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ABSTRACT
We consider extensions of Coalition Logic (CL) which can express

statements about inter-related powers of coalitions to achieve their

respective goals. In particular, we introduce and study two new ex-

tensions ofCL. One of them is the “Socially Friendly Coalition Logic”

SFCL, which is also a multi-agent extension of the recently intro-

duced “Instantial Neighborhood Logic” INL. SFCL can express the

claim that a coalition has a collective strategy to guarantee achiev-

ing its explicitly stated goal while acting in a ‘socially friendly way’,

by enabling the remaining agents to achieve other (again, explicitly

stated) goals of their choice. The other new extension is the “Group

Protecting Coalition Logic” GPCL which enables reasoning about

entire coalitional goal assignments, in which every group of agents

has its own specified goal. GPCL can express claims to the effect

that there is an action profile of the grand coalition such that, by

playing it, every sub-coalition of agents can guarantee satisfaction

of its own private goal (and thus, protect its own interests) while act-

ing towards achievement of the common goal of the grand coalition.

For each of these logics, we discuss its expressiveness, introduce the

respective notion of bisimulation and prove bisimulation invariance

and Hennessy-Milner property. We then also present sound and

complete axiomatic systems and prove decidability for both logics.
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1 INTRODUCTION
The Coalition Logic CL introduced and studied in [11, 12] can for-

malise reasoning about strategic abilities of coalitions of agents to

guarantee the achievement of designated objectives regardless of

the actions of the remaining agents. More precisely, CL features

strategic operators of the type [C], for any group (‘coalition’) of

agents C and, for any formula ϕ, regarded as expressing the coali-

tional objective of C , [C]ϕ intuitively says that the coalition C has

a collective action σC that guarantees the satisfaction of ϕ in every

outcome state that can occur when the agents inC execute their ac-

tions in σC , regardless of the choice of actions of the agents that are
not inC . Thus,CL can reason about unconditional powers of agents
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and coalitions to act unilaterally in pursuit of their goals. In this

respect CL takes a somewhat one-sided perspective: the agents in

some coalitionC are viewed as acting in cooperationwith each other
but in opposition to all agents outside of the coalition. If one wants

to express multi-agent specifications that involve more complex

patterns of cooperation vs. opposition, more versatile languages

are required. Here we focus on the following two ideas:

Social friendliness: Agents can achieve private goals while leaving
room for cooperation with the other agents.

Group protection: Agents can cooperate with the others while si-
multaneously protecting their private goals.

In this paper we propose some extensions of CL with more

expressive coalitional operators, expressing abilities of agents and

coalitions to guarantee achievement of their group objective while

protecting their individual subgroup rights or enabling our agents

to achieve their goals, too. Two of these, capturing the two ideas

above, we study in detail and provide technical characterisations,

incl. complete axiomatisations, for them.

One of these extensions is a variation of CL involving a con-

struction of the type [C](ϕ;ψ1, . . . ,ψk ) which intuitively says that

the coalition C has a collective action that not only guarantees the

satisfaction of their objective ϕ but also makes it possible that the

other agents cooperate to achieve any one of the listed objectives

ψ1, . . . ,ψk . Thus, this extension ofCL enables reasoning that consid-
ers the achievement of personal, individual or collective, objectives

in a more socially engaged way. The new construction above is also

a multi-agent extension and variation of the recently introduced

and studied in [15] Instantial Neighbourhood Logic INL. While

technically related, the present work takes a different perspective

on the meaning and use of that neighbourhood modality.

The other new extension of CL, proposed and studied here, has

a different motivation, though in the same vein. It involves new

operators of the type [C1 ▷ ϕ1, ...,Cn ▷ ϕn] intuitively saying that

there is a strategy profile π for the ‘grand coalition’C = C1∪ ...∪Cn
such that for each i , the restriction of π to the group of agentsCi is a
collective strategy ofCi that enforces the objective ϕi . The intuition
is that each group Ci participates in the grand coalition with a

collective strategy that, while contributing to the achievement of the

common goal, also guarantees the protection of the group interest

of Ci expressed by ϕi . The operator above is naturally extended

to a full coalitional goal assignment that assigns a common goal to

every coalition (subset of the grand coalition).

Besides the introduction of the two extensions of CL described

above, the main technical contributions of this paper are:

• definitions of respective bisimulations and proofs of invari-

ance and Hennessy-Milner property for each of them.

• sound and complete axiomatic systems and proofs of decid-

ability via finite tree-model property for both logics.
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In addition to being directly related to [11], [12] and [15], [14],

the present work bears both conceptual and technical connections

with the work on ATL with irrevocable strategies [1], [2], strategy

contexts [4], coalitional logics of cooperation and propositional

control [13, 16], and especially with Strategy logic introduced and

studied in [9], [8] and other related works. Indeed, both types of op-

erators introduced here can be translated to Strategy Logic, in a way

similar to the standard translation of (even quite expressive) modal

logics to first-order logic. However, such translations would result

in conceptual, technical and computational overkill. We also point

out the strong potential of the logics proposed here for adequate

formalisation and treatment of the problems of rational synthesis
[5] and rational verification [17]. These and other connections with

already published works will be explored in a follow-up publication.

The paper is organised as follows: after preliminaries on CL and

INL in Section 2 we mention several new types of coalitional multi-

goal operators in Section 3 and then introduce the Socially Friendly

Coalition Logic SFCL and the Group Protecting Coalition Logic

GPCL. In Section 4 we define respective bisimulations and prove

bisimulation invariance and Hennessy-Milner property for each of

them. Then, in Section 5 we provide sound and complete axiomatic

systems and prove decidability via finite model property for both

logics. We end with brief concluding remarks in Section 6.

2 PRELIMINARIES
2.1 Multi-agent game models
We fix a finite set of agents Agt = {a1, ...,an } and a set of atomic
propositions AP. Subsets of Agt will also be called coalitions.

Definition 2.1 (Multi-agent game model). A game model1 for
Agt and AP is a tuple

M = (S, {Σa }a∈Agt,д,V )

where S is a non-empty set of states; each Σa is a non-empty set

of possible actions of agent a; V : AP → P (S ) is a valuation of

the atomic propositions from AP in S ; and д is a game map that

assigns to each s ∈ S a strategic game form д(s ) = (Σsa1 , ....Σ
s
an ,os ),

where each Σsai ⊆ Σai is a non-empty set of actions available to

player ai at s , and

os : Σ
s
a1 × ... × Σsan → S

is a local outcome function assigning to any action profile σ ∈
Σsa1 × ... × Σsan (we call such σ available at s) the outcome state
os (σ ) produced by σ when applied at s ∈ S .

