabilities, and the payment rule
p : Rn(m+1)

≥0 → Rn≥0 outputs the expected payments.
For revenue maximization with unit-demand bidders, it is suffi-

cient to consider allocation rules that allocate at most one item to
each bidder. Here we require the matrix of allocation probabilities
to be doubly stochastic, i.e. to satisfy

∑
j ai j (t ′) ≤ 1, ∀i ∈ [n] and∑

i ai j (t ′) ≤ 1, ∀j ∈ [m] for all t ′. Such a randomized allocation
6If the payment rule p is ex post IR, for any reported type t ′, there exists a set of
payments Pi j (t ′) on each outcome (i, j) s.t. each Pi j (t ′) ≤ vi j , which are equivalent
in expectation to pi (t ′). These payments can be computed by solving a linear program.

can be decomposed into a lottery over deterministic, feasible as-
signments (the Birkhoff-von Neumann theorem [5, 31]). The utility
of a unit-demand bidder under a doubly stochastic allocation a is
again given by (3).

3 THE BUDGETED REGRETNET
FRAMEWORK

In this section, we explain how to extend the RegretNet framework
of Dütting et al. [16], which was developed and applied for settings
without budget constraints, to a setting with budget constraints.

We represent an auction as a feed-forward neural network, and
optimize the parameters to maximize revenue subject to regret, IR
and budget constraints. While the framework of Dütting et al. en-
forces DSIC by requiring that the (empirical) ex post regret for the
neural network be zero, we are able to handle more general forms
of incentive compatibility by working with an appropriate notion
of regret. For BIC, we constrain the (empirical) interim regret of
the network to be zero; for conditional DSIC/BIC, we constrain
the (empirical) conditional regret of the network to be zero. We
additionally include budget constraints.

3.1 Network architecture
The allocation and payment rules are represented as separate feed-
forward networks, but trained simultaneously, and connected through
training loss function and constraints. The network architectures
are shown in Figure 1 for the additive setting and in Figure 2 for
the unit-demand setting.

Allocation network: The allocation rule for the additive setting
takes a type profile t as input and outputs the probability ai j (t) ∈
[0, 1] of the j-th unit of the item being assigned to each bidder i .
The neural network consists of R fully-connected hidden layers,
with sigmoid activations and a fully-connected output layer. In the
case of additive bidders, the output layer computes a real-valued
score si j for each bidder-item pair (i, j) and converts these scores to
allocation probabilities using a softmax function: ai j (t) = esi j∑n+1

k=1 e
sk j ,

where sn+1, j is an additional “dummy score” computed for each
item j. Through the inclusion of this dummy score, the softmax
ensures that

∑n
i=1 ai j (t) ≤ 1 for each item j. The network can

allocate multiple units to a single bidder.
For unit-demand bidders, we require the allocation probabilities

to be doubly stochastic. For this, we modify the allocation network
to generate a score si j and a score s ′i j for each bidder-item pair (i, j),
with the first set of scores normalized along the rows, and the second
set of scores normalized along the columns using softmax functions.
The final allocation is an element-wise minimum of the two sets

of normalized scores, ai j (t) = min

{
esi j∑n+1

k=1 e
sk j ,

e
s′i j∑m+1

k=1 e
s′jk

}
, and is

guaranteed to be doubly stochastic.
Payment network: The payment rule is also defined through a

feed-forward network, and consists of T fully-connected hidden
layers, with sigmoid activations and a fully-connected output layer.
Given an input type profile t , the neural network computes a pay-
mentpi (t) for each bidder i . In particular, the output layer computes
a score s ′i ∈ R for each bidder, and applies the ReLU activation func-
tion to ensure that payments are non-negative: pi (t) = max{s ′i , 0}.
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Figure 1: Budgeted RegretNet: (a) Allocation rule a and (b) Payment rule p for a setting withm identical items and n additive buyers.
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Figure 2: Budgeted RegretNet: (a) Allocation rule a and (b) Payment rule p for a setting withm distinct items and n unit-demand buyers.

3.2 Training problem
We use the following metrics to measure the degree to which an
auction violates the BIC, IR and BC constraints.

