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ABSTRACT
Game theory provides a well-established framework for the analysis

and verification of concurrent and multi-agent systems. Typically,

the analysis of a multi-agent system involves computing the set

of equilibria in the associated multi-player game representing the

behaviour of the system. As systems grow larger, it becomes in-

creasingly harder to find equilibria in the game – which represent

the rationally stable behaviours of the multi-agent system (the so-

lutions of the game). To address this issue, in this paper, we study

the concept of local equilibria, which are defined with respect to

(maximal) stable coalitions of agents for which an equilibrium can

de found. We focus on the solutions given by the Nash equilibria of

Boolean games and iterated Boolean games, two logic-based models

for multi-agent systems, in which the players’ goals are given by

formulae of propositional logic and LTL, respectively.
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1 INTRODUCTION
Game theory [15] provides an important framework for the analy-

sis of concurrent and multi-agent systems. Within this framework,

a concurrent and multi-agent system is viewed as a game, where

agents correspond to players, system executions to plays, and indi-

vidual agent behaviours are modelled as player strategies, which are

used to resolve the possible choices available to each player. Since

agents are assumed to be acting strategically, game theory proposes

to analyse the behaviour of these systems using solution concepts

based on the idea of equilibria, amongst which Nash equilibrium is

the best known and most widely used [15].

This is certainly a very powerful and interesting framework,

with several applications in computer science, artificial intelligence,

and multi-agent systems research [14, 18, 19]. Typically, analysing

a concurrent and multi-agent system in this game-theoretic setting

boils down to computing the set of (Nash) equilibria in the associ-

ated multi-player game. However, as systems grow large it becomes

increasingly harder to compute – or even ensure the existence of –

a single equilibrium representing a possible stable behaviour of the

multi-agent system at hand.

Consider, for instance, of a multi-agent system consisting of k+n
agents, with k much larger than n, where a stable behaviour could
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be found but only “locally” with respect to k players in the system.

To make this idea more concrete, let us illustrate the situation with

an example. Suppose you have a game with player set {1, . . . ,k,k +
1,k + 2}, where each agent i has only two strategies, namely either

fi = a or fi = b, and a utility function utility ui defined as follows:

ui ( f1, . . . , fk , fk+1
, fk+2

) =




1 if fi = fj for all j ≤ k , and i ≤ k

1 if fi = fk+2
and i = k + 1

1 if fi , fk+1
and i = k + 2

0 otherwise.

Informally, in this game the firstk players are playing a coordination
game (they all wish to play the same action, either a or b) whereas
the last two players are playing a ‘matching pennies’ game against

each other (while player k + 1 wishes to match player k + 2’s choice,

player k + 2 desires both choices to be different). Since in pure

strategies there is no Nash equilibrium for the matching pennies

(sub)game, the whole game, including the k + 2 players, does not

have a Nash equilibrium. Nevertheless, it should be easy to see

that there is a ‘local’ equilibrium between the first k players in the

game: simply set fi = fj , for all 1 ≤ i, j ≤ k . No matter which

actions players k + 1 and k + 2 choose, the other players in the

game (players 1 to k) have no incentive to deviate. However, in pure

strategies, a solution (e.g., a Nash equilibrium) for the whole system

does not exist due to the irreconcilably antagonistic behaviour of

players k + 1 and k + 2.

To address this issue, we introduce and study the concept of

local equilibrium, which, essentially, formalises the intuitive idea

that an equilibrium can be defined/found ‘locally’ with respect to a

subset of the players in a game. We investigate two complementary

notions of local equilibrium, an existential one and a universal one.

In the existential case, we consider a local equilibrium for a given set

of players with respect to some behaviour of the remaining players

in the game. In the universal case, by contrast, we ask whether, for

given a set of players, it is possible to find a local equilibrium for

every behaviour of the remaining players in the game. As we are

interested in local equilibria that are as inclusive as possible, we

also define a very general notion of maximality that allows us to

compare different local equilibria and select the most appropriate

ones (e.g., local equilibria with the biggest number of players in

equilibrium).

In particular, we study the complexity of computing a local equi-

librium (formal definitions will be given later) in the logic-based

game-theoretic settings provided by Boolean games (BGs [9, 10])

and by iterated Boolean games (iBGs [7]), two models for con-

current and multi-agent system where players’ goals are given,

respectively, by propositional logic and by Linear Temporal Logic

(LTL [16]) formulae. To give a comprehensive overview of the prob-

lem at hand, we define a number of decision problems pertaining

to our notion of local equilibrium and establish their computational

complexity.
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Our main complexity results range from problems that are coNP-

complete to ones that can be solved in 3EXPTIME. They show

that, in general, reasoning about local equilibria (i.e., equilibria

with respect to a subset of the players in the game) may be harder

than reasoning about the ‘global’ notion of equilibrium. Table 1

summarises our main complexity results and can be found at the

end of the paper. Some additional complexity results, along with

concluding remarks, related work, and ideas for further research

can also be found at the end of the paper.

2 PRELIMINARIES
In this section we introduce the main technical concepts and models

used in this paper.

Valuations and Runs. Let Φ be a finite set of Boolean variables.

A valuation for propositional logic is a set v ∈ 2
Φ
, with the inter-

pretation that p ∈ v means that p is true under valuation v , while
p < v means that p is false under v . By pq̄r̄ we denote the valu-

ation in which variable p is set to true and variables q and r are
set to false, and similarly for other valuations. A run is an infinite

sequence ρ = v0,v1,v2, . . . of valuations. Using square brackets

around parameters referring to time points, we let ρ[t] denote the
valuation vt assigned to time point t by run ρ.

