
HTN Acting: A Formalism and an Algorithm
Lavindra de Silva

Institute for Advanced Manufacturing,

University of Nottingham, Nottingham, UK

Lavindra.deSilva@nottingham.ac.uk

ABSTRACT
Hierarchical Task Network (HTN) planning is a practical and ef-

ficient approach to planning when the ‘standard operating pro-

cedures’ for a domain are available. Like Belief-Desire-Intention

(BDI) agent reasoning, HTN planning performs hierarchical and

context-based refinement of goals into subgoals and basic actions.

However, while HTN planners ‘lookahead’ over the consequences

of choosing one refinement over another, BDI agents interleave

refinement with acting. There has been renewed interest in making

HTN planners behave more like BDI agent systems, e.g. to have a

unified representation for acting and planning. However, past work

on the subject has remained informal or implementation-focused.

This paper is a formal account of ‘HTN acting’, which supports

interleaved deliberation, acting, and failure recovery. We use the

syntax of the most general HTN planning formalism and build on

its core semantics, and we provide an algorithm which combines

our new formalism with the processing of exogenous events. We

also study the properties of HTN acting and its relation to HTN

planning.
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1 INTRODUCTION
Hierarchical Task Network (HTN) planning [8, 12, 17, 18] is a practi-

cal and efficient approach to planning when the ‘standard operating

procedures’ for a domain are available. HTN planning is similar

to Belief-Desire-Intention (BDI) [13, 19, 20, 27] agent reasoning

in that both approaches perform hierarchical and context-based

refinement of goals into subgoals and basic actions [21, 22]. How-

ever, while HTN planners ‘lookahead’ over the consequences of

choosing one refinement over another before suggesting an action,

BDI agents interleave refinement with acting in the environment.

Thus, while the former approach can guarantee goal achievability

(if there is no action failure or environmental interference), the lat-

ter approach is able to quickly respond to environmental changes

and exogenous events, and recover from failure. This paper presents

a formal semantics that builds on the core HTN semantics in order

to enable such response and recovery.

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

One motivation for our work is a recent drive toward adapt-

ing the languages and algorithms used in Automated Planning to

build a framework for ‘refinement acting’ [11], i.e., deciding how

to carry out a chosen recipe of action to achieve some objective,

while dealing with environmental changes, events, and failures. To

this end, [11] proposes the Refinement Acting Engine (RAE), an

HTN-like framework with continual online processing and recipe

repair in the case of runtime failure. A key consideration in the

RAE is a unified hierarchical representation and a core semantics

that suits the needs of both acting and lookahead. We are also

motivated by recent work [4] which suggests that a fragment of

the recipe language of HTN planning does not have a direct (nor

known) translation to the recipe languages of typical BDI agent

programming languages such as AgentSpeak [19] and CAN [27].

For example, HTNs allow a flexible specification of how steps in a

recipe should be interleaved, whereas steps in CAN recipes must

be sequential or interleaved in a ‘series-parallel’ [25] manner.

There have already been some efforts toward adapting HTN plan-

ning systems to make them behave more like BDI agent systems.

Perhaps the first of these efforts was the RETSINA architecture

[24], which used an HTN language and semantics for representing

recipes and refining tasks, but also interleaved task refinement with

acting in the environment. RETSINA is an implemented architec-

ture which has been used in a range of real-world applications. In

[5], the JSHOP [17] HTN planner is modified in two ways: (i) to
execute a solution (comprising a sequence of actions) found via

lookahead, and then re-plan if the solution is no longer viable in

the real world (due to a change in the environment), and (ii) to
immediately execute the chosen refinement for a task, instead of

first performing lookahead to check whether the refinement will

accomplish the task. The latter modification made JSHOP as effec-

tive as the industry-strength JACK BDI agent framework [26], in

terms of responsiveness to environmental changes.

However, both RETSINA and the JSHOP variant lack a formalism,

making it difficult to study the properties (e.g. correctness) of their

semantics, and to compare them to other similar systems. The same

applies to the algorithms and abstract syntax of the RAE framework,

which are presented only in pseudocode.

There is also some work on making BDI-like agent systems be-

have more like HTN planning systems. In particular, both the REAP

algorithm in [11] and the CANPlan [21, 22] BDI agent programming

language can make informed decisions about refinement choices

by using a lookahead capability. Similarly, there are agent program-

ming languages and systems that support some form of planning

(though not HTN-style planning) [16], such as the PRS [10] based

Propice-Plan [6] system and the situation-calculus based IndiGolog

[3] system. Finally, there are also some interesting extensions to

HTN and HTN-like planning [1, 2, 9, 14, 23, 28], e.g. approaches

that combine classical and HTN planning. In contrast, our work is
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not concerned with lookahead or planning, but with adapting the

HTN planning semantics to enable BDI-style behaviour.

Thus, our contribution is a formal account of HTN acting, which
supports interleaved deliberation, acting, and recovery from failure,

e.g. due to environmental changes. To this end, we use the syntax

of the most general HTN planning formalism [7, 8], and we build

on its core semantics by developing three main definitions: execu-

tion via reduction, action, and replacement. We then provide an

algorithm for HTN acting which combines our new formalism with

the processing of exogenous events. We also study the properties

of HTN acting, particularly in relation to HTN planning.

2 BACKGROUND: HTN PLANNING
In this section we provide the necessary background material on

HTN planning. Some definitions are given only informally; we refer

the reader to [7, 8] for the formal definitions.

An HTN planning problem is a tuple ⟨d,I,D⟩ comprising a task
network d , an initial state I, which is a set of ground atoms, and

a domain D = ⟨Op,Me⟩, where Me is a set of reduction methods
and Op is a set of STRIPS-like operators. HTN planning involves

iteratively decomposing/reducing the ‘abstract tasks’ occurring in

d and the resulting task networks by using methods in Me, until
only STRIPS-like actions remain that can be ordered and executed

from I relative to Op.
A task network d is a couple [S,ϕ], whereϕ is a constraint formula,

and S is a non-empty set of labelled tasks, i.e., constructs of the form
(n : t); element n is a task label, which is a 0-ary task-label symbol

(in FOL) that is unique in d and D, and t is a non-primitive or

primitive task, which is an n-ary task symbol whose arguments are

function-free terms. The constraint formula ϕ is a Boolean formula

built from negation, disjunction, conjunction, and constraints, each

of which is either: an ordering constraint of the form (n ≺ n′),
which requires the task (corresponding to label) n to precede task

n′; a before (resp. an after) state-constraint of the form (l ,n) (resp.
(n, l)), which requires literal l to hold in the state just before (resp.

after) doing n; a between state-constraint of the form (n, l ,n′), which
requires l to hold in all states between doing n and n′; or a variable
binding constraint of the form (o = o′), which requires o and o′ to
be equal, each of which is a variable or constant. We ignore variable

binding constraints as they can be specified as state-constraints,

using the binary logical symbol ‘=’.