Regret: We define the expected interim regret to bidder i , for an
auction with rules (a,p), as the maximum gain in interim utility by
misreporting the bidder’s type.

rдti (a,p) =

Eti∼Fi

[
max
t ′i ∈Ti

χ(Pi (t ′i )≤bi )
(
Ui (ti , t ′i ) − Ui (ti , ti )

) ]
, (4)

where χA is an indicator function for whether predicate A is true.
An auction is BIC if and only if it has zero interim regret. The
indicator function in the above expression ensures that the first
utility term does not go to −∞. As long as the auction also satisfies
interim BC, the second utility term is also finite for all type profiles,
thus ensuring that the regret is always finite.

IR penalty: The penalty for violating IR for bidder i is given by:

irpi (a,p) = Eti∼Fi [max{0,−Ui (ti , ti )]}] . (5)

BC penalty: The penalty for violating the budget constraint for
bidder i is given by:

bcpi (a,p) = Eti∼Fi [max{0,Pi (ti ) − bi }] . (6)

Further, we define the loss function as the negated expected
revenue L(a,p) = −Et∼F

[∑n
i=1 pi (t)

]
.

Let w ∈ Rd denote the parameters of the allocation network,
the induced allocation rule denoted by aw, and w′ ∈ Rd ′

denote
the parameters of the payment network, the induced payment rule
denoted by pw

′
.

The design objective is to minimize the loss function over the
space of network parameters, such that the regret, IR penalty and
BC penalty is zero for each bidder:

min
w∈Rd ,w′∈Rd′

L(aw,pw′)

s .t . rдti (aw, pw
′) = 0,∀i ∈ [n]

irpi (aw, pw
′) = 0,∀i ∈ [n]

bcpi (aw, pw
′) = 0,∀i ∈ [n].

(OP1)

In practice, the loss, regret, IR penalty and BC penalty can be
estimated from a sample of type profiles S = {t (1), t (2), ..., t (L)}
drawn i.i.d. from F . The loss for an auction with rules (a,p) can be
estimated as L̂(a,p) = − 1

L
∑L

ℓ=1
∑n
i=1 pi

(
t (ℓ)

)
.

To estimate the interim regret, for each type profile t (ℓ) in S ,
we draw additional samples Sℓ = {t̃ (1), . . . , t̃ (K )} from F , and S ′

ℓ
=
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{t̄ (1), . . . , t̄ (K ′)} from a uniform distribution over type space T .7
Using sample Sℓ , we define the empirical interim utility for bidder
i with type ti and report t ′i as:

Ûi (ti , t ′i ) =
1
K

K∑
k=1

ui
(
ti ,

(
t ′i , t̃

(k )
−i

) )
and the empirical interim payment as:

P̂i (t ′i ) =
1
K

K∑
k=1

pi
(
t ′i , t̃

(k )
−i

)
Then the empirical interim regret is given by:

r̂дt i (a,p) =
1
L

L∑
ℓ=1

max
t ′∈S ′

ℓ

{
χ ( P̂i (t ′i )≤b (ℓ)

i

)
·
(
Ûi

(
t
(ℓ)
i , t

′
i
)
− Ûi

(
t
(ℓ)
i , t

(ℓ)
i

) ) }
, (7)

where the sample S ′
ℓ
provides a set of deviating type profiles to

approximate the maximum over bidder misreports.
The IR and BC penalties can be similarly estimated as:

îrpi (a,p) =
1
L

L∑
ℓ=1

max
{
0,−Ûi

(
t
(ℓ)
i , t

(ℓ)
i

)}
b̂cpi (a,p) =

1
L

L∑
ℓ=1

max
{
0, P̂i

(
t
(ℓ)
i

)
− b

(ℓ)
i

}
.

Following Dütting et al. [16], we use the Augmented Lagrangian
method to solve the resulting sample-based optimization problem:

min
w∈Rd ,w′∈Rd′

L̂(aw,pw′)

s .t . r̂дt i (aw, pw
′) = 0,∀i ∈ [n]

îrpi (aw, pw
′) = 0,∀i ∈ [n]

b̂cpi (aw, pw
′) = 0,∀i ∈ [n].