Now, the global outcome function inM is the partial mapping

O : S × Σa1 × ... × Σan d S

defined by O (s,σ ) = os (σ ), whenever σ is available at s .
Given a coalition C ⊆ Agt, a joint action forC in the modelM

is a tuple of individual actions σC ∈
∏

a∈C Σa . For any such joint

action and s ∈ S such that σC is available at s , we define:

O[s,σC ] =
{
u ∈ S | ∃σ ∈ Σa1 × ... × Σan : σ |C = σC & os (σ ) = u

}
where σ |C is the restriction of σ to C .

1
These game models are essentially equivalent to concurrent game models used in [3].

A rooted game model is a pair (M, s ) where M is a game

model and s is a state in it, called the root.
We will need the following grafting construction on rooted game

models: Let M = {(M1, s1), . . . (Mm , sm )} be a (finite) family of

(usually pairwise disjoint) rooted game models (which can be as-

sumed to have the same sets of actions), s is a new state that does

not belong to any of them, andд(s ) = (Σsa1 , ....Σ
s
an ,os ) is a strategic

game form with outcome set {s1, . . . , sm }. Then the grafting ofM
at s via д(s ) is the rooted game model (G (M,д), s ) defined with

state space being the disjoint union of the state spaces of the mod-

els inM plus the root state s , and sets of actions, game map, and

valuation, being the unions of the respective components, where

the game map is extended at s by д(s ). To save space we leave out

the predictable precise technical details.

Later we will be particularly interested in finite tree-like models.
The class of rooted tree-like models T can be defined as the smallest

family of rooted models that contains all rooted singleton game

models and is closed under the operation of grafting defined above.

We omit the formal inductive definition.

2.2 Coalition Logic
The formulae of Coalition Logic CL ([11, 12]) are given by the

following grammar.

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | [C]ϕ (p ∈ AP)

Standard definitions of the other propositional connectives apply.

The semantics of CL is defined in terms of truth of a formula
at a state s of a game modelM inductively, by extending the

standard clauses for ¬ and ∧ with the clause for [C]:

• M, s |= [C]ϕ iff there exists a joint action σC available at s , such
thatM,u |= ϕ for each u ∈ O[s,σC ].

Now, for every game modelM and aCL formula ϕ we can define

the extension of ϕ inM as the set of states [[ϕ]]M inM where ϕ
is true. Then the last truth clause above can be re-stated as

[[[C]ϕ]]M =
{
s ∈ S | ∃σC ∈

∏
a∈C Σa : O[s,σC ] ⊆ [[ϕ]]M

}
.

A representation theorem for abstract game models and a com-

plete axiomatic system for CL were provided in [11, 12] (later

slightly corrected in [6]), and the satisfiability problem was proved

decidable and PSPACE-complete. The axiomatic system AxCL for
CL proposed in [11, 12] extends the classical propositional logic

with the following axioms:

(CL1) Agt-Maximality: ¬[∅]¬ϕ → [Agt]ϕ
(CL2) Safety: ¬[C]⊥
(CL3) Liveness: [C]⊤
(CL4) Superadditivity: ([C1]ϕ1 ∧ [C2]ϕ2) → [C1 ∪C2](ϕ1 ∧ϕ2),

for any C1,C2 ⊆ Agt such that C1 ∩C2 = ∅.

and inference rules: Modus Ponens (MP) and Monotonicity:
ϕ → ψ

[C]ϕ → [C]ψ
.

2.3 Instantial Neighbourhood Logic INL
Instantial Neighborhood Logic INL, introduced and investigated in

[15], is a modal logic that extends the expressive power of standard

neighborhood semantics. In (monotone) neighborhood seman-
tics, a model is a structure (W ,R,V ) where R ⊆ W × P (W ) is a
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relation between points and sets of points. The standard boxmodality

is interpreted in a neighbourhood modelM by the clause:

M,w |= □ϕ iff there exists a neighbourhood Z ofw such that

M,u |= ϕ for each u ∈ Z .
The semantics can be equivalently stated in terms of extensions:

w ∈ [[□ϕ]]M iff there exists Z ⊆W such thatwRZ & Z ⊆ [[ϕ]]M .

Formulas in the extended logic INL are defined as follows:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | □(ϕ;ψ1, ...,ψn ) (p ∈ AP)

where (ψ1, ...,ψn ) is some tuple of formulas, of length n. Formally,

there is one n + 1-ary modal operator for each n ∈ ω, with the case

of n = 0 reducing to the standard neighbourhood modality □ϕ.
The formulas of INL are evaluated by the following clause for

the modal operators:

w ∈ [[□(ϕ;ψ1, ...,ψn )]]M if and only if there exists Z ⊆W such

thatwRZ , Z ⊆ [[ϕ]]M , and Z ∩ [[ψi ]]M , ∅ for all i = 1, . . . ,n.

Thus, while the standard box operator encodes a universal quan-

tification in a neighbourhood of a point in themodel, the generalised

INL-box operator expresses a combination of both universal and

existential claims in such a neighbourhood.

A number of technical results about INL were established in

[15], incl. invariance and the Hennessy-Milner property for a suit-

able notion of bisimulation, strongly complete axiomatisation and

PSPACE-completeness of the satisfiability problem.

3 COALITION LOGICS WITH MULTI-GOAL
OPERATORS

3.1 Some new coalitional multi-goal operators

Here is a selection of some natural coalitional multi-goal operators

that essentially transcend the expressiveness of CL.

SF Socially friendly coalitional operator SF
[C](ϕ;ψ1, . . . ,ψk ), meaning:

“C has a collective action σC that guarantees ϕ and enables the
complementary coalitionC to realise any one ofψ1, . . . ,ψk by
a suitable collective action”.

SF1 [C;C1, . . . ,Cn](ϕ;ϕ1, . . . ,ϕn ), meaning:

“C has a collective action σC that guaranteesϕ, and is such that,
when fixed, eachCi has a collective action that guarantees ϕi ”.
This is a refinement of SF, presuming that ifC intersects with

Ci , then the agents in C ∩Ci are already committed to σC .
SF2 [⟨C1⟩ϕ1; . . . ; ⟨Ck ⟩ϕk ] meaning:

“C1 has a collective action to guarantee ϕ1, and given that
action ... Ck has a collective action to guarantee ϕk ”.
This is a sequential version of SF1, where the coalitions

C1, ...,Ck are arranged in decreasing priority order.

GIP Group-interests-protecting coalitional operator GIP
⟨[C1 ▷ ϕ1, ...,Cn ▷ ϕn]⟩, meaning:

“There is an action profile σ for the coalitionC1 ∪ ...∪Cn such
that for each i , the restriction of σ to the coalition Ci is an
action profile that forces ϕi ”.
This operator can be expressedmore generally and succinctly

as follows. Let us define a coalitional goal assignment
to be a mapping γ : P (Agt) → Φ, where Φ is the set of

formulae of a given ‘language of goals’ (which may, but need

not be, the full logical language under consideration). Thus,

for every coalitionC , γ (C ) expresses the goal ofC . In reality,

most of the possible coalitions do not form and do not have

goals of their own, which can be formalised by assigning

the ’truth’ ⊤ as a goal to each of them. Now, the coalitional

operator defined above naturally generalises simply to ⟨[γ ]⟩.