Instead of specifying a task label, a constraint may also refer,

using expression fst[S] or lst[S], to the action that is eventually

ordered to occur first or last (respectively) among those that are

yielded by the set of task labels S . While these expressions can be

‘inserted’ into a constraint when a task is reduced, we assume that

they do not occur in methods.

A primitive task, or action, t , has exactly one relevant operator
in Op, i.e., one operator associated with a primitive task t ′ that
has the same task symbol and arity as t ; any variable appearing

in the operator also appears in t ′ and its precondition. Given a

primitive task t , we denote its precondition, add-list and delete-list

relative to Op as pre(t ,Op), add(t ,Op) and del(t ,Op), respectively. A
non-primitive task can have one or more relevant methods inMe. A

method is a couple Jt(v),dK, where t(v) is a non-primitive task, the

arguments v are distinct variables,
1
and d is a task network.

Given an HTN planning problem ⟨d = [Sd ,ϕd ],I, ⟨Op,Me⟩⟩,
the core planning steps involve selecting a relevant methodm =
Jtm ,dmK ∈ Me for some non-primitive task (n : t) ∈ Sd and then

reducing the task to yield a ‘less abstract’ task network. Reducing

(n : t) withm involves replacing (n : t) with the tasks in Sm (where

dm = [Sm ,ϕm ]) and updating ϕd , e.g. to include the constraints in

ϕm ; formal definitions formethod relevance and reduction are given

in Section 3. The set of reductions of d is denoted red∗(d, ⟨Op,Me⟩).
If all non-primitive tasks in the initial and subsequent task net-

works have been reduced, a completion is obtained from the result-

ing ‘primitive’ task network. Informally, σ is a completion of a prim-

itive task networkd = [S,ϕ] at a stateI, denotedσ ∈ comp(d,I,D),
if σ is a total ordering of a ground instance of d that satisfies ϕ; if d
mentions a non-primitive task, then comp(d,I,D) = ∅.

Finally, the set of all HTN solutions is defined as sol(d,I,D) =⋃
n<ω soln (d,I,D), where soln (d,I,D) is defined inductively as

sol1(d,I,D) = comp(d,I,D),

soln+1(d,I,D) = soln (d,I,D) ∪
⋃

d ′∈red∗(d,D)

soln (d
′,I,D).

In words, the HTN solutions for a given planning problem is

the set of all completions of all primitive task networks that can be

obtained via zero or more reductions of the initial task network.

A Running Example
Let us consider the example of a rover agent exploring the surface

of mars. A part of the rover’s HTN domain is illustrated in Figure 1

(with braces omitted in fst[] and lst[] expressions). The top-level
non-primitive task is to transfer, to the lander, previously gathered

soil analysis data from a location X , and if possible to also deliver

the soil sample for further analysis inside the lander.

The top-level task is achieved using either method m1 or m2,

both of which require the data and sample from X to be available

(i.e., for didExp(X ) to hold). If the rover is low on battery charge

(lowBat), m1 is used. This transmits the soil data but it does not

deliver the soil sample, which may result in losing it if it is later

discarded to make room for other samples. Methodm1 prescribes

establishing radio communication with the lander, sending it the

data by first including metadata, and then breaking the connection,

while checking continuously that the connection is not lost between

the first and last tasks (including those ofm3). If the rover is not

low on battery charge, m2 is used to achieve the top-level task;

m2 prescribes navigating to a lander L and then uploading and

depositing the soil data and sample, respectively.

Navigation is performed usingm4 orm5. Methodm4 prescribes

calibrating the onboard instruments, moving the cameras to point

straight (which asserts camMoved), and moving to the lander; while

the first two actions can happen in any order, the third must happen

last. The method requires that the instruments are not currently

calibrated (¬cal) and the battery charge is not low. Methodm5 is

similar except that it is used only if the instruments are already

calibrated, e.g. due to a recent calibration to achieve another task.

1
While [8] does allow this vector to contain constants, we instead specify such binding

requirements in the constraint formula.
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transDS(X )

or

m1

1:estabCon 2:sendData(X )

m3

4:tagData(X ) 5:sendTagData(X )

3:breakCon

m2

6:nav(L)
orm4

8:calib 9:mvC 10:mv(L)

m5

11:mvC 12:mv(L)

7:loadDS(X )

Task

Method

Action

ϕ1 ϕ2 ϕ3
(lowBat, 1) (landr(L), 6) (4 ≺ 5)

(1, connEst, 3) (didExp(X ), 6)

(didExp(X ), 1) (6 ≺ 7)

(1 ≺ 2), (2 ≺ 3)

ϕ4 ϕ5
(¬cal, fst[8, 9]) (cal, 11)

(¬lowBat, fst[8, 9]) (¬lowBat, 11)
(lst[8, 9] ≺ 10) (11 ≺ 12)

Figure 1: A partial domain for a simple rover. The tasks and
methods are shown at the top, and the constraint formulas
of methods are shown in the table. Each mi is of the form
Jti ,di = [Si ,ϕi ]K. We use expressions fst[] and lst[] only for
readability; it is straightforward to replace their associated
constraints with those that do not contain such expressions.

Action mv requires ¬lowBat to hold, and it consumes a signifi-

cant amount of charge, i.e., it asserts lowBat.2 Action procImg (not

shown) requires raw and ¬lowBat to hold and asserts ¬raw and

lowBat; the action processes and compresses new raw images (if

any exist, i.e., raw holds) of the martian surface that were taken

by the cameras. Doing procImg infrequently may result in losing

older images, if they are overwritten to make space on the storage

device.
3
The other actions consume a negligible amount of charge,

and action charge (not shown) makes the battery fully charged.

3 PRELIMINARIES AND ASSUMPTIONS
In this section we formally define the notion of reduction, and we

state the remaining assumptions.

First, we separate the notion of method relevance from the notion

of reduction in [8]. In what follows, we use the standard notion of

substitution [15], and of applying a substitution θ to an expression

E, which we denote by Eθ .

Definition 3.1 (Relevant Method). Let D = ⟨Op,Me⟩ be a domain,

t a non-primitive task, and Jt ′,dK ∈ Me a method. If t = t ′θ for

2
For simplicity, we assume ‘low charge’ is less than or equal to 50% of the maximum

charge, and an action requiring a ‘significant’ amount of charge consumes 50%. We

also consider it unsafe for the charge to reach 0%.