(OP2)

Augmented Lagrangian Solver: The solver formulates a sequence
of unconstrained optimization steps that combine the revenue, re-
gret, IR penalty, and budget penalty terms into a single objective,
with the relative weights on the regret, IR and budget penalty terms
adjusted across iterations. More specifically, the solver constructs
the following unconstrained, augmented Lagrangian objective:

Fρ (w,w′; λrgt , λirp, λbcp)

= L̂(aw,pw′) +
∑
i ∈[n]

λrgt,i r̂gti (aw,pw
′) + ρ

2

∑
i ∈[n]

r̂gt2i (aw,pw
′)

+
∑
i ∈[n]

λirp,i îrpi (aw,pw
′) + ρ

2

∑
i ∈[n]

îrp
2
i (aw,pw

′)

+
∑
i ∈[n]

λbcp,i b̂cpi (aw,pw
′) + ρ

2

∑
i ∈[n]

b̂cp
2
i (aw,pw

′)

where λrgt ∈ Rn , λirp ∈ Rn and λbcp ∈ Rn are vectors of La-
grangian multipliers associated with the equality constraints in
(OP2), and ρ > 0 is a fixed parameter that controls the weight on
the augmented quadratic terms.
7The deviating types need not be sampled from the distributions of true types. We
adopt a uniform sampling scheme, and find this to be effective in our experiments.

The solver operates across multiple iterations, and updates the
Lagrange multipliers based on the violation of the constraints in
each iteration t :(

wt+1,w′t+1
)
∈ argmin(w,w′)Fρ (w,w′; λtrgt , λ

t
irp, λ

t
bcp) (8)

λt+1
rgt,i = λtrgt,i+ρ r̂gti

(
aw

t+1
,pw

′t+1 )
,∀i ∈ [n], (9)

λt+1
irp,i = λtirp,i+ρ îrpi

(
aw

t+1
,pw

′t+1 )
,∀i ∈ [n], (10)

λt+1
bcp,i = λtbcp,i+ρ b̂cpi

(
aw

t+1
,pw

′t+1 )
,∀i ∈ [n], (11)

where the inner optimization in (8) is approximately solved through
multiple iterations of the Adam solver [21]. Specifically, the gra-
dient is pushed through the loss function as well as the empirical
measures of violation of IC, IR and BC.8 In our experiments, the
Lagrangian multipliers are initialized to zero.

3.3 Handling other kinds of IC constraints
The approach also extends to a design subject to conditional BIC, as
well as DSIC and conditional DSIC. For conditional BIC, we replace
the regret in (OP1) with the conditional regret, defined as:

crдti (a,p) = Eti∼Fi

[
max
t ′i ∈Ti

χ (b′i ≤bi ) (Ui
(
ti , t

′
i
)
−Ui

(
ti , ti

) ) ]
, (12)

and use the following estimate of the conditional interim regret
in (OP2):

ĉrдt i (a,p) =

1
L

L∑
ℓ=1

max
t ′∈S ′

ℓ

{
χ (
b′i ≤b

(ℓ)
i

) · (Ûi
(
t
(ℓ)
i , t

′
i
)
− Ûi

(
t
(ℓ)
i , t

(ℓ)
i

) ) }
. (13)

To handle DSIC and conditional DSIC, we replace the interim
regret in the training problem with the ex post regret and a condi-
tional version of the ex post regret, respectively. The expected ex
post regret to bidder i in an auction (a,p) is defined as the maximum
gain in ex post utility obtained by misreporting her type:

eprдti (a,p) =

Et∼F
[

max
t ′i ∈Ti

χ (pi (t ′i ,t−i )≤bi ) (ui (ti , (t ′i , t−i )) − ui
(
ti , (ti , t−i )

) ) ]
(14)

Similarly, the ex post IR penalty and ex post BC penalty can be
defined as:

epirpi (a,p) = Et∼F [max{0,−ui (ti , (ti , t−i ))]}] (15)
epbcpi (a,p) = Et∼F [max{0,pi (ti , (ti , t−i )) − bi }] (16)

To estimate the ex post regret, we use a set of deviating (misre-
port) samples S ′

ℓ
= {t̄ (1), . . . , t̄ (K ′)}, drawn from a uniform distri-

bution over T :