Some observations on relative expressiveness:

(1) [C;C1, . . . ,Ck ](ϕ;ϕ1, . . . ,ϕk ) generalises [C](ϕ;ϕ1, . . . ,ϕk ),
which is equivalent to [C;Agt, . . . ,Agt](ϕ;ϕ1, . . . ,ϕk ).

(2) [⟨C1⟩ϕ1; . . . ; ⟨Ck ⟩ϕk ] is equivalent to
⟨[C1 ▷ ϕ1,C1 ∪C2 ▷ ϕ2, ...,C1 ∪ ... ∪Cn ▷ ϕk ]⟩.

(3) [C](ϕ;ψ ) is equivalent to ⟨[C ▷ϕ,Agt ▷ψ ]⟩. However, this does
not generalise to [C](ϕ;ψ1, . . . ,ψk ) for k ≥ 2. Conversely,

the GIP operator ⟨[C1 ▷ ϕ1, ...,Cn ▷ ϕn]⟩ cannot be expressed
in terms of operators [C](ϕ;ψ1, . . . ,ψk ).
(These non-expressiveness claims can be verified using the

respective notions of bisimulations introduced for each of

these operators in Section 4.)

3.2 Socially Friendly Coalition Logic SFCL
The formulae of SFCL are given by the following grammar.

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | [C](ϕ;ϕ, . . . ,ϕ) (p ∈ AP)

Again, standard definitions of the propositional connectives apply.

Given a finite sequence of formulae Ψ = ψ1, . . . ,ψk , we will

often write [C](ϕ;Ψ). We always assume that k ≥ 1, but note

that the coalition operator [C]ϕ from CL, which corresponds to

the case k = 0, can be expressed as [C](ϕ;⊤), which we hereafter

adopt as an abbreviation. We will denote by SFCL1 the fragment

of SFCL containing only formulae [C](ϕ;ψ ) where ψ is a single

formula. Modal depth of the formulae of SFCL is defined as ex-

pected, where propositional formulae have depth 0, via the clause

md ([C](ϕ;ψ1, . . . ,ψk )) = 1 +max(md (ϕ),md (ψ1), . . . ,md (ψk )).

The formal semantics of SFCL is defined in terms of truth of a

formula at a state s of a game modelM, just like for CL. The clause
for [C](ϕ;Ψ), given in terms of its extension inM, is as follows:

[[[C](ϕ;Ψ)]]M =
{
s ∈ S | ∃σC ∈

∏
a∈C Σa :

O[s,σC ] ⊆ [[ϕ]]M & O[s,σC ] ∩ [[ψ ]]M , ∅ for eachψ ∈ Ψ
}
.

Example 3.1. Consider, for illustration, the family couple Ann

and Bill and their son Charlie. Each of them has saved some money.

Now, they are sitting in a family meeting and negotiating on how to

spend their savings. Ann wishes a complete kitchen renovation, Bill

wants a new car, and Charlie dreams of a holiday trip to Disneyland.

Ann considers two options for a kitchen: a cheaper IKEA version,

or a designer’s luxury version. Bill has in mind three options for

a car: a cheap used Ford (black, of course), a more expensive new

Nissan, or an even more expensive, vintage pink Cadillac. As for

Charlie, he would prefer the whole family to go for an expensive

week long family excursion to Disneyland in Paris, but could also

settle for a cheaper 2-day car trip to Disneyland Park in California.

The possible actions of every family member or a group are to

pay for any option of their wish, that they can afford, and then leave

the rest of their savings in the family money pool for the other(s)

to use. Let us denote the respective goals by: K (any kitchen), resp.

CK (cheap kitchen) and EK (expensive kitchen); C (any car), resp.
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CC (cheap car), AC (average car), EC (expensive car); T (any trip),

resp. CT (cheap trip), ET (expensive trip).

Calculations have shown that Ann’s choices produce the follow-

ing strategic powers: [Ann](K ;C,T ) and [Ann](CK ;CC∧CT ,EC,ET ).
On the other hand, it is not the case that [Ann](EK ;AC ∧T ).

Likewise, it turns out that Bill has following strategic powers:

[Bill](C ;K ;T ), and [Bill](CC ;EK ,ET ). However, ¬[Bill](EC ;K ∧T ).
Lastly, here are some coalitional powers: [Ann, Bill](C∧EK ;CT ),

[Ann, Charlie](CK ∧ ET ;CC ), [Bill, Charlie](AC ∧CT ;K ).
Now, one may ask, for instance, whether it can be derived from

all of the above whether the whole family can afford buying the

pink Cadillac and going with it to Disneyland in California, i.e.

whether [Ann, Bill, Charlie](EC ∧CT ;⊤), or whether Ann can get

her designer’s kitchen and still enable Bill to buy a new Nissan or

the family to go to Disneyland in Paris, i.e. [Ann](EK ;AC,ET ), etc.

3.3 Group Protecting Coalition Logic GPCL
The formulae of GPCL are given by the following grammar.

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ⟨[γ ]⟩ (p ∈ AP)

where p ∈ AP and γ is a coalitional goal assignment. We will use

the notation ⟨[C1 ▷ ϕ1, ...,Ck ▷ ϕk ]⟩ as an explicit record of ⟨[γ ]⟩
where γ is the (unique) coalitional goal assignment defined by

γ (C1) = ϕ1, ...,Ck = ϕk , and γ (C ) = ⊤ for every otherC ∈ P (Agt).
Remark. Alternatively, we could adopt ⟨[C1 ▷ ϕ1, ...,Ck ▷ ϕk ]⟩ as

the primary constructs in the language, and then regard ⟨[γ ]⟩ as an
abbreviation for ⟨[C1 ▷γ (C1), ...,C2

n ▷γ (C2
n )]⟩whereC1, ...,C2

n is a

(fixed) canonical enumeration of P (Agt). Clearly, both versions are

expressively equivalent. Furthermore, while the alternative option

seems generally more succinct, that gain vanishes if ⟨[γ ]⟩ is defined
as a partial goal assignment, assigning only the non-trivial goals.

The semantics of GPCL is defined again in terms of truth of a

formula at a state s of a game modelM. The clause for ⟨[γ ]⟩, given
in terms of extensions, is as follows, where ΣAgt =

∏
a∈Agt Σa :

[[⟨[γ ]⟩]]M =
{
s ∈S | ∃σ ∈ ΣAgt :O[s,σC ]⊆ [[γ (C )]]M for all C ⊆Agt

}

Note that the fragment SFCL1 of SFCL (and therefore CL) em-

beds intoGPCL by defining [C](ϕ;ψ ) equivalently as ⟨[C▷ϕ,Agt ▷ψ ]⟩.