3
We assume that delivering a soil sample to the lander and processing images before

they are overwritten have equal importance.

some substitution θ , then dθ is a relevant method-body for t relative
to D.4 The set of all such method-bodies is denoted by rel(t ,D).

In the definition of reduction below, and in the rest of the paper,

we denote by lab(S) the set of all task labels appearing in a given

set of labelled tasks S .

Definition 3.2 (Reduction (adapted from [8])). Let d = [{(n : t)} ∪
S,ϕ], with (n : t) < S , be a task network and t a non-primitive

task, and let d ′ = [S ′,ϕ ′] ∈ rel(t ,D). The reduction of n in d with d ′,
denoted red(d,n,d ′), is the task network [S ∪ S ′,ϕ ′ ∧ψ ], whereψ
is obtained from ϕ with the following modifications:

• replace (n ≺ nj ) with (lst[lab(S ′)] ≺ nj ), as nj must come

after every task in n’s decomposition;

• replace (nj ≺ n) with (nj ≺ fst[lab(S ′)]);
• replace (l ,n) with (l , fst[lab(S ′)]), as l must be true immedi-

ately before the first task in n’s decomposition;

• replace (n, l) with (lst[lab(S ′)], l), as l must be true immedi-

ately after the last task in n’s decomposition;

• replace (n, l ,nj ) with (lst[lab(S ′)], l ,nj );
• replace (nj , l ,n) with (nj , l , fst[lab(S ′)]); and
• everywhere that n appears in ϕ in a fst[] or a lst[] expression,
replace it with lab(S ′).

For example, consider task network d = [S,ϕ], where S =
{(A : transDS(loc1)), (B : charge)} and ϕ = (A ≺ B). Observe
that methodm2 in Figure 1 is JtransDS(X ),d2 = [S2,ϕ2]K, where
S2 = {(6 : nav(L)), (7 : loadDS(X ))} and ϕ2 = (landr(L), 6) ∧
(didExp(X ), 6) ∧ (6 ≺ 7). Then, red(d,A,d2) is task network [S ′,ϕ ′]
where S ′ = {(6 : nav(L)), (7 : loadDS(loc1)), (B : charge)} and ϕ ′ is
the conjunction of ϕ2 and ϕ updated to account for the reduction,

i.e., ϕ ′ = (landr(L), 6) ∧ (didExp(loc1), 6) ∧ (6 ≺ 7) ∧ (lst[6, 7] ≺ B).
In the rest of the paper, we ignore the charge task, and when we

need to refer to a labelled task we simply use its task label if the

corresponding task is obvious; e.g. we would represent S ′ above as
{6, (7 : loadDS(loc1)),B}.

The remaining assumptions that wemake are the following. First,

without loss of generality [4], we assume that HTN domains are

conjunctive, i.e., they do not mention constraint formulas that spec-

ify a disjunction of elements. Thus, we sometimes treat a constraint

formula as a set (of possibly negated constraints).

Definition 3.3 (Conjunctive HTNs [4]). A task network [S,ϕ] is
conjunctive if its constraint formula ϕ is a conjunction of possibly

negated constraints. A domain ⟨Op,Me⟩ is conjunctive if the task
network d in every method Jt ,dK ∈ Me is conjunctive.

Second, to distinguish between reductions that are being pur-

sued at different levels of abstraction, we assume that a reduction

produces at least two tasks, i.e., any method Jt , [S,ϕ]K ∈ Me is such
that |S | > 1. This can be achieved using ‘no-op’ actions, denoted

nop, if necessary, which have ‘empty’ preconditions and effects.

Third, for any method Jt , [S,ϕ]K ∈ Me, there exists a (possibly
‘no-op’) task (n : t) ∈ S such that (n′ ≺ n) ∈ ϕ for any n′ ∈

lab(S) \ {n}, and (n, l) < ϕ for any l . This will ensure that all the
after state-constraints in ϕ are evaluated by our semantics.

4
All variables and task labels in dθ must be renamed with variables and task labels

that do not appear anywhere else.
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Finally, we assume that the user does not specify inconsistent

ordering constraints in a method’s constraint formula, e.g. the

constraints (1 ≺ 2), (2 ≺ 3), and (3 ≺ 1). Formally, let ϕ∗ denote
the transitive closure of a constraint formula ϕ, i.e., the one that
is obtained from ϕ by adding the constraint (n1 ≺ ni+1) whenever
(n1 ≺ n2), (n2 ≺ n3), . . . , (ni ≺ ni+1) ∈ ϕ holds for some i > 1.

Then, for any method Jt , [S,ϕ]K ∈ Me, there does not exist a pair
(n ≺ n′), (n′ ≺ n) ∈ ϕ∗ nor (n ≺ n′),¬(n ≺ n′) ∈ ϕ∗.

4 A FORMALISM FOR HTN ACTING
We now develop a formalism for HTN acting by defining, in particu-

lar, three notions of execution: via reduction, action, and replacement.
The first notion is based on task reduction; the second notion de-

fines what it means to execute an action in the HTN setting, in

particular, the gathering and evaluating of constraints that are rele-

vant to the action; and the third notion represents failure handling,

i.e., the replacement of ‘blocked’ tasks by alternative ones.

We only allow a task occurring in a task network to be executed

via action or reduction if it is a primary task in the network, i.e.,

there are no other tasks that must precede it. Formally, given a task

network d = [S,ϕ], we first define the following sets of tasks:

S1 = {(n : t) ∈ S | (x ≺ x ′) ∈ ϕ,n occurs in x ′},
S2 = {(n : t) ∈ S | t is an action and either ¬(n ≺ x) ∈ ϕ or

¬(lst[{n}] ≺ x) ∈ ϕ}.

That is, S1 and S2 contain the tasks that cannot be primary ones; the

above action n occurring in a negated ordering constraint cannot be

a primary task because one or more tasks (represented by x above)

must precede n.5 Then, we define the set of primary tasks of task

network d as primary(d) = S \ (S1 ∪ S2). For example, given task

network d1 in methodm1 in Figure 1, primary(d1) = {1}, and given

task network d4 in methodm4, primary(d4) = {8, 9}.

We can now define our first notion, an execution via reduction
of a task network, as the reduction of an arbitrary primary non-

primitive task via a relevant method. To enable trying alternative

reductions for the task if the one that was selected fails or is not

applicable, we maintain the set of all relevant methods for the

task, and update the set as alternative methods are tried. We use

the term reduction couple to refer to a couple comprising two sets:

(i) the set representing the reductions being pursued for a task

(and its subtasks), and (ii) the set of current alternative method-

bodies for the task. We use R to denote the set of reduction couples

corresponding to the tasks reduced so far, where each couple is

of the form ⟨S,D⟩, with S being a set of labelled tasks, and D a

set of task networks. While the initial value of R and how it can

‘evolve’ will be made concrete via formal definitions, we shall for

now illustrate these with an example.