Linear Temporal Logic. In this paper we use Linear Temporal Logic

(LTL [16]), which extends propositional logic with two operators, X
(‘next’) and U (‘until’) so as to be able to express properties of runs.

The syntax of LTL is defined with respect to a set Φ of variables as

follows:

ϕ ::= ⊤ | p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ Uϕ

where p ∈ Φ. The remaining classical logical operators are defined

as usual. Also, we write Fϕ = ⊤ Uϕ and Gϕ = ¬F¬ϕ, for ‘even-
tually’ and ‘always’, respectively. We interpret formulae of LTL

with respect to pairs (ρ, t ), where ρ ∈ (2Φ)ω is run and t ∈ N is a

temporal index into ρ, as follows:

(ρ, t ) |= ⊤
(ρ, t ) |= p iff p ∈ ρ[t]
(ρ, t ) |= ¬ϕ iff it is not the case that (ρ, t ) |= ϕ
(ρ, t ) |= ϕ ∨ψ iff (ρ, t ) |= ϕ or (ρ, t ) |= ψ
(ρ, t ) |= Xϕ iff (ρ, t + 1) |= ϕ

(ρ, t ) |= ϕ Uψ iff for some t ′ ≥ t :

(
(ρ, t ′) |= ψ and

for all t ≤ t ′′ < t ′ : (ρ, t ′′) |= ϕ
)
.

If (ρ, 0) |= ϕ, we write ρ |= ϕ and say that ρ satisfies ϕ. An LTL

formula ϕ is satisfiable if there is a run satisfying ϕ.

Iterated Boolean Games. An iterated Boolean game (iBG [7]) is a

tuple

G = (N ,Φ,Φ1, . . . ,Φn ,γ1, . . . ,γn ),

where N = {1, . . . ,n} is a set of agents, Φ is a finite and non-empty

set of Boolean variables, and for each agent i ∈ N , Φi is the set of
Boolean variables uniquely controlled by i . The choices available to
agent i are then given by the different ways i can choose truth values
for the variables under her control, i.e., by the valuations vi ⊆ 2

Φi
.

We require that Φ1, . . . ,Φn forms a partition of Φ. Finally, γi is the
LTL goal that agent i aims to see satisfied by choosing her strategy.

A strategy σi for agent i is a complete plan how to make choices

for the variables under her control over time depending on the

choicesmade by the other agents previously. Thus, games are played

by each agent selecting a strategy. Formally a strategy σi for agent i
is a finite state machine (Qi ,q

0

i ,δi ,τi ) with output (a transducer),

whereQi is a finite and non-empty set of states, q0

i ∈ Qi is the initial

state, δi : Qi × 2
Φ → Qi is a deterministic transition function, and

τi : Qi → 2
Φi

is an output function. Let Σi be the set of strategies
for agent i . Once every agent i has selected a strategy σi , a strat-
egy profile σ⃗ = (σ1, . . . ,σn ) results and the game has an outcome,

which we will denote by ρ (σ⃗ ). Because strategies are deterministic,

ρ (σ⃗ ) is the unique run over Φ induced by σ⃗ , i.e., the infinite run
v0,v1,v2, . . . such that

v0 = τ1 (q
0

1
) ∪ · · · ∪ τn (q

0

n )

vk+1
= τ1 (q

k+1

1
) ∪ · · · ∪ τn (q

k+1

n ),

where qk+1

i = δi (q
k
i ,vk ), for every agent i .

Nash equilibrium. Since the outcome of a game determineswhether

each goal γi is or is not satisfied, we can now define a preference

relation ⪰i over outcomes for each agent i with goal γi . For strategy
profiles σ⃗ and σ⃗ ′, we have

ρ (σ⃗ ) ⪰i ρ (σ⃗
′) if and only if ρ (σ⃗ ′) |= γi implies ρ (σ⃗ ) |= γi .

On this basis, we define the concept of Nash equilibrium [15]: a

strategy profile σ⃗ is a Nash equilibrium ofG if and only if for every

agent i and every strategy σ ′i , we have

ρ (σ⃗ ) ⪰i ρ ((σ⃗−i ,σ
′
i )),

where (σ⃗−i ,σ
′
i ) denotes (σ1, . . . ,σi−1,σ

′
i ,σi+1, . . . ,σn ), the strat-

egy profile where the strategy of agent i in σ⃗ is replaced by σ ′i . Let
NE(G ) denote the set of Nash equilibria of G.

Boolean games. The source of inspiration behind the iBGs model

was the simpler model of strategic interaction provided by Boolean

games (BGs [9, 10]). In Boolean games, the agents’ goals are given

by propositional logic formulae and plays have only one round. In

this more basic setting, a strategy σi for agent i is represented as

a valuation over Φi , i.e., σi ∈ 2
Φi
, and an outcome ρ (σ⃗ ) of a BG

is just a valuation over Φ, i.e., ρ (σ⃗ ) ∈ 2
Φ
. We will generally not

notationally distinguish between profiles and valuations. On this

basis, the concept of Nash equilibrium can be defined just as for

iBGs by letting ‘|=’ be the satisfaction relation for propositional

logic formulae.

3 LOCAL EQUILIBRIA AND ∃/∀-STABILITY
The main concern of this paper is with local equilibria in games,

be they Boolean games or iterated Boolean games. We formalise

locality as a property of coalitions, i.e., of groups of agents. For

technical convenience we also allow the empty set ∅ of agents as a

coalition that controls the empty set ∅ of propositional variables,

and consequently has one joint strategy at their disposal, viz., ∅.