Example 3.2. This example is adapted from [10]. Consider a

scenario involving two players, Alice (A) and Bob (B). Each of

them owns a server storing some data, to which access is password-

protected. The two players want to exchange passwords, but neither

player is sure whether to trust the other. So their common goal is

to successfully cooperate and exchange passwords, but each player

also has the private goal not to give away their password in case the

other one turns out to be untrustworthy. Let us write HA for “Alice

has access to the data on Bob’s server” and HB for “Bob has access

to the data on Alice’s server”. So, e.g. the best possible outcome

for Alice is HA ∧HB and the worst possible outcome is ¬HA ∧HB .

When can the two players cooperate to exchange passwords?

Say, for example, that we define a game as follows: each player

chooses a password, which may or may not be the correct one,

and sends it to the other player. The game ends. In this game, the

coalition {A,B} can certainly force an outcome where each player

has the other’s password, i.e. the coalition logic formula

⟨[{A,B}]⟩(HA ∧ HB )

holds. But the strategy profile witnessing this does not satisfy the

players’ individual private goals, since each runs the risk of giving

away their password without getting the other’s in return.

If, instead, we add a second round to the game, in which each

player can either accept the outcome of the first round, or change

their password (thus making the shared password useless), then

there is a strategy profile in which the players exchange passwords,

but which is also safe for each of the two players. This situation is

described by the following stronger formula in GPCL:

[({A,B} ▷ HA ∧ HB ), (A ▷ HB → HA ), (B ▷ HA → HB )]

4 BISIMULATIONS AND INVARIANCE
4.1 Bisimulations for SFCL
The SFCL-bisimulation is a natural combination of the bisimula-

tions forCL [11] and for INL [15].We only define SFCL-bisimulation

within a game model, which generalises to SFCL-bisimulation be-
tween game models, by treating both as parts of their disjoint union.

Definition 4.1 (SFCL-bisimulation). LetM = (S, {Σa }a∈Agt,д,V )

be a game model. A binary relation β ⊆ S2 is a SFCL-bisimulation
inM if it satisfies the following conditions for every pair of states

(s1, s2) such that s1βs2 and for every coalition C:

Atom equivalence: For every p ∈ AP: s1 ∈ V (p) iff s2 ∈ V (p).

Forth: For any joint action σ 1C of C at s1 there is a joint action σ
2

C
of C at s2, such that:

LocalForth: For every u1 ∈ O[s1,σ
1

C ] there exists u2 ∈

O[s2,σ
2

C ] such that u1βu2;

LocalBack: For every u2 ∈ O[s2,σ
2

C ] there exists u1 ∈

O[s1,σ
1

C ] such that u1βu2.

Back: Conversely, for any joint action σ 2C of C at s2 there is a

joint action σ 1C of C at s1, such that the LocalForth and

LocalBack conditions above apply.

States s1, s2 ∈ M are SFCL-bisimulation equivalent, or just
SFCL-bisimilar if there is a bisimulation β inM such that s1βs2.

Proposition 4.2 (SFCL-bisimulation invariance). Let β be a
SFCL-bisimulation in a gamemodelM. Then for every SFCL-formula
θ and a pair s1, s2 ∈ M are such that s1βs2:M, s1 |= θ iffM, s2 |= θ .

Proof. Routine induction on θ , similar to that in [15]. □

Proposition 4.3 (Hennessy-Milner property). Let β be a SFCL-
bisimulation in a finite game modelM. Then for any pair s1, s2 ∈ M,
s1βs2 holds iff s1 and s2 are SFCL-equivalent (i.e. satisfy the same
SFCL-formulae).

Proof. (Sketch) SinceM is finite there is a formula χ (s ) for
each state s inM such that s1, s2 are SFCL-equivalent if and only

if χ (s1) = χ (s2), and such that χ (s1) ∧ χ (s2) is equivalent to ⊥
whenever s1, s2 are not SFCL-equivalent. Our goal is to show that

the relation of SFCL-equivalence is itself a SFCL-bisimulation.

The crucial observation is that each state s satisfies the formula:∧
C⊆Agt

∧ {
[C] (χ (v1) ∨ ... ∨ χ (vm ); χ (v1), ..., χ (vm )) |

∃σ ∈ Σsa1 × ... × Σsan : O[s,σ |C ] = {v1, ...,vm }
}

□
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4.2 Bisimulations for GPCL
Again, we only define GPCL-bisimulation within a game model,

and generalise to bisimulations between models via disjoint unions.

Definition 4.4 (GPCL-bisimulation). LetM = (S, {Σa }a∈Agt,д,V )

be a gamemodel. A binary relation β ⊆ S2 is aGPCL-bisimulation
inM if it satisfies the following conditions for every pair of states

(s1, s2) such that s1βs2:

Atom equivalence: For every p ∈ AP: s1 ∈ V (p) iff s2 ∈ V (p).

Forth: For any joint action σ 1 of Agt at s1 there is a joint action
σ 2 of Agt at s2 such that:

LocalBack: For every coalitionC and everyu2 ∈ O[s2,σ
2 |C ],

there is some u1 ∈ O[s1,σ
1 |C ] such that u1βu2.

Back: For any joint action σ 2 of Agt at s2 there is a joint action σ 1

of Agt at s1 such that:

LocalForth: For every coalitionC and everyu1 ∈ O[s1,σ
1 |C ],

there is some u2 ∈ O[s2,σ
2 |C ] such that u1βu2.

States s1, s2 ∈ M are GPCL-bisimulation equivalent, or just
GPCL-bisimilar, if there is a bisimulation β inM such that s1βs2.

Proposition 4.5 (GPCL-bisimulation invariance). Let β be
a GPCL-bisimulation in a game modelM. Then for every GPCL-
formula θ and every pair s1, s2 ∈ M such that s1βs2:

M, s1 |= θ iffM, s2 |= θ

Proof. Again, a routine induction on θ . We only consider the

case for θ = ⟨[C1 ▷ ϕ1, ...,Ck ▷ ϕk ]⟩: suppose thatM, s1 |= θ , wit-
nessed by a joint action σ 1 for Agt at s1. Let σ 2 be some joint action

for Agt at s2 witnessing the Forth condition with respect to σ 1. We

need to show that O[s2,σ
2

Ci
] ⊆ [[ϕi ]] for each i ∈ {1, ...,k }. Sup-

pose v ∈ O[s2,σ
2

Ci
]. Apply the LocalBack condition to find v ′ ∈

O[s1,σ
1

Ci
]withv ′βv . SinceO[s1,σ

1

Ci
] ⊆ [[ϕi ]]we getM,v |= ϕi by

the induction hypothesis on ϕi , as required. The converse direction
is proved in the same manner. □

Proposition 4.6 (Hennessy-Milner property). Let β be aGPCL-
bisimulation in a finite game modelM. Then for any pair s1, s2 ∈ M,
s1βs2 holds iff s1 and s2 satisfy the same GPCL-formulae.