Let us consider the task network [S,ϕ = true], where the set

S = {(A : transDS(loc1)), (B : procImg)}; the initial state I =

{raw, cal, didExp(loc1), landr(lan1)}; the ‘initial’ set of reduction

couples R = {⟨S, ∅⟩}; and the domain D is as depicted in Figure 1.

An execution via reduction of the task network from I relative to

R and D is the tuple ⟨[S ′,ϕ ′],I,R′,D⟩, where S ′ = {6, 7,B}, for-
mula ϕ ′ is ϕ2 in Figure 1 with variable X substituted with loc1, and

5
This is provided none of the actions associated with x have already been executed.

As we show later, in our semantics, such an execution will result in the (then ‘realised’)

constraint being removed.

the resulting set of reduction couples R′ = {⟨S ′, ∅⟩, ⟨{6, 7}, {d1}⟩},
where d1 is the alternative method-body for A. Moreover, an ex-

ecution via reduction of [S ′,ϕ ′] is the tuple ⟨[S ′′,ϕ ′′],I,R′′,D⟩,
where S ′′ = S ′′′ ∪ {7,B}, set S ′′′ = {11, 12}, formula ϕ ′′ is the
conjunction of ϕ5 and ϕ

′
updated to account for the reduction, and

set R′′ = {⟨S ′′, ∅⟩, ⟨S ′′′ ∪ {7}, {d1}⟩, ⟨S
′′′, {d4}⟩}.

We call a 4-tuple of the form ⟨d,I,R,D⟩, as in the example

above, a configuration. (For brevity, we omit the fifth element θ ,
representing the substitutions applied so far to variables appearing

in d .) Formally, we define an execution via reduction as follows.

Definition 4.1 (Execution via Reduction). Let D be a domain; I

a state; d a task network with a non-primitive task (n : t) ∈

primary(d); R a set of reduction couples; dn = [Sn ,ϕn ] ∈ D a

method-body, with D = rel(t ,D); and couple r = ⟨Sn ,D \ {dn }⟩.
An execution via reduction of d from I relative to R and D is the

configuration ⟨red(d,n,dn ),I,R′ ∪ {r },D⟩, where R′
is R with any

occurrence of (n : t) replaced by the elements in set Sn .

We now define the second kind of execution: performing an

action. In order to execute a (primary) action, it must be applicable,
i.e., its precondition and any constraints that are relevant to the

action must hold in the current state. Such constraints could have

been (directly) specified on the action, ‘inherited’ from one or more

of the action’s ‘ancestors’, or ‘propagated’ from an earlier action.We

first define the notion of a relevant constraint; we ignore negated

between state-constraints for brevity.
6

Definition 4.2 (Relevant Constraint). Let d = [S,ϕ] be a task

network with an action (n : t) ∈ S , and c ∈ ϕ a between state-

constraint or a possibly negated before or after state-constraint.

Let c2 be the non-negated constraint corresponding to c . Then, c is
relevant for executing n relative to d if for some literal l :

• c2 ∈ {(l ,n), (l , fst[{n, . . .}])}; or

for some x ′ and n′ < lab(S),
• c2 ∈ {(n′, l), (lst[∅], l), (n′, l ,x ′), (lst[∅], l ,x ′)}.

The set of relevant constraints for executing n relative to d is

denoted by bef(n,d). For example, if d is the resulting task network

after the two reductions in our running example, the relevant con-

straints for (11 : mvC) in Figure 1 is the set: {
(
landr(L), fst[11, 12]

)
,(

didExp(loc1), fst[11, 12]
)
, (¬lowBat, 11), (cal, 11)}, where the first

two constraints are ‘inherited’ from (6 : nav(L)). In the above

definition, n′ and lst[∅] represent an action that was already ex-

ecuted, whose associated after or between state-constraints have

been ‘propagated’ to n.
We next define what it means to ‘extract’ the literals from a

given set of state constraints. Let us denote the subset of negated

constraints as bef−(n,d) = {c ∈ bef(n,d) | c is a negated constraint},
and the subset of positive ones as bef+(n,d) = bef(n,d) \ bef−(n,d).
Then, the set of extracted literals is denoted befl (n,d) = {l | literal l
occurs in c, c ∈ bef+(n,d)}∪{¬l | literal l occurs in c, c ∈ bef−(n,d)}.
We can now define what it means for an action to be applicable.

Definition 4.3 (Applicability). Let D = ⟨Op,Me⟩ be a domain, I

a state, and d = [S,ϕ] a task network with an action (n : t) ∈ S

6
To account for a constraint ¬(n1, l, n2), we check in every state between n1 and n2

whether ¬l holds. If so, we remove the constraint from the formula. If ¬(n1, l, n2)

exists when the first action of n2 is executed, ¬l is then relevant for it.
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such that n ∈ primary(d). Let Φ(n,d,Op) denote the precondition
and extracted literals, i.e., the formula pre(t ,Op) ∧

∧
l ∈ befl (n,d).

Then, n is applicable in I relative to d and Op if I |= Φ(n,d,Op).

Executing an applicable action results in changes to both the cur-

rent state and the current task network: the action is removed from

the network’s set of tasks, and the action’s ‘realised’ constraints,

e.g. the relevant ones that do not need to be re-evaluated before

executing other actions, are removed from the network’s constraint

formula. The constraints that do need to be re-evaluated are the

between state-constraints that require literals to hold from the end

of an action that was executed earlier, up to an action that is yet

to be executed. Formally, given a task network d = [S,ϕ] and an

action (n : t) ∈ S , we denote by C1 the realised ordering constraints
upon executing n (relative to d), i.e., the set{

(x ≺ x ′) ∈ ϕ | for some x ′ and x ∈ {n, lst[{n}]}
}
∪{

¬(x ′ ≺ x) ∈ ϕ | for some x ′ and x ∈ {n, fst[{n, . . .}]}
}
,

where x ′ represents an action(s) that is yet to be executed. Notice

that a negated ordering constraint is realised only if one or more

(or all) of the actions corresponding to x ′ are executed after the

first (or only) one corresponding to x . Next, we denote by C2 the

realised state constraints upon executingn, i.e., the set obtained from
bef(n,d) by removing any between state-constraint (x , l ,x ′) when
x ′ , n and x ′ , fst[{n, . . .}]. Then, we can define the set of realised
constraints upon executing n relative to d as fin(n,d) = C1 ∪ C2,

and the result of executing an action as follows.