Local Equilibria. A strategy profile σ⃗ = (σ1, . . . ,σn ) is an equilib-
rium local to a coalitionC whenever no agent withinC can profit by

deviating from σ⃗ . Formally, we say that a strategy profile σ⃗ is a C-
equilibrium if σ⃗ ⪰i (σ⃗−i ,σ

′
i ), for every agent i in C and every strat-

egy σ ′i for i . Clearly, a profile is a Nash equilibrium if and only if it
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is an N -equilibrium. The formal connection betweenC-equilibrium
and Nash equilibrium can also be made in a slightly different way.

For a game G = (N ,Φ,Φ1, . . . ,Φn ,γ1, . . . ,γn ) and coalition C , we
can define the game GC = (N ,Φ,Φ1, . . . ,Φn ,γ

′
1
, . . . ,γ ′n ), where

γ ′i =



γi , if i ∈ C,

⊤, otherwise.

Thus, we see that inGC the agents who do not belong toC are fully

indifferent. We now have the following lemma:

Lemma 3.1. A strategy profile σ⃗ is a C-equilibrium of game G if

and only if it is a Nash Equilibrium of GC .

Proof. Let σ⃗ be a C-Nash equilibrium of G, and GC as defined

above. For all i ∈ C and every strategy σ ′i for i , if σ⃗ ̸ |= γi , then
(σ⃗−i ,σ

′
i ) ̸ |= γi . For these agents γi = γ

′
i , and thus the Nash equilib-

rium condition is satisfied for them. Furthermore, trivially, σ⃗ |= ⊤
and, hence, σ⃗ |= γ ′i for all i < C . Thus, for all agents i ∈ N , if σ⃗ ̸ |= γ ′i ,
then (σ⃗−i ,σ

′
i ) ̸ |= γ

′
i , for every strategy σ

′
i for agent i . It follows that

σ⃗ is a Nash equilibrium of GC .

Conversely, suppose σ⃗ is a Nash equilibrium of GC . Then for all

agents i ∈ N , if σ⃗ ̸ |= γ ′i , then (σ⃗−i ,σ
′
i ) ̸ |= γ

′
i , for every strategy σ ′i

for agent i . Since C ⊆ N , and the goals of those agents in C are the

same in both G and GC , it immediately follows that σ⃗ is a C-Nash
equilibrium of G. □

∃- and ∀-Stable Coalitions. Observe that whether a profile is a

C-Nash equilibrium is, by definition, independent of the preferences

of the agents that are not inC . Yet, as we will see, one profile σ⃗ may

be a C-Nash equilibrium and another σ⃗ ′ not, even if every agent

in C plays the same strategy in σ⃗ and σ⃗ ′. We therefore distinguish

between ∀-stable and ∃-stable coalitions. A coalition C is ∃-stable

if there is some profile σ⃗−C for the players outside C and some

profile σ⃗ ′C for the players inC such that (σ⃗−C , σ⃗
′
C ) is aC-equilibrium.

Similarly, coalition C is ∀-stable if for every profile σ⃗−C for the

players outside C there is some profile σ⃗ ′C for the players in C such

that (σ⃗−C , σ⃗
′
C ) is a C-equilibrium.

For an example, consider the Boolean game in Figure 1, where

the strategy profile pqr is a {1, 2}-Nash equilibrium: player 1 and 2

both get their goal satisfied and do not want to deviate. However,

player 3 would like to deviate and play r̄ and, hence, pqr is not

a Nash equilibrium. Furthermore, coalition {1, 2} is ∃-stable but

not ∀-stable. To see the former, observe that if player 3 sets r to
true, players 1 and 2 could set their variables,p andq, respectively, to
true as well. Having seen that pqr is a {1, 2}-equilibrium, it follows

that {1, 2} is ∃-stable. On the other hand, {1, 2} fails to be ∀-stable:

if player 3 sets r to false, players 1 and 2 are caught in a ‘matching

pennies’ type of situation, for which no {1, 2}-Nash equilibrium

exists.

It is worth observing that singleton coalitions are always both

∃-stable and ∀-stable, as a single agent always has a strategy at

her disposal that maximises her payoff for each given profile of

strategies the other players may be playing. As Nash equilibria,

and therewith N -equilibria, are not guaranteed to exist, it follows

that neither ∃-stability nor ∀-stability are upward monotonic in

the sense that if a coalition C is ∃/∀-stable, then so is every coali-

tion D ⊇ C . The example above, moreover, shows that ∀-stability is

not downward monotonic either in the sense that C being ∀-stable

q q̄ q q̄

p 1, 1, 0 0, 0, 1 0, 1, 1 1, 0, 0

p̄ 0, 0, 1 1, 1, 0 1, 0, 0 0, 1, 0

r r̄

Figure 1: A three-player Boolean game, where player 1 con-
trols p and chooses rows, player 2 controls q and chooses
columns, and player 3 controls r and chooses matrices.

implies every coalition D ⊆ C to be ∀-monotonic: since p̄q̄r is an N -

equilibrium, it follows that N is ∀-stable; however, coalition {1, 2}

is not. On the other hand, we do have the following lemma with

respect to ∃-stable coalitions.

Lemma 3.2. ∃-stability is downward monotonic.

Proof. Assume that coalition C is ∃-stable and D ⊆ C . Then,
some C-equilibrium σ⃗ exists. That is, no player in C would like to

unilaterally deviate from σ⃗ . But then, in particular, no player in D
would like to deviate from σ⃗ either. Hence, σ⃗ is a D-equilibrium
and D is ∃-stable. □

Maximal Coalitions. Among other things, Lemma 3.2 shows that

a game may have many local equilibria. Then, a natural question

arises: given a game with multiple local equilibria, which ones

should be considered as more desirable than others, and why?