�eprдt i (a,p) = 1
L

L∑
ℓ=1

max
t ′∈S ′

ℓ

{
χ (
pi (t ′i ,t

(ℓ)
−i )≤b

(ℓ)
i

)
·
(
ui

(
t
(ℓ)
i ,

(
t ′i , t

(ℓ)
−i

) )
− ui

(
t
(ℓ)
i ,

(
t
(ℓ)
i , t

(ℓ)
−i

) ) ) }
. (17)

8The solver handles the indicator function in the regret definition by taking its gradient
to be zero.
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The ex post IR and BC penalties can be estimated as:

�epirpi (a,p) = 1
L

L∑
ℓ=1

max
{
0, −ui

(
t
(ℓ)
i ,

(
t
(ℓ)
i , t

(ℓ)
−i

) )}
(18)

�epbcpi (a,p) = 1
L

L∑
ℓ=1

max
{
0, pi

(
t
(ℓ)
i , t

(ℓ)
−i

)
− b

(ℓ)
i

}
(19)

For the conditional ex post regret, we replace χ (pi (t ′i ,t−i )≤bi )
in eprдti by χ (b′i ≤bi ) . Similarly, in the empirical version of this

quantity �eprдt i , we replace χ (
pi (t ′i ,t

(ℓ)
−i )≤b

(ℓ)
i

) by χ (
b′i ≤b

(ℓ)
i

) .
4 EXPERIMENTAL RESULTS
We present experimental results to show that we can find new
auctions for settings where the optimal design is unknown, and
also recover essentially optimal DSIC and BIC auctions in a variety
of simpler settings for which analytical results are available. Since
DSIC is a stronger property than BIC, and preferred in practice, we
give more focus to the automated design of DSIC auctions.

Experimental setup. We use the TensorFlow deep learning library
for experiments. We solve the inner optimization in the augmented
Lagrangian method using the ADAM solver [21], with a learning
rate of 0.001 and a mini-batch size of 64. All the experiments are
run on a compute cluster with NVIDIA GPU cores.

Evaluation. We generate training and test data from different
type distributions, use the training set for fitting an auction network
and evaluate performance of the learned auction on the test set. We
use the following metrics for evaluation:

Regret = 1
n
∑n
i=1 r̂дt i (a,p)

Conditional Regret = 1
n
∑n
i=1 ĉrдt i (a,p)

IR penalty = 1
n
∑n
i=1 îrpi (a,p)

BC penalty = 1
n
∑n
i=1 b̂cpi (a,p).

For experiments on DSIC auctions, the terms r̂дt i , ĉrдt i , îrpi
and b̂cpi are ex post quantities. For experiments on BIC, these terms
are interim quantities. The training and test set are large enough to
avoid issues of overfitting. The specific sample sizes and network
scale are provided in subsequent subsections.

4.1 Optimal DSIC auctions
We consider the design of DSIC auctions, adopting three different
settings studied in the literature:

• Setting I: There is a single item and a single bidder, with
the bidder’s value v1 ∼ Unif[0, 1] and budget b1 ∼ Unif[0, 1].
The optimal DSIC auction for this setting was derived by
Che and Gale [12].

• Setting II: There is a single item amd two bidders, where
v1,v2 ∼ Uni f {1, 2, ..., 10}. The first bidder is unconstrained
while the second bidder has a budget of 4. The optimal auc-
tion under conditional DSIC for this setting was derived by
Malakhov and Vohra [24].9

9 In this special case, the auctioneer knows the true budget of constrained bidder
but allows her to misreport her budget. In effect, the budget of constrained bidder is
publicly known.

Property Setting Opt Budgeted RegretNet
rev rev regret irp bcp

I 0.192 0.196 0.002 (0.003) 0.002 0.001
DSIC II (C) 4.664 4.638 0.002 0.005 0.002

III – 0.709 0.002 (0.004) 0.0 0.002
IV – 0.287 0.002 (0.003) 0.0 0.0

BIC II (C) 4.847 4.788 0.0 0.0 0.0
V 0.342 0.348 0.004 (0.005) 0.001 0.0

Table 1: Test metrics for Budgeted RegretNet auctions. Here (C)
refers to conditional IC. For continuous valuation distributions, we
also report within parenthesis the regret estimated using a larger
misreport sample (i.e. with 1000 misreports for each type profile).