Definition 4.4 (Action Result). Let Op be a set of operators, I

a state, d a task network, R a set of reduction couples, (n : t) ∈

primary(d) an action, and θ a substitution. The result of executing
n from I relative to d,θ ,R and Op, denoted res(n,I,d,θ ,R,Op), is
the tuple ⟨[S ′,ϕ ′],I ′,R⟩θ , where

• S ′ = S \ {(n : t)}, where d = [S,ϕ];
• I ′ =

(
I \ del(tθ ,Op)

)
∪ add(tθ ,Op); and

• ϕ ′ is obtained from ϕ \ fin(n,d) by removing all occurrences

of n within lst[] expressions.7

Notice that the only possible update to R is a substitution of

one or more variables (we do not remove executed actions from

reduction couples). Finally, we define an execution via action of a

task network as the execution of (a ground instance of) an applicable

primary action in it.

Definition 4.5 (Execution via Action). Let D = ⟨Op,Me⟩ be a

domain, I a state, R a set of reduction couples, and d = [S,ϕ] a task
network such that I |= ψ for some θ and action (n : t) ∈ primary(d),
whereψ = Φ(n,d,Op)θ is a ground formula. An execution via action
of d from I relative to R and D is the configuration ⟨d ′,I ′,R′,D⟩,
where ⟨d ′,I ′,R′⟩ = res(n,I,d,θ ,R,Op).

Continuing with our running example, let ⟨[S,ϕ],I,R,D⟩, with
S = {11, 12, 7,B}, be the configuration resulting from the two re-

ductions from before. Then, an execution via action of d from I

relative to R and D is the configuration ⟨[S ′,ϕ ′],I ′,R′,D⟩, where
I ′ = I ∪ {camMoved}; set S ′ = {(12 : mv(lan1)), 7,B}; for-
mula ϕ ′ is obtained from ϕ by removing all constraints except

7
We also remove from ϕ′

any (remaining) constraint of the form (x, l, x ′) such that

n occurs in x ′
, i.e., a between state-constraint that holds trivially.

for (lst[11, 12] ≺ 7), which is updated to (lst[12] ≺ 7); and R′
is

obtained from R by applying substitution {L/lan1}.
Observe that the applicability of a method (relative to the current

state) is not checked at the point that it is chosen to reduce a task,

but immediately before executing (for the first time) an associated

primary action—which may be after performing further reductions

and unordered actions. On the other hand, BDI agent programming

languages such as AgentSpeak and CAN check the applicability of

a relevant recipe at some point before (not necessarily just before)

executing an associated primary action. Thus, in cases where the

environment changes between checking the recipe’s applicability

and executing an associated primary action (for the first time),

and makes the recipe no longer applicable, the action will still be

executed (provided, of course, the action itself is applicable). Such

behaviour is not permitted by our semantics.

We now define the final notion of execution: execution via replace-
ment, i.e., replacing the reductions being pursued for a task if they

have become blocked. Intuitively, this happens when none of the

primary actions in the pursued reductions are applicable, and none

of the primary non-primitive tasks have a relevant method-body.

Formally, let D = ⟨Op,Me⟩ be a domain, I a state, d a task net-

work, and ⟨S,D⟩ a reduction couple with S ∩ primary(d) , ∅. Then,

set S is blocked in d from I relative toD, denoted blocked(S,d,I,D),
if for all (n : t) ∈ S ∩ primary(d), either t is an action and I ̸|=

Φ(n,d,Op), or t is a non-primitive task and rel(t ,D) = ∅. Recall that

S represents the reductions that are being pursued for a particular

task (and its subtasks).

When such pursued reductions are blocked, they are replaced by

an alternative relevant method-body for the task. In the definition

below, we use the fst[] and lst[] constructs (if any) ‘inserted’ into
the constraint formula by the first reduction of the task (Definition

3.2). Recall that these constructs represent the ‘inheritance’ of the

task’s associated constraints by its descendant tasks.

Definition 4.6 (Replacement). Let d = [Sd ,ϕd ] be a task network,

⟨S,D⟩ a reduction couple, and dnew = [Snew ,ϕnew ] ∈ D. The re-
placement of (the elements of) S in Sd with Snew relative to dnew
and d , denoted rep(S,dnew ,d), is the task network

[(Sd \ S ′) ∪ Snew ,ψ ∧ ϕnew ],

where S ′ = S ∩ Sd , andψ is obtained from ϕd by (i) replacing any
occurrence of (all) the task labels in lab(S ′)—within a fst[] or a lst[]
expression—with the labels in lab(Snew ), and then (ii) removing

any element mentioning a task label in lab(S).

After a replacement, we need to update the set of reduction

couples accordingly, by doing the same replacement in all rele-

vant reduction couples. In the definition below, the set S ′ and task

network dnew are as above.

Definition 4.7 (Update). Let R be a set of reduction couples with

⟨S,D⟩ ∈ R, let S ′ ⊆ S , and dnew ∈ D. The update of S ′ in S with

Snew relative to dnew and R, denoted upd(S ′, S,dnew ,R), is the set
obtained from R′ =

(
R \ {⟨S,D⟩}

)
∪ {⟨S,D \ {dnew }⟩} by replacing

any couple ⟨S ′′ ⊇ S,D ′′⟩ with ⟨(S ′′ \ S ′) ∪ Snew ,D
′′⟩, and then

removing any couple that still mentions an element in S ′.

Finally, we combine the two definitions above to define the con-

figuration that results from an execution via replacement. While we
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provide a general definition, for replacing any task’s blocked (pur-

sued) reductions, one might instead want to, as in depth-first search,

first replace a least abstract task’s blocked reductions. That is, one

might want to first consider the smallest replaceable reduction cou-

ples. Formally, given a set of reduction couples R, a couple ⟨S,D⟩ ∈
R is a smallest replaceable one in R, denoted ⟨S,D⟩ ∈ smallest(R), if
D , ∅ and for each couple ⟨S ′,D ′⟩ ∈ R, either (a) S ′ ⊇ S ; (b) S ′ ⊂ S
and D ′ = ∅; or (c) S ∩ S ′ = ∅.

Definition 4.8 (Execution via Replacement). Let D be a domain, I

a state, d = [Sd ,ϕd ] a task network, and R a set of reduction couples

with an r = ⟨S, {dnew , . . .}⟩ ∈ R such that blocked(S,d,I,D) holds.
An execution via replacement of d from I relative to R and D is the

configuration

⟨rep(S,dnew ,d),I, upd(S ∩ Sd , S,dnew ,R),D⟩;

the replacement is complete if S ⊆ Sd and partial otherwise, and a

jump if r < smallest(R).