Indeed, observe also that any game with n players has at least n + 1

∃-stable Nash equilibria (one for each singleton coalition plus one

for the empty coalition). In order to address this issue, we now

define a cost function, κ : N → R, which indicates how ‘valuable’

a player is to the system designer. This cost function will, in turn,

allow us to measure in a formal and mathematically concrete way

how valuable a (local) equilibrium is to us. Every cost function κ
over players is straightforwardly extended to a cost function over

coalitions in such that, for every coalition C ,

κ (C ) =
∑
i ∈C

κ (i ).

An ∃-stable coalition C in a game G is then called κ-maximal if

there is no ∃-stable coalition D in G with κ (D) > κ (C ). Similarly,

an ∀-stable coalitionC is said to be κ-maximal if there is no ∀-stable

coalition D in G with κ (D) > κ (C ).
One may now wonder why these should be useful notions to

study. A first point to consider is that the existence of Nash equi-

libria is not guaranteed in (iterated) Boolean games. There may be

‘stubborn’ players who sabotage everyone else’s goal if they can

not achieve their goal, or it might just be the case that two players’

goals are incompatible. If we can coerce some players not to care

about their strategies or to have them play them in a particular way,

this may relax the game enough to induce the existence of a Nash

equilibrium. However, we may also want to maximise the value of

∃/∀-stable coalitions. Thus, in an important sense, once κ is defined,

κ-maximal stable coalitions can be thought of as representing ‘local

optima’ in the game.
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3.1 Complexity Problems
Both Boolean games and iBGs can be used to model the behaviour

of concurrent and multi-agent systems. Once a multi-agent system

has been modelled as a multi-player game, from a game-theoretic

point of view, a number of queries about the correctness and verifi-

cation of the system naturally arise. Among these, the most basic

one is whether the system, seen as a game, has a Nash equilib-

rium (cf., [20]). We will study similar questions in the context of

local equilibria. In particular, we will be interested in whether some

coalition of players is κ-maximal, for a given cost function κ. More

specifically, we will study the following two decision problems:

(∃/∀)-stable-maximal

Given: Game G, a set C ⊆ N , and cost function κ.
Problem: Is C a κ-maximal (∃/∀)-stable coalition?

Some particular cases will be more relevant than others. For in-

stance ifC = N andκ is the constant function to zero,∃-stable-maximal
is the Non-Emptiness problem for Boolean games, i.e., whether a

Boolean game has a Nash equilibrium. In the context of local equi-

libria, another problem will also be of interest, namely, whether a

set of players is or is not (∃/∀)-stable. This problem, which naturally

arises when κ is the constant function to zero, is defined as follows:

(∃/∀)-stability

Given: Game G and set of players C ⊆ N .

Problem: Is C an (∃/∀)-stable coalition?

Finally, another basic problem we will be interested in is deciding

whether a given strategy profile is a C-equilibrium, i.e., if such a

profile is a local (Nash) equilibrium with respect toC . Formally, this

decision problem is stated as follows:

C-membership
Given: Game G, set of players C , strategy profile σ⃗ .
Problem: Is σ⃗ a C-Nash equilibrium?

4 COMPUTATIONAL RESULTS
In this section we investigate the concept of local equilibria through

a systematic study of the decision problems formally stated in the

previous section. In order to do so, we begin with Boolean games,

that is, the case where players’ goals are given by propositional

logic formulae.

4.1 Local Equilibria in Boolean Games
We will conduct our study of Boolean games moving from the

simplest problems to the hardest, starting with C-membership.

Proposition 4.1. C-membership is coNP-complete.

Proof. Given a Boolean game G, the game GC can be con-

structed in polynomial time. Because of Lemma 3.1, we can then de-

cide whether σ⃗ is aC-equilibrium by checking if σ⃗ is a Nash equilib-

rium ofGC , which is a coNP-complete problem [3]; we will call this

problem Membership. For hardness, we reduce from membership

by noting that, due to Lemma 3.1, ⟨G, σ⃗ ⟩ ∈ membership if and only
if ⟨G,N , σ⃗ ⟩ ∈ C-membership. □

We now consider ∃-stability and show that it is as hard as

checking for the existence of a Nash equilibrium in a Boolean game,

a problem we will denote by Non-emptiness. As one may expect,

this result will be useful to establish the computational complexity

of ∃-stable-maximal.

Proposition 4.2. ∃-stability is Σ
p
2
-complete.

Proof. Firstly, recall that coalition C is ∃-stable if and only if

a C-equilibrium exists (Lemma 3.1). As Σ
p
2
= NP

NP = NP
coNP

,

for membership in Σ
p
2
it suffices to observe that a certificate for

∃-stability is a strategy profile σ⃗ , which, by Proposition 4.1, can

be checked in polynomial time to be a ‘yes’-instance (by conferring

with a coNP-oracle whether σ⃗ is aC-equilibrium). For Σ
p
2
-hardness,

we reduce from Non-emptiness by noting that, due to Lemma 3.1,

⟨G⟩ ∈ Non-emptiness if and only if ⟨G,N ⟩ ∈ ∃-stability. □

We now address the complementary problem: ∀-stability. As

the next result shows, for a given Boolean gameG , checking ⟨G,C⟩ ∈
∀-stability is considerably different from checkingwhether ⟨G,C⟩ ∈
∃-stability. For technical reasons and to simplify notations, we

will use Ψ and Θ as metavariables over propositional formulas

with free variables. Moreover, the following construction will be

useful. For a given Boolean game G = (N ,Φ1, . . . ,Φn ,γ1, . . . ,γn ),
coalition C , and strategy profile σ⃗ = (σ1, . . . ,σn ), let

Gσ⃗C = (N ,Φ1, . . . ,Φn ,γ
′
1
, . . . ,γ ′n ),

where

γ ′i =



∧
p∈σi p ∧

∧
p∈Φi \σi ¬p if i ∈ C ,

γi otherwise.