Setting Misreport sample size |S ′
ℓ
|

100 200 400 800 1600
IV 0.0018 0.0021 0.0023 0.0026 0.0029

Table 2: Test regret for Budgeted RegretNet under Setting IV with
misreport samples of different sizes for each type profile.

• Setting III: There are four identical items with two additive
bidders where bidder i’s value for each item vi ∼ Unif[0, 1]
and the budget bi ∼ Unif[0, 1]. There is no analytical result.

• Setting IV: There are two items with two unit-demand bid-
ders where bidder i’s value for the item j, vi j ∼ Unif[0, 1]
and the budget bi ∼ Unif[0, 1]. There is no analytical result.

We use allocation and payment networks with two hidden layers
each, and with 100 hidden nodes in each layer. For all the exper-
iments below, for each type profile t (ℓ), we randomly generate a
sample of 100 misreports S ′

ℓ
to evaluate the regret. We also re-

port the regret estimated for continuous valuation distributions
using a larger misreport sample (of size 1000 or more) for each type
profile.10 A summary of our results is shown in Tables 1 and 2.

For setting I, we use a training and test sample of 5000 profiles
each, with the parameter ρ in Augmented Lagrangian solver set to
0.01. Figure 3(a) presents plots of test revenue and test ex post regret
for the learned auction as a function of solver iterations. Figure
3(b)-(c) show the allocation rule learned by the neural network,
and compare this with the optimal rule of Che and Gale [12]. Not
only does the learned auction yields revenue close to the optimal
auctions and incur negligible regret, but the learned allocation rule
closely matches the optimal rule. From Table 1, we see that the
learned auction also incurs very small IR and budget violations.

For setting II, we use a smaller training and test sample of 1000
profiles, which are large enough for the discrete distribution con-
sidered here. We set ρ to 0.001. The optimal auction for this setting
is given by Malakhov and Vohra [24]. We trained neural network
for conditional DSIC. Figure 4(a) shows plots of the test revenue for
the learned auction, as well as plots of the test ex post regret for the
learned auction under conditional DSIC constraints. The learned
auction yields revenue very close to the optimal revenue, while
yielding negligible regret, IR violations, or budget violations. Fur-
thermore, as seen in Figure 4(b)-(c), the learned allocation rule for
conditional DSIC closely matches the analytical result in Malakhov
and Vohra [24].

For setting III, we use a training and test sample of 5000 profiles,
with ρ set to 0.01. Since the optimal auction is not provided by the
10For discrete valuation distributions in this paper, we find a sample of 100 misreports
to be large enough to accurately estimate the regret.
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(a) Test revenue and regret

(b) Test allocation rule (c) Optimal allocation rule

Figure 3: The auction learned under DSIC for Setting I with a single
item and single bidder, where v1 ∼ Unif [0, 1] and b1 ∼ Unif [0, 1].
The solid regions in (b) and (c) depict the probability of the item
being allocated to the bidder.

theoretical literature, we compare the learned auction rule against
the optimal posted pricing auction, as well as the auction proposed
by Borgs et al. [6]. Figure 5 shows test revenue and ex post regret
as functions of solver iterations. In this case, the neural network is
able to discover an auction with a higher revenue than the baseline,
while incurring a very small regret, as well as, very small IR and
budget violations.

For setting IV, we use a training and test sample of 5000 profiles,
with ρ set to 0.03. Since there is no analytical result for this setting,
we compare the learned auction rules against the ascending auction
of Ashlagi and Braverman [1]. Figure 6 shows the test revenue and
ex post regret as functions of the number of solver iterations. The
auction learned by RegretNet has a higher revenue than the baseline,
while incurring very small regret, IR, and budget violations.

Since the regret is estimated using a sample of misreports, for this
experiment, we also evaluate the regret using misreport samples
S ′
ℓ
of different sizes. The results are summarized in Table 2. Figure

7 shows the test ex post regret as functions of solver iterations
for different sizes of misreport samples. As seen, even with larger
number of misreport samples, the regret is still very small, implying
that the learned auction is indeed essentially IC.