A complete-replacement represents the BDI-style searching of an

achievement-goal’s (i.e., a task’s) set of relevant recipes in order to

find one that is applicable, and a partial-replacement represents BDI-

style recovery from the failure to execute (or successfully execute)

an action, e.g. due to an environmental change. We illustrate these

two notions of replacement with the following examples.

Continuing with our running example, let ⟨[S,ϕ],I,R,D⟩ be
the configuration resulting from the two reductions from before.

Suppose however that the rover’s instruments were not calibrated,

i.e., I ̸|= cal. Then, action (11 : mvC) is not applicable, and an exe-

cution via complete-replacement is performed on tasks in [S,ϕ] to
obtain configuration ⟨[S ′,ϕ ′],I,R′,D⟩, where S ′ = S ′′∪ {7,B}; set
S ′′ = {8, 9, 10}; formula ϕ ′ is the conjunction of ϕ4, and ϕ updated

by, e.g. removing the constraints that were copied from ϕ5 and re-

placing constraint (landr(L), fst[11, 12])with (landr(L), fst[8, 9, 10]);
and the set of couples R′ = {⟨S ′, ∅⟩, ⟨S ′′ ∪ {7}, {d1}⟩, ⟨S

′′, ∅⟩}.

Suppose we now perform two executions via action to obtain con-

figuration ⟨[S ′′′,ϕ ′′],I ′,R′′,D⟩, with S ′′′ = {(10 : mv(lan1)), 7,B}
and formula ϕ ′′ (resp. set R′′

) being ϕ ′ (resp. R′
) updated to account

for the executions. Finally, suppose that the battery level drops due

to the execution of top-level image processing action (B : procImg),
which makes mv(lan1) no longer applicable. (We will show later

how procImg could instead be absent in the initial task network and

arrive ‘dynamically’ from the environment.) Then, an execution

via partial-replacement will be performed on tasks in [S ′′′ \ {(B :

procImg)},ϕ ′′] to obtain configuration ⟨[{1, 2, 3},ϕ ′′′],I ′′,R′′′,D⟩,
where ϕ ′′′ (resp. I ′′

) is the updated ϕ ′′ (resp. I ′
), and the set

R′′′ = {⟨{8, 9, 1, 2, 3,B}, ∅⟩, ⟨{8, 9, 1, 2, 3}, ∅⟩}.

5 PROPERTIES OF THE FORMALISM
In this section, we discuss the properties of our formalism, and in

particular how it relates to HTN planning.

The properties are based on the definition of an execution trace,
which formalises the consecutive execution of a configuration—via

reduction, replacement, or action—as in our running example. In

what follows, we use τ ∈ exec(d,I,R,D) to denote that a configu-

ration τ is an execution via reduction, action, or replacement of a

task network d from a state I relative to a set of reduction couples

R and a domain D.

Definition 5.1 (Execution Trace). Let d = [Sd ,ϕd ] be a task net-

work, I a state, and D a domain. An execution trace T of d from

I relative to D is any sequence of configurations τ1 · . . . · τk , with
each τi = ⟨di ,Ii ,Ri ,D⟩, such that d1 = d ; I1 = I; R1 = {⟨Sd , ∅⟩};
and τi+1 ∈ exec(di ,Ii ,Ri ,D) for all i ∈ [1,k − 1].

We also need some auxiliary definitions related to execution

traces. Consider configuration τk above. First, if Sk = ∅ (where

dk = [Sk ,ϕk ]), then the trace is successful. Second, if for all cou-
ples ⟨S,D⟩ ∈ Rk we have that S ∩ primary(dk ) , ∅ entails both

blocked(S,dk ,Ik ,D) and D = ∅, then the trace is blocked. The fol-
lowing theorem states that if a trace is successful or blocked as we

have ‘syntactically’ defined, then there is no way to ‘extend’ the

trace further, and vice versa.

Proposition 5.2. Let T be an execution trace of a task network d
from a state I relative to a domain D. There exists an execution trace
T · τ1 · . . . · τk , with k > 0, of d (from I relative to D) if and only if
T is neither successful nor blocked. The inverse also holds.

Proof. If there exists a trace T · τ1 · . . . · τk with k > 0 then

T cannot be successful as its final task network dk = [Sk ,ϕk ]
would then not mention any tasks, and thus we cannot ‘extend’

it to τ1. The fact that T cannot be blocked follows from the fact

that an execution via replacement, action, or reduction of dk is

possible. Conversely, if T is neither successful nor blocked, then

the only reason it would not be possible to ‘extend’ it is if Sk , ∅ but

primary(dk ) = ∅. However, this is only possible if a method-body

exists where its constraint formula contains inconsistent (possibly

negated) ordering constraints. Such method-bodies are not allowed

due to our assumption in Section 3. The inverse of the theorem is

proved similarly. □

The next three properties rely on traces that are free from certain

kinds of execution. A trace T = τ1 · . . . · τk is complete-replacement
free if there does not exist an index i ∈ [1,k − 1] such that τi+1 is
an execution via complete-replacement of di from Ii relative to

Ri and D. We define partial-replacement free and jump free traces
similarly.

Given any execution trace, the next theorem states that there is

an equivalent one—in terms of actions performed—that is complete-

replacement free. Intuitively, this is because, either with some

‘lookahead’ mechanism or ‘luck’, a complete-replacement can be

avoided by choosing a different (or ‘correct’) relevant method-body

for a task. We define the actions performed by a trace T = τ1 · . . . ·τk
(or the pursued ‘solution’), denoted act(T ), as follows. Given an in-

dex i ∈ [1,k −1], we first define act(i) = t if Si \Si+1 = {(n : t)} and
τi+1 is an execution via action of di from Ii relative to Ri and D;
otherwise, we define act(i) = ϵ . Then, act(T ) is act(1) · . . . ·act(k−1)

with substitution θ of configuration τk applied to the sequence.

Theorem 5.3. Let T be an execution trace of a task networkd from
a state I relative to a domain D. There exists a complete-replacement
free execution trace T ′ of d from I relative to D such that act(T ) =

act(T ′) and |T ′ | ≤ |T |.

Proof Sketch. Let T = τ1 · . . . ·τk . The main steps are as follows.

Consider the first execution via complete-replacement, i.e., the

smallest 0 < m < k such that τm+1 (with each τj = ⟨dj ,I j ,Rj ,D⟩)
is an execution via complete-replacement of dm from Im relative
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to Rm andD. If there is no such τm+1, the theorem holds; otherwise,

dm+1 = rep(S,d ′,dm ) for some ⟨S,D⟩ ∈ Rm and d ′ ∈ D (Def. 4.6).