Intuitively, the game Gσ⃗C differs from G only in that the members

in C solely wish that their part of a particular strategy profile σ⃗
be played. Moreover, each member i of coalition C can enforce by

itself that its goal is satisfied by playing σi , and accordingly will do

so in every Nash equilibrium. Then, we have the following result.

Proposition 4.3. ∀-stability is Π
p
3
-complete.

Proof. For membership, recall that Π
p
3
= coNP

Σ
p
2 . We can now

proceed as follows. Given Boolean game G and coalition C , guess
a profile σ⃗−C , and construct Gσ⃗−C . The latter can be achieved in

polynomial time. At this point, we can confer with an oracle for

non-emptiness with respect to Gσ⃗−C . Then, the pair ⟨C, σ⃗−C ⟩ is
a counterexample to C being ∀-stable if and only if the oracle re-

turns “no”. As Non-emptiness is Σ
p
2
-complete, we are done.

For hardness, we reduceQBF∀,3. LetQ = ∀X∃Y∀ZΨ be a quanti-

fied Boolean formula.We construct a three-player Boolean gameGQ
with two additional variables y and z that are not included in

X ∪ Y ∪ Z . Now let:

Φ1 = X γ1 = ⊤

Φ2 = Y ∪ {y} γ2 = Ψ ∨ (y ↔ z)

Φ3 = Z ∪ {z} γ3 = ¬Ψ ∧ (¬y ↔ z)

It can then be shown that {2, 3} is ∀-stable in GQ if and only if

Q = ∀X∃Y∀ZΨ evaluates to true.

First assume that Q evaluates to true, and consider an arbitrary

strategy σ1 for player 1. Then, there is a valuation σ2 to Y such that

for all valuations σ3 to Z , the formula Ψ is satisfied at σ1 ∪ σ2 ∪ σ3.

It is then easy to see that the strategy profile (σ1,σ2,σ3) is a {2, 3}-
equilibrium: player 2 has its goal achieved whereas player 3 will

not get γ3 satisfied by playing any other strategy.

Session 10: Logic and Games AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

402



For the opposite direction, assume thatQ evaluates to false. Then,

there is some assignment σ1 to X such that for all assignments to Y ,
there is an assignment to Z that renders Ψ false. Consider arbitrary

strategies σ2 and σ3 for players 2 and 3, respectively. If (σ1,σ2,σ3)
does not satisfy γ2, player 2 can and would like to deviate to a

strategy σ ′
2
such that (σ1,σ

′
2
,σ3) |= Ψ and, moreover, y ∈ σ ′

2
if and

only if z ∈ σ3. If, on the other hand, strategy profile (σ1,σ2,σ3)
does satisfy γ2, then player 3 does not satisfy its goal. In that case

however, the latter can deviate by playing an appropriate strategyσ ′
3

such that Φ is false under strategy profile (σ1,σ2,σ
′
3
) and z ∈ σ ′

3
if

and only if y < σ2. □

We are now in a position to study the maximality problems for

Boolean games. In order to do so, let us first consider the following

auxiliary decision problem and associated lemma.

semi-∃-stable-maximal

Given: Game G, a set of players C , and cost function κ.
Problem: Is κ (C ) ≥ κ (D) for all ∃-stable coalitions D ⊆ N ?

Lemma 4.4. semi-∃-stable-maximal is in Π
p
2
.

Proof. For membership in Π
p
2
, observe that a “no” instance of

semi-∃-stable-maximal is certified by a pair ⟨D, σ⃗ ⟩, where D is a

coalition with κ (D) > κ (C ) and profile σ⃗ is a D-equilibrium. Since

Π
p
2
= coNP

NP = coNP
coNP

, given a pair ⟨D, σ⃗ ⟩, we can verify in

polynomial time whether κ (D) > κ (C ) and, because of Lemma 4.1,

also whether σ⃗ is a D-equilibrium by conferring with the coNP-

oracle. □

Using both ∃-stability and semi-∃-stable-maximal, we can

now determine the computational complexity of the maximality

problem for ∃-stable coalitions in Boolean games.

Proposition 4.5. ∃-stable-maximal is D
p
2
-complete.

Proof. For membership in D
p
2
, note that ∃-stable-maximal

can be written as the intersection of semi-∃-stable-maximal and

∃-stability. And, by Lemma 4.4 and Proposition 4.2, we know that

these problems are in Π
p
2
and Σ

p
2
, respectively. Then, it follows that

∃-stable-maximal is in D
p
2
.

For hardness, we reduce from QBF
2,∃-QBF2,∀. Firstly, let Q =

⟨Q1,Q2⟩, with Q1 = ∃X1∀X2Θ(X1,X2), and Q2 = ∀Y1∃Y2Ψ(Y1,Y2).
At this point, we may assume that X1 ∪X2 and Y1 ∪Y2 are disjoint.

Also, define a game, G, with four players, 1 ,2, 3, and 4, and with

four fresh auxiliary variables, p, q, r , and s . The players control the
variables as follows,

Φ1 = X1 ∪ {p} Φ2 = X2 ∪ {q}

Φ3 = Y1 ∪ {r } Φ4 = Y2 ∪ {s}

and the players’ goals are given by,

γ1 = Θ ∨ (p ↔ q) γ2 = ¬Θ ∧ ¬(p ↔ q)

γ3 = ¬Ψ ∨ ¬(r ↔ s ) γ4 = Ψ ∧ (r ↔ s ).

Obviously, this game can be constructed in polynomial time. Let,

moreover, κ (i ) = 1 for all players i . Now consider coalition C =
{1, 2, 4}. We claim that Q1 and Q2 are both valid if and only if C is

a κ-maximal ∃-stable coalition.