Proof. (Sketch) SinceM is finite, we can define a characteristic

formula χ (s ) for each state s inM as in the proof of 4.3. For a set of

states Z , let χ[Z ] =
∨
{χ (v ) | v ∈ Z }. Our goal is to show that the

relation of GPCL-equivalence is itself a GPCL–bisimulation, and

the key observation is that each state s satisfies the formula:∧
σ ∈Ms

1
×...Ms

n

⟨[C1 ▷ χ[O[s,σ |C1
], ...,Ck ▷ χ[O[s,σ |Ck ]]⟩

where C1, ...,Ck is the list of all possible coalitions in P (Agt). □

5 AXIOMATISATIONS AND DECIDABILITY
Here we present axiomatic systems for the logics SFCL and GPCL
and prove their completeness with respect to finite tree-like models,

thus also implying decidability of each of them. We employ some-

what different proof methods for the two completeness proofs, as

each of them has its own merits.

5.1 Axiomatic system for SFCL
The axiomatic system AxSFCL for SFCL merges AxCL with a multi-

agent extension of the axiomatisation of INL from [15] as follows,

where Θ and Ψ are any finite lists of formulae.

(1) The axioms and rules fromAxCL. (Some of those are sub-

sumed by, or derivable from, the axioms added below.)

(2) Axioms from INL.
(INL1) [C](ϕ;Ψ) → [C](ϕ ∨ θ ;Ψ)

(INL2) [C](ϕ;Ψ,ψ ) → [C](ϕ;Ψ,ψ ∨ θ )

(INL3) [C](ϕ;Ψ,ψ ) → [C](ϕ;Ψ,ψ ∧ ϕ)

(INL4) ¬[C](ϕ;⊥)

(INL5) [C](ϕ;Ψ) → [C](ϕ ∧ ¬θ ;Ψ) ∨ [C](ϕ;Ψ,θ )

(INL6) [C](ϕ;Θ,θ ,Ψ) → [C](ϕ;Θ,Ψ)

(INL7) [C](ϕ;Θ,θ ,Ψ) → [C](ϕ;Θ,θ ,Ψ,θ )

(3) Additional axioms:
(SFCL1) [Agt](ϕ;ψ ,Ψ) ↔ [Agt](ϕ ∧ψ ;Ψ).
(SFCL2) [C](ϕ;ψ ) → [C ′](ϕ;ψ ), whenever C ⊆ C ′ ⊆ Agt.
(SFCL3) [Agt]ψ ↔ [C](⊤;ψ ), for any C ⊆ Agt.
(SFCL4) [C](ϕ;Ψ) ∧ [∅]θ → [C](ϕ ∧ θ ;Ψ).

(SFCL5) [∅](ϕ;ψ1, . . . ,ψk ) ↔ [∅]ϕ ∧ [Agt]ψ1 ∧ . . . ∧ [Agt]ψk .

Rules of inference: (MP) and [C]-Monotonicity (C-Mon):

ϕ → ϕ ′, ψ1 → ψ ′
1
, . . . ,ψk → ψ ′k

[C](ϕ;ψ1, . . . ,ψk ) → [C](ϕ ′;ψ ′
1
, . . . ,ψ ′k )

.

Some derivable validities:
The formulae listed below are derivable in AxSFCL and will be

used in the completeness proof, or are worth noting anyway.

(D0) ¬[C](⊥;Ψ). (From (INL3) and (INL4).)

(D1) [C]ϕ ∧ ¬[C]¬ψ → [C](ϕ;ψ ). (Particular case of (INL5).)
Consequently, [C1]ϕ ∧ [C2]ψ → [C1](ϕ;ψ ), for C1 ∩C2 = ∅

(D2) [C](ϕ ∧ψ1 . . . ∧ψk ) → [C](ϕ;ψ1, . . . ,ψk ).
(By repeated application of (INL5), using (D0) and (INL1).)

(D3) ¬[C]¬ψ → [Agt]ψ . (Using (CL1).)

(D4) [C](ϕ;ψ1, . . . ,ψk ) →
∧k
i=1[Agt](ϕ ∧ψi ).

(Using (SFCL3), (INL5), and (INL6).)

(D5) [Agt](ϕ;Ψ) ↔ [Agt](ϕ ∧
∧

Ψ). (Using (SFCL1).)

(D6) If ⊢ ϕ, ⊢ ψ1, . . .⊢ ψk , then ⊢ [C](ϕ;ψ1, . . . ,ψk ).
(Using (CL3) and (C-Mon).)

(D7) [∅]ϕ ↔ ¬[Agt]¬ϕ and [Agt]ϕ ↔ ¬[∅]¬ϕ.
(Using (CL1), (CL2) and (CL4).)

(D8) [Agt](ϕ ∨ψ ) ↔ ([Agt]ϕ ∨ [Agt]ψ ). (Using (CL4) and (D7).)

The proof of soundness ofAxSFCL is routine and left to the reader.
For completeness we will prove the following stronger result.

Theorem 5.1 (Finite tree-like model property of SFCL).
Every finite AxSFCL-consistent set of SFCL formulae Γ is satisfied

in a finite tree-like game model.

Proof. (Detailed sketch) We will build finite tree-like rooted

game models (i.e. models in T) satisfying finite AxSFCL-consistent
sets of formulae Γ, inductively on the greatest modal depth of a
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formula in Γ, hereafter denotedmd (Γ). We restrict the language to

only those atomic propositions that occur in formulae in Γ.
First,md (Γ) = 0 iff Γ is a consistent set of classical propositional

formulae. Since AxSFCL contains a complete set of propositional

tautologies, every such Γ is satisfiable in a singleton from T.

Now, supposewe have constructed satisfying rootedmodels from

T for every finiteAxSFCL-consistent set Γ such thatmd (Γ) ≤ d , and
now take any such set with md (Γ) = d + 1. Replace Γ with its

conjunction, transformed to an equivalent DNF. Then take any

AxSFCL-consistent disjunct from that DNF (there is at least one). It

is an elementary conjunction of the type δ = δ0 ∧ δ1 ∧ . . . ∧ δm ,

where δ0 is a consistent conjunction of propositional literals and

each δi , for i > 0, is a formula of the type [C](ϕ;ψ1, . . . ,ψk ) or a
negation of such a formula, where each ϕ,ψ1, . . . ,ψk has modal

depth at most d . We can assume that the index k is the same for all

δi , for i ∈ {1, . . . ,m}, as the shorter ones can be padded with⊤s. We

can also assume that all coalitions heading the subformulae δi are,
unless otherwise specified, proper subsets of Agt, as all subformulae

headed with [Agt] can be equivalently replaced by ones headed

with [∅], using Axioms (CL1) and (SFCL1) (and (D5), (D7)). Lastly,

we can also assume that all subformulae δi headed by [∅] are of the

type [∅]ψ , by using axiom (SFCL5) plus the equivalence (D7).