We show how this replacement can be ‘removed’ from the trace.

Consider prefix τ1 · . . . ·τi with i < m, where τi is where the (first)
‘incorrect’ reduction, which led to the replacement, was performed.

Let di+1 = red(di ,n,d) be the reduction, for some (n : t) ∈ Si and
d ∈ rel(t ,D), with di = [Si ,ϕi ]. Further, let τ

′ = ⟨dτ ′ ,Iτ ′ ,Rτ ′ ,D⟩
represent the alternative reduction corresponding to replacement

d ′ above, i.e., the execution via reduction of di from Ii relative

to Ri and D such that dτ ′ = red(di ,n,d
′). We now show that all

‘relevant’ executions from τi+1 up to τm (which cannot be complete-

replacements) are also possible from τ ′, and thereby that τm+1 can
be reached from τ ′ without the complete-replacement.

Consider one such execution. If i + 1 < m, then τi+2 is an ex-

ecution via reduction, partial-replacement or action of di+1 from
Ii+1 relative to Ri+1 and D. Let Sbef ⊂ Si+1 be the task that was

executed or reduced, or the tasks that were replaced. If Sbef ⊂ Sτ ′

(where dτ ′ = [Sτ ′ ,ϕτ ′]) then the execution is ‘relevant’ to dτ ′ , i.e.,
the execution does not involve an ‘ancestor’ of S . We then show

that there also exists a configuration τ ′′ that is an execution via

reduction, partial-replacement or action of dτ ′ (from Iτ ′ relative

to Rτ ′ and D) that involves the same tasks as in Sbef . In particular,

we show that the difference (if any) between formula ϕτ ′ and ϕi+1,
due to the different reductions performed on di , does not affect the
above execution. □

An equivalent complete-replacement free trace may, however,

unavoidably specify one or more replacements that are jumps—

where the smallest replaceable reduction couples were skipped. To

see why this holds, consider once again our running example, but

suppose that the constraints associated with ¬lowBat do not exist

in ϕ4 and ϕ5 in Figure 1.
8
Suppose also that after the first reduction

(of task A), task 6 is reduced using methodm4 instead ofm5, which

means that the complete-replacement in the previous example will

not occur. The resulting set of reduction couples will then con-

tain the couple ⟨S, {d5}⟩, with S = {8, 9, 10}, instead of the couple

⟨S, ∅⟩ in the previous example (after the complete-replacement was

performed). Thus, after the two executions via action of tasks 8

and 9 as before, the subsequent partial-replacement must ‘skip’

couple ⟨S, {d5}⟩, which is the smallest replaceable one, and ‘jump’

to couple ⟨S ∪ {7}, {d1}⟩ in order to avoid performing (11 : mvC).
Intuitively, the jump is needed to ‘mimic’ the actions yielded by the

trace depicted by the previous example, which considered d5 but
then removed it (via the complete-replacement) because it was not

applicable. This observation is stated formally below.

Proposition 5.4. There exists a domain D, state I, task network
d , and an execution trace T of d from I relative to D such that any
complete-replacement free execution trace T ′ of d from I relative to
D is not jump free when act(T ) = act(T ′).

Proof. This follows from the example above. □

The next result makes the link concrete between our HTN acting

formalism and HTN planning. It states that the solution yielded

8
One could imagine a setting where (i) ¬lowBat should only be checked immediately

before action mv, and (ii) it is not undesirable to do actions calib (if ¬cal holds) and
mvC, even if action mv turns out to be non-applicable.

by any execution trace that is successful and free from partial-

replacements can also be yielded via HTN planning. Conversely,

given any HTN planning solution, there exists such an execution

trace that yields it. The trace must be free from partial-replacements

because such behaviour is specific to BDI-style recovery from run-

time failure.

Theorem 5.5. Let D be a domain, I a state, and d a task network.
Then, σ ∈ sol(d,I,D) if and only if there exists a partial-replacement
free and successful execution trace T of d from I relative to D such
that σ = act(T ).

Proof Sketch. We prove this by induction on the length of the

prefixes of σ . We sketch only one direction of the proof: where

σ ∈ sol(d,I,D). Observe that by the definition of sol(d,I,D) in
Section 2, there exists a sequence d = d1 · . . . · dm with d = d1, and
in particular with σ ∈ comp(dm ,I,D). Informally, given a task label

n, let function f (n) denote the index in d where n first appears.

For the base case, we consider the labelled action (n : t) cor-
responding to the first action in σ . Let τ1 · . . . · τk , with k ≤ m
and each τi = ⟨di = [Si ,ϕi ],I,Ri ,D⟩, be a trace of d from I rel-

ative to D such that (i) k = f (n), and (ii) for each i ∈ [1,k − 1],

di+1 = red(di ,ni , ˆdi ) for some (ni , ti ) ∈ Si and ˆdi ∈ rel(ti ,D). Since
(n : t) is the first action in σ (which is applicable in I), the precondi-

tion of t holds in I, and so does any possibly negated constraint in

ϕm of the form (l ,n) or (l , fst[n, . . .]). Therefore, I |= Φ(n,dk ,Op)
also holds (Def. 4.3): any such constraints will also occur in ϕk and

no more before state-constraints can occur in ϕk that are associated

withn. Then, we can take trace T 1 = τ1 · . . . ·τk · ⟨[S
′,ϕ ′],I ′,R ′,D⟩,

where the last configuration is an execution via action of dk from

I (relative to Rk and D) such that n ∈ lab(Sk ) but n < lab(S ′). From
this it follows that the theorem holds in the base case.

For the induction hypothesis, we assume that the theorem holds

for any prefix of σ of length up to ℓ < |σ |. We then show that the

theorem also holds for the prefix of σ of length ℓ + 1, using, from

the induction hypothesis, the fact that there is a trace T ℓ
of d from

I relative to D corresponding to the prefix of σ of length ℓ. □

If a trace is not free from partial-replacements, it may not be

possible to obtain its solution via HTN planning (given the same

inputs). A similar property exists in the CANPlan semantics: BDI-

style recovery from failure enables solutions that cannot be found

using CANPlan’s built-in HTN planning construct.

Theorem 5.6. There exists a domain D, state I, task network d ,
and successful execution trace T of d from I relative to D such that
act(T ) < sol(d,I,D).