First assume that both Q1 and Q2 are valid. Then, there exists

a valuation v ′
1
⊆ X1 such that for all valuations v2 ⊆ X2, we have

(v ′
1
,v2) |= Θ. Let v ′

2
be an arbitrary valuation of X2. So naturally,

(v ′
1
,v ′

2
) |= Θ. Now, let v ′

3
⊆ Y1 be an arbitrary valuation. Since Q2

is valid, there exists some valuation, v ′
4
⊆ Y2 such that we have

(v ′
3
,v ′

4
) |= Ψ.

Let σ⃗ ∗ = (σ ∗
1
,σ ∗

2
,σ ∗

3
,σ ∗

4
) be such that

σ ∗
1
= v ′

1
∪ {p} σ ∗

2
= v ′

2
∪ {q}

σ ∗
3
= v ′

3
∪ {r } σ ∗

4
= v ′

4
∪ {s}.

We claim that σ⃗ ∗ is a C-equilibrium of G.
As (v ′

1
,v ′

2
) |= Θ, player 1 has their goal satisfied at σ⃗ ∗ and would

prefer not to deviate. Additionally, since for all v2 ⊆ X2, we have

(v ′
1
,v2) |= Θ, it follows that player 2 has no deviations available to

them that can force ¬Θ to be true. Therefore, player 2 would prefer

not to deviate as well. Finally, since (v ′
3
,v ′

4
) |= Ψ, and since r and s

are both set to true, player 4 has their goal satisfied and would also

prefer not to deviate. It then follows that σ⃗ ∗ is a C-equilibrium.

Moreover, note that D = N = {1, 2, 3, 4} is the only subset of

N with νκ (GC ) < νκ (GD ), where νκ (GC ) = κ (C ) and νκ (GD ) =
κ (D). However, D is not ∃-stable. To see this, consider an arbitrary

profile σ⃗ ′. As ∀Y1∃Y2Ψ(Y1,Y2) is valid, player 4 can always deviate

by choosing values for Y2 and s so as to satisfy γ4, if σ⃗
′ ̸ |= γ4.

On the other hand, if σ⃗ ′ |= γ4, player 3 can deviate by choosing

the opposite value for r and have γ3 satisfied. It follows that C is

κ-maximal ∃-stable.

For the opposite direction, assume thatQ1 orQ2 is not valid. If the

former, for all valuations v1 ⊆ X1, there exists some valuation v2 ⊆

X2 such that (v1,v2) |= ¬Θ. By a similar line of reasoning as in the

previous paragraph, we find that either player 1 or player 2 would

like to deviate from any given strategy profile σ⃗ . As a consequence,
coalition C is not ∃-stable, let alone κ-maximal ∃-stable.

The analysis here is almost identical to the previous paragraph,

so we omit the details. Since we have γ1 = ¬γ2, and since player

2 can always force their goal to be true, but player 1 can always

force their goal to be true by deviating after “seeing” how player 2

has won, this implies that GC has no Nash equilibria, and so is not

a κ-maximal game.

The other possibility is thatQ2 is not valid, withQ1 still valid. In

this case, we find that the grand coalition N = {1, 2, 3, 4} is ∃-stable
and, as κ (N ) > κ (C ), also that coalitionC is not κ-maximal ∃-stable.

To see that coalition D is ∃-stable, observe that, asQ1 is valid, there

exists some valuation v ′
1
⊆ X1 such that for all valuations v2 ⊆ X2,

we have (v ′
1
,v2) |= Θ. Similarly, since Q2 is not valid, there exists

some valuation v ′
3
⊆ Y1, such that for all valuations v4 ⊆ Y2, we

have (v ′
3
,v4) |= Ψ. So, let v ′

2
⊆ X2, and v

′
4
⊆ Y2 be arbitrary

valuations. Again, define the strategy profile σ⃗ ∗ = (σ ∗
1
,σ ∗

2
,σ ∗

3
,σ ∗

4
)

to be such that

σ ∗
1
= v1 ∪ {p} σ ∗

2
= v2 ∪ {q}

σ ∗
3
= v3 ∪ {r } σ ∗

4
= v4 ∪ {s}.

To conclude the proof we show that σ⃗ ∗ is a C-equilibrium of G. To
see this, observe that both player 1 and player 3 have their goals

satisfied, so they will not choose to deviate. Now, players 2 and 4,

no matter how they deviate, cannot make ¬Θ and Ψ (respectively)

true, and so, cannot satisfy their goals. Thus, they have no incentive

to deviate either. □
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Remark: Note that cost functions are a natural extension of the

concept of the cardinality of a coalition, which is captured by the

special case in which the cost of each player is 1. It is this natural

case that we exploit in the proof of Theorem 4.5.

To end this subsection, we now investigate the complexity of

∀-stable-maximal. Formally, we have the following result.

Proposition 4.6. ∀-stable-maximal is in Π
p
4
.

Proof. A counter-example against ∀-stable-maximal for coali-

tion C would either be coalition C itself if it is not ∀-stable or a

coalition D with κ (D) > κ (C ) that is ∀-stable. Thus, membership

in Π
p
4
= coNP

Σ
p
3 = coNP

Π
p
3 can be established simply by guessing

a coalition D.
If D = C , then we can query the oracle whetherC is ∀-stable. We

have found a counter-instance if and only if the answer is “no”. If,

on the other hand,D , C , we can check in polynomial time whether

κ (D) > κ (C ) and query the oracle as to whether coalition D is ∀-

stable. We have found a counter-instance if and only if both answers

are positive. □

A lower bound inΠ
p
3
follows from∀-stability. However, whether

the problem is Π
p
4
-complete or not remains unknown.