4.2 Optimal BIC auctions
Next, we consider the automated design of BIC auctions. Here we
focus on settings for which analytical results are available. This
serves to provide a validation that we are able to use RegretNet to
learn BIC designs. We are less interested in optimal BIC for new
settings because we consider DSIC of more practical interest. We
consider the following settings:

• Setting II from Section 4.1. The optimal BIC auction for this
setting was derived by Malakhov and Vohra [24].

• Setting V: There is a single item and two symmetric bud-
get constrained bidders. Each bidder draws a value vi ∼

(a) Revenue and regret as a function of solver iterations

(b) Learned allocation rule

(c) Optimal allocation rule

Figure 4: The auction learned under conditional DSIC for Setting II
with a single itemand two bidders, wherev1, v2 ∼ Unif {1, 2, ..., 10},
bidder 1 is unconstrained, and bidder 2 has a budget of 4.

Figure 5: Revenue and regret for the DSIC auction learned under
Setting III with four identical items and two additive bidders, where
bidder i ’s value for each item vi ∼ Unif [0, 1] and bi ∼ Unif [0, 1].

Unif[0, 1] and budget bi ∼ Unif{0.22, 0.42}. The optimal
auction for this setting was derived by Pai and Vohra [29].

For these experiments, we use allocation and payment networks
with two hidden layers with 50 nodes each.11 A summary of the
results is provided in Table 1. The training and test set have 1000
type profiles each and ρ was set to 0.05. To learn the BIC auctions,
we need additional samples Sℓ from known distribution F for each
type profile t (ℓ), which makes the training of RegretNet more costly
than for the case of DSIC auctions.

11Unlike DSIC settings, we reduce the size of neural networks in BIC settings to
trade-off the cost of more computation for estimating interim rules.
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Figure 6: Revenue and regret for theDSIC auction learned under Set-
ting IV with two items and two unit-demand bidders, where bidder
i ’s value for item j vi j ∼ Unif[0, 1] and bi ∼ Unif[0, 1].

Figure 7: A semi-logarithmic plot of test regret as a function of the
number of iterations for different misreport sample sizes for the
DSIC auction learned under Setting IV.

Figure 8 presents the results of learning a BIC auction for setting
II, providing the test revenue and test interim regret as a function
of the number of solver iterations. We also illustrate the learned
allocation rule, and compare it with the optimal allocation rule
of Malakhov and Vohra [24]. Not only does the auction that is
derived through machine learning achieve near-optimal revenue
with essentially zero regret, IR and budget violations, but we closely
recover the design of the optimal allocation rule. Figure 9 shows the
test revenue and interim regret of the learned auction for setting
V. Again, we are able to achieve almost-optimal revenue, while
incurring very small regret, IR, and budget violations.

5 CONCLUSION
We have used deep learning to design essentially optimal, multi-
item auctions under private budget constraints. Whereas the state-
of-the-art analytical results for the design of optimal, DSIC auc-
tions cannot handle more than two bidders, or more than one item
(to even a single bidder), RegretNet can discover new, essentially
incentive-compatible designs with high revenue in these settings
(consider Setting III and Setting IV). We also validate the approach
by demonstrating that RegretNet can recover essentially optimal
designs in settings for which optimal analytical results do exist,
including the case of BIC auction design.

In the future, it will be interesting to study the robustness of the
learned auctions to perturbations in the type distributions, develop
methods that allow a single network to handle different number
of bidders or items, improve the efficiency with which we can
train RegretNet in the case of BIC design, and use our approach to
estimate both upper- and lower-bounds on the revenue from exactly
IC designs. It will also be interesting to explore the effect of allowing
for correlation between value and budget and across bidders, soft

(a) Revenue and regret as a function of solver iterations

(b) Learned allocation rule

(c) Optimal allocation rule

Figure 8: Auction learned under BIC for Setting II with a single item
and two bidders, where v1, v2 ∼ Unif{1, 2, ..., 10}, bidder 1 is uncon-
strained and bidder 2 has a budget of 4.

Figure 9: Revenue and regret of auction learned under BIC for Set-
ting V with a single item and two bidders, where v1, v2 ∼ Unif[0, 1]
and b1, b2 ∼ Unif{0.22, 0.42}.

budget constraints, and budgets that depend on a bidder’s allocation.
All of these seem within reach of automated methods, but are
extremely challenging to handle through theoretical analysis.
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