Now, to prove that every consistent elementary conjunction δ
described above is satisfiable we will use the following key technical

lemma, which characterises satisfiability of such conjunctions in

terms of satisfiability conditions on the arguments occurring in the

conjuncts (which are all of lower modal depth).

Lemma 5.2. Let C1, . . .Cm ,B1, . . . Bl−1 be proper subsets of Agt
and Bl = Agt; δ0 be a propositional formula;
δi = [Ci ](ϕ

i
;ψ i

1
, . . . ,ψ i

k ), for i = 1, ...,m;

δm+j = ¬[Bj ](η
j
;θ

j
1
, . . . ,θ

j
k ), for j = 1, ..., l ,

and ηl = θ l
1
= . . . = θ lk = ⊥. Then the following hold.

(SAT) The formula

(∗) δ = δ0 ∧ δ1 ∧ . . . ∧ δm ∧ δm+1 ∧ . . . ∧ δm+l

is satisfiable if and only if:
(1) δ0 is propositionally satisfiable,
(2) Each ϕi ∧ψ i

j is satisfiable, for i = 1, ...,m and j = 1, ...,k .
(3) For every (possibly empty) set of indices {i1, ..., ie } ⊆ {1, ...,m}

and j ∈ {1, ..., l }: if the coalitions Ci1 , . . .Cie ,Bj are pairwise
disjoint (thus, in particular, Ci1 ∪ . . . ∪Cie ⊆ Bj ), then each
of the formulae ϕi1 ∧ ... ∧ ϕie ∧ ¬(ηj ∧ θ j

1
, . . . ,∧θ

j
k ) and

ϕp ∧ ψ
p
q ∧ ¬(η

j ∧ θ
j
1
, . . . ,∧θ

j
k ), for p ∈ {i1, ..., ie } and q ∈

{1, ...,k }, is satisfiable. (When j = l these reduce to satisfiabil-
ity of ϕi1 ∧ ... ∧ ϕie , as ϕp ∧ψpq is covered by (2).)

(CON) The ’only if’ direction2 of (SAT), with “satisfiable” replaced
throughout by “AxSFCL-consistent”.

Proof. (Detailed sketch)

Part I (Necessity)Whenever we mention in this proof consis-

tency and derivations (stated with ⊢), they refer to AxSFCL.
First, let us check the necessity of the conditions (1)-(3) for the

satisfiability, resp. consistency, of δ . We will sketch the deductive

2
In fact, both directions hold, but we only need to prove this one here.

reasoning for proving (CON), as the deductive steps can be readily

replaced by semantic steps to prove the ‘only if’ direction of (SAT).
(1) is obviously necessary.

For (2), if someϕi∧ψ i
j is inconsistent, thenδi = [Ci ](ϕ

i
;ψ i

1
, . . . ,ψ i

k )

is inconsistent, too, hence so is δ . That is because if ⊢ ϕi → ¬ψ i
j

then ⊢ ¬δi , by (INL3), (INL4) and (C-Mon).

Lastly, if (3) fails for some such Ci1 , . . .Cie ,Bj , then we have

either (**) ⊢ ϕi1 ∧ ... ∧ ϕie → (ηj ∧ θ
j
1
, . . . ,∧θ

j
k ).

or (***) ⊢ ϕp ∧ψ
p
q → (ηj ∧ θ

j
1
, . . . ,∧θ

j
k ).

The case of (***) is easier, implying that ⊢ δp → ¬δm+j , whence
the inconsistency of δ . In case of (**) we use ⊢ [C](ϕ;Ψ) → [C]ϕ
(by (C-Mon)) and repeatedly apply the Superadditivity axiom (CL4)

to obtain that

⊢ δi1 ∧ . . . ∧ δie → [Ci1 ∪ . . . ∪Cie ](ϕ
i1 ∧ ... ∧ ϕie ).

From this, by (SFCL2), we obtain that

⊢ δi1 ∧ . . . ∧ δie → [Bj ](ϕ
i1 ∧ ... ∧ ϕie ).

Then, using (**) and (C-Mon) for [Bj ], we obtain that

⊢ δi1 ∧ . . . ∧ δie → [Bj ](η
j ∧ θ

j
1
, . . . ,∧θ

j
k ),

whence (using the derivable (D2)

⊢ δi1 ∧ . . . ∧ δie → ¬δm+j , which implies ⊢ ¬δ .

Part II (Sufficiency) Now, to prove sufficiency of the condi-

tions (1)-(3) we show how to construct a satisfying model for δ
from rooted models for all satisfiable formulae mentioned in (1)-(3).

Furthermore, if all latter models are finite tree-like models, then so

will be the one for δ , because it will be constructed from them by

grafting. Before outlining the construction, let us select these mod-

els. The subformula δ0 will be satisfied at the root of the constructed
model, and we can ignore it hereafter. Now, for each ϕi ∧ψ i

j we

select a satisfying rooted model (Mi
j , s

i
j ) ∈ T. Further, note that for

each satisfiable formula ϕi1 ∧ ...∧ϕie ∧¬(ηj ∧θ
j
1
, . . . ,∧θ

j
k ) referred

in (3), either ν j = ϕi1 ∧ ... ∧ϕie ∧¬ηj or χ
j
r = ϕ

i1 ∧ ... ∧ϕie ∧¬θ
j
r ,

for some r ∈ {1, ...,k } is satisfiable. Likewise, for each satisfiable

formula ϕp ∧ψ
p
q ∧¬(η

j ∧θ
j
1
, . . . ,∧θ

j
k ), either ν

j
p,q = ϕ

p ∧ψ
p
q ∧¬η

j

or χ
j
p,q,r = ϕ

p ∧ψ
p
q ∧ ¬θ

j
r , for some r ∈ {1, ...,k } is satisfiable. For

each of these, we select ν j , resp. ν
j
p,q , if it is satisfiable, else we

select χ
j
q , resp. χ

j
p,q,r . In either case, we then select a satisfying

rooted model (Mj , sj ) ∈ T. LetM be the (finite) family of all these

rooted models, plus a singleton model with single action profile

with the same state as outcome. We will assume all these models

pairwise disjoint. Let s be a state not belonging to any of them.

The rooted model satisfying δ is defined as the grafting of a set

of models inM at s by a strategic game form defined as follows. The

set of actions for each agent is {1, ...,m + l } × {1, ...,k }. Every such

action can be regarded as voting in two rounds: the first round in

the set {1, ...,m + l } and the second round in {1, ...,k }. Each action

profile determines a successor state of the resulting model, where a

satisfiable set of formulae is placed in a label. A satisfying model

for the label is rooted at that state, thus completing the grafting.