Proof. Consider the trace from our running example, up to the

point where an execution via partial-replacement is performed

using methodm1. If the resulting task network is successfully exe-

cuted, we get the solution corresponding to the sequence of action

labels 8 · 9 ·B · 1 · 4 · 5 · 3, which is not an HTN solution; e.g. an HTN

solution cannot have (actions corresponding to) both 8 and 1. □

6 AN ALGORITHM FOR HTN ACTING
In this section we present the Sense-Reason-Act algorithm for HTN

acting, which combines our formalism with the processing of ex-

ogenous events. In the algorithm we use Snop to denote the initial
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Sense-Reason-Act(I,D)

1: d := [Sd ,ϕd ] = [Snop , true] // Initial task network

2: T := Snop ; R := {⟨Snop , ∅⟩}; T := ⟨d,I,R,D⟩
3: while true do
4: Set T to the possibly empty set of newly observed tasks

5: T′
:= {(n : t) | t ∈ T,n is a unique task label}

6: T := T ∪ T′
// Store all newly observed tasks

7: d ′ := [Sd ∪ T′,ϕd ]
8: R′

:=
(
R \ {⟨top(R), ∅⟩}

)
∪ {⟨top(R) ∪ T′, ∅⟩}

9: if T , ∅ then
10: T := T · ⟨d ′,I,R′,D⟩
11: end if
12: if T is neither successful nor blocked then // Below Def. 5.1
13: Set ⟨d,I,R,D⟩ to an element of exec(d ′,I,R′,D)

14: T := T · ⟨d,I,R,D⟩
15: end if
16: end while

set of tasks {(0 : nop)}, and top(R) to denote the (unique) set S of

tasks in the ‘top level’ reduction couple, given a set of reduction

couples R, i.e., the couple ⟨S ⊇ Snop , ∅⟩. The algorithm takes the

current state and HTN domain as input and continuously performs

two main steps as follows.

Step 1. The algorithm ‘processes’ newly observed (external)

tasks (if any) and inserts them as top-level tasks to a copy of the

current configuration’s task network d and set of reduction couples

R (lines 4 to 8), which are used to create the ‘next’ configuration.

Such tasks could be the initial requests, for example to transfer

the soil data and sample and then recharge, or requests that arrive

later, possibly while other tasks are being achieved. For example,

task procImg could be a newly observed task in the iteration fol-

lowing the execution of the actions corresponding to task labels

8 and 9 in methodm4 (as opposed to procImg being an initial re-

quest). A newly observed task could also represent an exogenous

event triggered by a change in the environment; e.g. the arrival

of primitive task stormy could represent the event that it has just

become stormy, and it could have the add-list {isStormy}, which
will be applied to the agent’s state when the task is executed. Given

a domain D = ⟨Op,Me⟩, we stipulate that any newly observed task

t is such that pre(t ,Op) = true if t is primitive, and rel(t ,D) , ∅

otherwise.

Step 2. If one or more new tasks were indeed observed, the

corresponding ‘next’ configuration is appended (line 10) to the

current ‘dynamic’ execution trace, or d-trace T . A d-trace is slightly

different to an execution trace (Definition 5.1) in that the former

may include tasks that are not just obtained by reduction but also

dynamically from the environment. If an execution via reduction,

action, or replacement is possible from the last configuration in the

d-trace (line 12), the execution is then performed and the resulting

configuration is appended to the trace (lines 13 and 14).

The following theorem states that any d-trace produced by the

algorithm is sound, i.e., any such d-trace, which may include new

tasks observed over a number of iterations, is equivalent to some

(standard) execution trace such that all of those tasks are present

in the first configuration, but their execution is ‘postponed’.

Theorem 6.1. Let state Iin and domain D be the inputs of algo-
rithm Sense-Reason-Act. Let T

16
and T 16 be the values of variables

T and T , respectively, on reaching line 16 in the algorithm (after one
or more iterations). Then, act(T 16) = act(T ) for some execution trace
T of task network [T

16
, true] from Iin relative to D.

Proof Sketch. D-trace T in the algorithm, which is incremen-

tally built, is similar to an execution trace, except for (i) the initial
‘empty’ task network of T ; and (ii) the task networks appended in

line 10 to account for newly observed tasks. We obtain an execution

trace from T 16 as follows: take the last element τj ∈ T 16 (each

τk = ⟨[Sk,ϕk],Ik, Rk,D⟩) such that Sj ⊂ Sj+1, i.e., there are newly

observed tasks in Sj+1; remove τj+1 from T 16; add the elements in

Sj+1 \ Sj to each Si and top(Ri ), for i ∈ [1, j]; and repeat these steps
on the resulting d-traces until an execution trace is obtained. □

7 DISCUSSION AND FUTUREWORK
While some implementations of HTN acting frameworks do exist

in the literature, this paper has, for the first time, provided a formal

framework, by using the most general HTN planning syntax and

building on the core of its semantics. In doing so, we have carried

over some of the advantages of the HTN planning formalism, such

as the ability to flexibly interleave the actions associated with a

method [4], and to check a method’s applicability immediately
before first executing an action. We have also compared HTN acting

to HTN planning, and to a BDI agent programming language.

We could now explore adding a ‘controlled’ and ‘local’ account

of HTN planning into HTN acting. The result should be a similar

semantics to CANPlan, which allows a BDI agent to perform HTN

planning but only from user-specified points in a hierarchy. One

approach might be, given a ground non-primitive task t , to use the

construct Plan(t) to indicate that HTN planning (as opposed to an

arbitrary reduction) must be performed on t , and to define the new

notion ‘execution via HTN planning’. Given a current configuration

⟨d,I,R,D⟩ with task network d = [{(n : Plan(t)), . . .},ϕ], the
definition would, for example, check whether there is a ground

instance d ′t of a method-body dt ∈ rel(t ,D) such that sol(d ′t ,I,D) ,
∅ holds (defined in Section 2).

We could also investigate an improved semantics where a ‘tried’

method-body is re-tried to achieve a task. Recall that when a rele-

vant method-body is selected to reduce a task, and the body turns

out to be ‘non-applicable’ (i.e., it is unable to execute any of its tasks)

in the current state, we consider the body to have been ‘tried’, in

the same way that we consider a body to have been tried if it fails

(becomes blocked) during execution, e.g. due to an environmental

change. To enable re-trying a body that was not applicable in an

earlier state, we should at the least be able to check whether that

state is different to the current one (both of which are sets of ground

atoms). Ideally, however, we should also be able to quickly check

(in polynomial time) whether the conditions that differ between

the two states are likely to make the method-body applicable. To

enable re-trying a method-body that had failed, we could explore

techniques for analysing the conditions responsible for the failure

in order to check that they no longer hold, as suggested in [11].
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