4.2 Local Equilibria in iBGs
We now study the notion of local equilibria in the more general

model of iterated Boolean Games (iBGs). As in the previous sub-

section, we first consider the membership problem and then the

others. However, contrarily to the case for Boolean games, in this

section we will study the maximality problems for iBGs first and

then understand the stability problems as special cases.

The first result pertains to membership, that is, checking whether

a given strategy profile is a local (Nash) equilibrium of a given iBG.

This problem, as well as the conventional membership problem

for iBGs, can be solved in PSPACE. The reasoning in the proof is

analogous to that for Boolean games, i.e., as in Proposition 4.1 (since

Lemma 3.1 applies to both Boolean games and iBGs uniformly), and

leveraging that Membership for iBGs is PSPACE-hard [7].

Proposition 4.7. C-membership is PSPACE-complete.

This result confirms what was shown in the previous section,

namely, that checking whether a given strategy profile is a local

(Nash) equilibrium is as hard as checking whether a strategy profile

is a Nash equilibrium. In sharp contrast to this fact, we have the fol-

lowing result. Whereas for Boolean games, the ∃-stable-maximal

problem was harder than the Non-emptiness problem, unless the

polynomial hierarchy is not strict, in the case of iBGs both problems

are equally hard, and can be solved in 2EXPTIME. Formally, we

have:

Proposition 4.8. ∃-stable-maximal is 2EXPTIME-complete.

Proof. For membership in 2EXPTIME, first assume we want to

check whether ⟨G,C,κ⟩ ∈ ∃-stable-maximal, for some iBG G, set
of playersC , and cost functionκ. Since theNon-emptiness problem
for iBGs is 2EXPTIME-complete [7], there is some algorithm, A,

and some fixed, positive integer k , that given a gameG , determines

whether or not NE(G ) is non-empty in timeT ( |G |), where |G | is the

size ofG , withT (n) = O
(
2

2
nk

)
. We use the following algorithm to

determine whether GC is a κ-maximal subgame of G. First, we use
A to check if NE(GC ) is non-empty. If it is empty, we reject GC .

Otherwise, for every D ⊆ N , look at GD , and calculate its value. If

νκ (GC ) ≥ νκ (GD ), we move onto the next subset. Otherwise, we

use A to determine whether or not NED (G ) is non-empty. If it is,

then we reject GC . If we have done this for every subset without

yet rejecting GC , then we accept it.

Now, for a given subset D ⊆ N , we can use algorithm A to

determinewhetherNED (G ) is non-empty in timeT ( |GD |) ≤ T ( |G |).
Additionally, determining the value of a subgame,GD , can be done

in time O ( |D |) ≤ O (n). Finally, there are 2
n
subsets of N , so this

algorithm is time bounded by,∑
D⊆N

O ( |D |) +T ( |GD |) ≤
∑
D⊆N

O (n) +T ( |G |)

= O (n2
n ) + 2

nT ( |G |)

≤ O ( |G | 2 |G | ) + 2
|G |T ( |G |)

= O

(
|G | 2 |G | + 2

|G |
2

2
|G |k

)
= O

(
2

2
|G |k

)
.

Here, we have also used the fact that n < |G |. It therefore follows
that ∃-stable-maximal is a member of 2EXPTIME.

For hardness, we reduce from Non-emptiness for iBGs. Let

G = ⟨N ,Φ, (Φi )i ∈N , (γi )i ∈N ⟩ be a game. Now, define a trivial cost

function, κ : N → R, that is defined as κ (i ) = 0, for each player i in
the game, that is, the constant function to zero. We now claim that

G ∈ Non-emptiness iff ⟨G,N ,κ⟩ ∈ ∃-stable-maximal.

Suppose that G ∈ Non-emptiness. So NE(G ) , ∅. To show

that ⟨G,N ,κ⟩ ∈ ∃-stable-maximal, we need to demonstrate that

GN ≡ G is a κ-maximal subgame of G. We already know that

NEN (G ) = NE(G ) , ∅. Let D ⊆ N . Then,

νκ (GD ) =
∑
i ∈D

κ (i ) = 0,

and so, νκ (GD ) = 0, for all D ⊆ N . In particular, for all D ⊆ N
with NED (G ) , ∅, we have νκ (GN ) ≥ νκ (GD ). Thus, GN is a κ-
maximal subgame of G, and therefore we obtain that ⟨G,N ,κ⟩ ∈
∃-stable-maximal.

Conversely, suppose that ⟨G,N ,κ⟩ ∈ ∃-stable-maximal. By
definition, NE(G ) = NEN (G ) , ∅, and so G ∈ Non-emptiness.

Moreover, this construction can evidently be done in polynomial

time. Thus, ∃-stable-maximal is 2EXPTIME-complete. □

As an immediate consequence of Proposition 4.8 we now obtain

the following result about ∃-stable coalitions in iBGs.

Corollary 4.9. ∃-stability is 2EXPTIME-complete.

Proof. For membership we first let κ be the constant (cost)

function to zero, i.e., κ (i ) = 0 for each player i in the game. Then,

we observe that

⟨G,C⟩ ∈ ∃-stability iff ⟨G,C,κ⟩ ∈ ∃-stable-maximal.
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For the hardness part now observe that

G ∈ Non-emptiness iff ⟨G,N ⟩ ∈ ∃-stability,

which concludes the proof. □

The above proof shows that, for ∃-stable-maximal, the overall

complexity is driven by the (sub)procedure to decide whether a

coalition is ∃-stable, instead of the (sub)procedure to check whether

a stable coalition is κ-maximal. We observe the same phenomenon

for ∀-stable-maximal. However, in this case, the problem can be

solved in 3EXPTIME.