Round 1. The voting in this round is essentially organised as in

[7, Lemma 33], from where we borrow the idea, viz: every agent

votes for one of the formulae δ1, ...,δm+l . For any i = 1, ...,m, if

all agents in Ci vote i , we say that these agents form the coalition
Ci and that the formula ϕi is elected at that round. Then, for each
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set of coalitions Ci1 , . . .Cie ,Bj described in condition (3), where

the selected satisfiable formula is of type ν j or ν
j
p,q that formula

is elected iff j = [(
∑
i ∈I (v (i ) −m)) mod l] + 1, where I is the

set of indices of all agents i who have voted ‘negatively’, i.e. in

{m + 1, ...,m + l }, and v (i ) is i’s vote. Clearly, at most one such

formula gets elected in this round, and all elected formulae among

δ1, ...,δm correspond to pairwise disjoint coalitions, which are also

disjoint with the coalition Bj of the elected negative formula, if any.

This round of voting ensures that all coalitions C1, . . . ,Cm have

respective collective actions to enforce the placement of their uni-

versal components ϕ1, . . . ,ϕk in the labels of all successor states

generated by all action profiles containing these collective actions.

Besides, the elected formula ν j or ν
j
p,q (if any) takes care of the

respective negative formula δm+j .
Round 2. In this round the agents take care of the existen-

tial components of the formulae δ1, ...,δm+l , by voting in the set

{1, ...,k } as follows. We can assume that only agents who did not

form coalitions in the first round vote now, as the other votes will

be disregarded. Now, if a coalition Ci was formed in the 1st round,

while all agents not in Ci did not form coalitions in the 1st round

and vote j in the 2nd round, then the formulaψ i
j is elected now and

added to the label of the resulting state for this action profile.

Respectively, for each family of pairwise disjoint coalitions

Ci1 , . . . ,Cie ,Bj , as described in condition (3), where the selected

satisfiable formula is of type χ
j
r or χ

j
p,q,r (as defined above), if all

coalitions Ci1 , . . . ,Cie have been formed in round 1, and all agents

that are not in any of these coalitions vote j, then the respective

formula χ
j
r or χ

j
p,q,r is elected. Clearly, at most one formula of type

ψ or χ is elected at round 2, and that vote takes respective care

of the existential components of positive and negative formulae

where the universal components are enforced.

For all action profiles not covered in the cases described in the

two rounds, only the truth ⊤ is elected.

That completes the definition of an outcome function os at the
added root s . Note that of every vote (i.e. action profile) the set of

elected formulae put in the label of the respective outcome state is

satisfiable and there is a satisfying rooted model for it inM.

Now, each newly created by os outcome node is now assigned

a respective rooted model fromM that satisfies the set of elected

formulae in its label.

We claim that the rooted model constructed by grafting of M

at s by the outcome function os satisfies δ . The long but routine

details are omitted. That completes the proof of the lemma. □

We can now prove that every consistent conjunction δ as in

(*) is satisfiable. Indeed, by the claim (CON) of Lemma 5.2, the

consistency of δ implies consistency of all formulae referred in

conditions (1)-(3), which are all of modal depth lower thanmd (δ ).
By the inductive hypothesis, they are all satisfiable in finite rooted

tree-like models. Then, by the ’if’ part of (SAT), δ itself is satisfiable
in such a model. That completes the proof of the theorem. □

Corollary 5.3 (Completeness of SFCL). The axiomatic system
AxSFCL is sound and complete.

Note that the size of the finite tree-like game model constructed

in the proof of Theorem 5.1 is at most exponential in the length of

the formula. Still, the number of immediate successors (excl. the

roots of trivial singletons) of any node of such a satisfyingmodel can

be bounded by a polynomial in the length of the formula (assuming

that all agents occurring in the same coalitions of the formula are

assigned identical action powers). Therefore, by guessing only the

relevant portions of such a satisfying model (current node and

its successors) and then checking on the fly, we obtain a decision

procedure for SFCL in NPSPACE=PSPACE. The matching lower

bound is obtained from the PSPACE-space completeness of the

satisfiability problem for CL, cf. [12]. Thus, we obtain the following.

Corollary 5.4 (PSPACE-decidability of SFCL).
Satisfiability in SFCL is decidable and PSPACE-complete.

5.2 Axiomatic system for GPCL
We now present an axiomatic system for the logic GPCL. We begin

by introducing some terminology and notation.

Definition 1. A voting profile is a map f sending each ai ∈ Agt
to a goal assignment γi = f (ai ).

Definition 2. Let f be a voting profile. We define the goal assign-

ment merge( f ) as follows:

• merge( f ) : C 7→ ϕ if

f (ai ) = f (aj ) and f (ai ) : C 7→ ϕ for all ai ,aj ∈ C ,

• merge( f ) : C 7→ ⊤ if this holds for no ϕ.

Some additional terminology and notation:

• The goal assignment γ [C : ϕ] is like γ , but mapping C to ϕ.
• The goal assignment γ |C is defined by mapping eachC ′ ⊆ C
to γ (C ′), and mapping all coalitions not contained in C to ⊤.

• We let γ⊤ denote the trivial goal assignment, mapping

each coalition to ⊤.

• The modal depth of a formula is defined in essentially the

same way as for SFCL, with ⟨[·]⟩ increasing the depth by 1.

Here is our axiom system AxGPCL, extending classical proposi-
tional logic (all axioms of CL are subsumed here):

(1) Axioms.
(Triv) ⟨[γ⊤]⟩

(Safe) ¬⟨[Agt ▷⊥]⟩
(Mrg)

∧
ai ∈Agt⟨[f (ai )]⟩ → ⟨[merge( f )]⟩

(Case) ⟨[γ ]⟩ → (⟨[γ [C : γ (C ) ∧ ϕ]]⟩ ∨ ⟨[γ |C [Agt : ¬ϕ]]⟩)
(Con) ⟨[γ ]⟩ → ⟨[γ [Agt : γ (Agt) ∧ γ (C )]]⟩

Rules of inference: (MP) and Goal Monotonicity (G-Mon):
γ (C ) → ψ

⟨[γ ]⟩ → ⟨[γ [C :ψ ]]⟩

We write ⊢ ψ to say thatψ is provable in the system AxGPCL.
Soundness of AxGPCL is routine and left to the reader.

Here are some important validities derivable in AxGPCL:

(G1) Agt-Maximality: [∅]φ ∨ [Agt]¬φ. (Using (Triv) and (Case).)

(G2) Superadditivity: ([C1]ϕ1 ∧ [C2]ϕ2) → [C1 ∪C2](ϕ1 ∧ ϕ2),
if C1 ∩C2 = ∅. (Particular case of (Mrg).)

(G3) ⟨[γ ]⟩ → [C]γ (C ), for anyC ⊆ Agt. (Using (Triv) and (G-Mon).)

(G4) ⟨[γ ]⟩ → (⟨[γ [Agt : γ (Agt) ∧ ϕ]]⟩ ∨ ⟨[γ [Agt : γ (Agt) ∧ ¬ϕ]]⟩).
(From (Case), replacing C with Agt and ϕ with γ (Agt) → ϕ.)
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The main technical result of this section is:

Theorem 5.5 (Finite tree-like model property of GPCL).
Every finiteAxGPCL-consistent set of GPCL formulae Γ is satisfied

in a finite tree-like game model.
From this result we get:

Corollary 5.6 (Completeness ofGPCL). The axiomatic system
AxGPCL is sound and complete.

For the rest of the section we focus on the proof of Theorem 5.6.

Definition 3. A goal assignment γ is said to have depth ≤ k if

the formula ⟨[γ ]⟩ has depth k + 1. A goal assignment γ is said to

strengthen the goal assignmentγ ′ ifγ (C ) ⊢ γ ′(C ) for every coalition
C . A goal assignment γ of depth ≤ k is said to be k-maximal if ⟨[γ ]⟩
is consistent and for every strengthening γ ′ of γ of depth ≤ k such

that ⟨[γ ′]⟩ is consistent, γ is also a strengthening of γ ′.

The following lemma is almost immediate from the definitions

together with the Goal Monotonicity rule (G-Mon):

Lemma 5.7. Let γ be a goal assignment of depth ≤ k . Then ⟨[γ ]⟩ is
equivalent to a disjunction of formulas of the form ⟨[δ ]⟩ where δ is a
k-maximal strengthening of γ .

Definition 5.8. Let k ∈ ω. A formula α of modal depth ≤ k is said

to be a k-atom if it is consistent and, for all formulas ψ of depth

≤ k , we have ⊢ α → ψ or ⊢ α → ¬ψ .

Note that there are at most finitely many – up to provable equiv-

alence – formulas, hence finitely many atoms of depth ≤ k (given

that we have fixed a finite set of propositional variables). For each

k-atom α , we may pick one k-atom α∗ that is provably equivalent

to α and such that ⊢ α ↔ β iff α∗ = β∗ for all k-atoms α , β . We set:

Atk = {α
∗ | α is a k-atom }

Further, we will be a bit sloppy with notation and will not dis-

tinguish a k-atom α from the provably equivalent atom α∗. Note
that every consistent formula ϕ of depth k is equivalent to the

disjunction of all formulas α∗ where α is a k-atom and α ⊢ ϕ.

Lemma 5.9. Let γ be a k-maximal goal assignment. Then γ (Agt)
is a k-atom.

Proof. Repeated use of axiom (G4) together with (Safe). □

We define the (finite) depth-k canonical modelM = (W ,д,V ) as
follows (omitting the definition of the global sets of actions). The

domainW of the model is the set:⋃
m≤k

Atm

The valuation is defined by V (p) = {α ∈W | α ⊢ p}.
The game д(α ) associated with a 0-atom is defined arbitrarily.

The non-trivial part of the construction is to define the game

form д(α ) = (Σ1, ..., Σn ,o) for a given k + 1-atom α . We define this

game form as follows: first, let {r ,p, s} be a given three-element

set with a fixed binary relation W ⊆ {r ,p, s}2 defined by W =

{(r , s ), (s,p), (p, r )}. Think of the elements r ,p, s as moves “rock,

paper, scissors” and the relationW as “wins over”: rock wins over

scissors, scissors wins over paper and paper wins over rock. Given

ai ∈ Agt, we define the set of strategiesMi of ai to be the set:

{r ,p, s} {a1, ...,an } × GAα,k × cf (k )

where GAα,k is the set of goal assignments γ of depth ≤ k such

that α ⊢ ⟨[γ ]⟩, and cf (k ) is the set of choice functions mapping each

depth ≤ k goal assignmentγ to one of its k-maximal strengthenings

δ ∈ GAα,k . Note that GAα,k , ∅ by (Triv). Note also that, for each

γ ∈ GAα,k there exists a maximal strengthening ofγ of the required

sort, since ⟨[γ ]⟩ is equivalent to the disjunction of formulas ⟨[δ]⟩,
where δ is a k-maximal strengthening of γ , by Lemma 5.7. So the

set of actions for each agent is non-empty, as required.

The idea is to let each player vote for a goal assignment, and

the votes are then merged to a single goal assignment. The play-

ers also play a game of “rock-paper-scissors” to determine who

gets to choose the actual outcome of the merged goal assignment,

which will generally not be strong enough to uniquely determine

an outcome (which should be a k-atom).

Given a strategy profile π we say that ai is a dominant player if
there is no aj for which x j (ai )Wxi (aj ). The first-round winner in
π is ai for the smallest index i such that i is a dominant player, or

is set to a0 if no such player exists.

The outcome o(π ) of a strategy profile π is defined to be

σi (merge( f )) (Agt)

where:

• ai is the first-round winner in π ,
• σi is the choice function chosen by ai , and
• f is the voting profile corresponding to π , i.e. f sends each aj
to the goal assignment γj chosen by aj in the second round.

Note thato(π ) is ak-atom by Lemma 5.9.Moreover,α ⊢ ⟨[merge( f )]⟩
(as required for σi (merge( f )) to be defined), since α ⊢ ⟨[f (ai )]⟩ for
each ai and hence α ⊢ ⟨[merge( f )]⟩ by the axiom (Mrg).

The following “truth lemma” can now be proved by a reasonably

straightforward verification:

Lemma 5.10. LetM be the canonical model of some depth ≥ k ,
and let α be a k-atom. ThenM,α ⊩ ϕ iff α ⊢ ϕ, for each formula ϕ
of depth ≤ k .

Theorem 5.5 now follows as a direct consequence, since for every

consistent finite set Γ of formulas of maximum modal depth k there

must be at least one k-atom α such that α ⊢
∧

Γ.

Corollary 5.11 (Decidability of GPCL). The satisfiability
problem for GPCL is decidable.

This decidability follows directly from completeness result (Cor.

5.6) together with the finite model property from Theorem 5.5.

We believe that the satisfiability problem for GPCL is PSPACE-

complete, like SFCL, but leave the proof of this claim for the future.

6 CONCLUDING REMARKS
The schemes defining the coalitional goal operators in SFCL and

GPCL can be naturally generalised, by allowing more liberal im-

plicit quantification over collective actions of coalitions and as-

sociated with them goals. Such generalisation would result in a

quite expressive logic in spirit of Strategy Logic, but still in a purely

modal style, without explicit mention of strategies in the language.

Also, it is natural to extend both logics SFCL and GPCL in the style

of the alternating-time temporal logic ATL, by adding the usual

temporal operators to reason about interleaved long-term strategic

abilities. We leave these extensions to future work.
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