We will first show that ∀-stability is in 3EXPTIME. In order

to do so, we use Strategy Logic (SL [13]), in particular, over the

model of iBGs. SL is a logic to reason about strategic behaviour in

multi-player games. SL also extends LTL, in this case with three

new operators: an existential strategy quantifier ⟨⟨x⟩⟩, a universal
strategy quantifier [[x]], and an agent binding operator (i,x ). These
three new operators can be read as “there is a strategy x”, “for
every strategy x”, and “let agent i use the strategy associated with x”,
respectively.

Formally, SL formulae are inductively built from a set of atomic

propositions Φ, variables Var, and players N , using the following

grammar, where p ∈ Φ, x ∈ Var, and i ∈ N :

ϕ ::= ⊤ | p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ Uϕ | ⟨⟨x⟩⟩ϕ | (i,x )ϕ

We define [[x]]ϕ ≡ ¬⟨⟨x⟩⟩¬ϕ, and use all other usual classical and

temporal logic abbreviations. We can now present the semantics

of SL, where Σ =
⋃
i ∈N Σi denotes the set of all strategies of all

players i ∈ N in an iBG. Given an iBG G, for all SL formulae ϕ,
states v ∈ 2

Φ
of G, and assignments χ ∈ Asg = (Var ∪ Ag) → Σ,

mapping variables and players to strategies, the relationG, χ ,v |= ϕ
is defined as follows:

(1) For the Boolean and temporal cases, the semantics is as for

LTL formulae on iBGs (see, e.g., [7]);

(2) For all formulae φ and variables x ∈ Var we have:

(a) G, χ ,v |= ⟨⟨x⟩⟩ϕ if there is a strategy σ ∈ Σ
such that G, χ[x 7→ σ ],v |= ϕ;

(b) G, χ ,v |= [[x]]φ if for all strategies σ ∈ Σ
we have that G, χ[x 7→ σ ],v |= ϕ.

(3) For all i ∈ N and x ∈ Var, we have G, χ ,v |= (i,x )ϕ
if G, χ[i 7→ χ (x )],v |= ϕ.

For a sentence φ, we say that G at v satisfies φ, and write G,v |= φ,
if G, ∅,v |= φ, where ∅ is the empty assignment. Using SL we can

describe ∀-stability for an instance ⟨G,C⟩ as follows:

ϕ∀,C = [[−C]]ϕNE

where [[−C]] stands for [[x]] . . . [[y]](c1,x ) . . . (ck ,y), with respect
to the set of players −C = {c1, . . . , ck } = N \C , and ϕNE is the usual

SL formula for Nash equilibrium, namely,

ϕNE = ⟨⟨C⟩⟩
∧
i ∈C
¬γi → [[z′]](i, z′)¬γi

in which ⟨⟨C⟩⟩ stands for ⟨⟨x ′⟩⟩ . . . ⟨⟨y′⟩⟩(c ′
1
,x ′) . . . (c ′l ,y

′), with

C = {c ′
1
, . . . , c ′l }. Since formula ϕ∀,C has alternation depth 2, us-

ing [13], it can be (model) checked in 3EXPTIME over concurrent

game structures [2], although the procedure is only polynomial

in the size of the underlying concurrent game structure. Since we

can translate any iBG G into a concurrent game structure of ex-

ponential size, using the model checking procedure for SL we can

model check iBGs with the same combined complexity, but with a

procedure that is exponential in the size of the iBGG . Formally, we

have:

Lemma 4.10. For iBGs, model checking an SL formula ψ with

alternation depth k can be done in (k + 1)EXPTIME.

We are now in a position to establish the complexity of the

∀-stability problem for iBGs.

Proposition 4.11. ∀-stability is in 3EXPTIME.

Proof. Lemma 4.10 yields an upper bound for ∀-stability via

model checking of SL formulae over iBGs. Note that, for any iBGG
and set of players C , we have:

⟨G,C⟩ ∈ ∀-stability iff G is a model of ϕ∀,C ,

from which membership in 3EXPTIME follows. □

At this point, we should note that the proof of Proposition 4.8 has

three parts: one to check that a coalition is ∃-stable, one to reason

about κ-maximality, and the hardness part. We can see that from

these the second part (to reason about maximality) also applies to

∀-stable coalitions since we can go over all coalitions D ⊆ N to

check if C is κ-maximal. Based on this observation, we have the

following result.

Proposition 4.12. ∀-stable-maximal is in 3EXPTIME.

Proof. For membership in 3EXPTIME, we can check if C is ∀-

stable using Proposition 4.11 and if it is κ-maximal by comparing it

with all other ∀-stable coalitions D ⊆ N . □

It also follows that both ∀-stability and ∀-stable-maximal are

2EXPTIME-hard. To see this, observe that ⟨G,C⟩ ∈ ∀-stability
if and only if ⟨G,C,κ⟩ ∈ ∀-stable-maximal, e.g., when κ is the

constant function to zero, and note that Non-mptiness can be

reduced to ∀-stability when C = N and κ as above.

Remark. Readers acquainted with SL may have noticed that a

2EXPTIME upper bound for ∃-stability can also be achieved via

SL, essentially, following an approach similar to the one just used to

analyse ∀-stable coalitions. In addition, such a result could be lever-

aged to obtain a 2EXPTIME upper bound for ∃-stable-maximal as

well. On the one hand, this solution would allow us to avoid invok-

ing Lemma 3.1 and, hence, also the construction of the game GC .

On the other hand, it would require reasoning on the semantics

of SL, which we have shown can be avoided when considering

local equilibria with respect to ∃-stable coalitions. Indeed, all we

require to reason about ∃-stable coalitions is to have a 2EXPTIME

procedure (any!) to check for the existence of Nash equilibria in

multi-player games with LTL goals.

5 CONCLUSIONS & FUTUREWORK
In this paper we have studied the new concept of local equilibrium,

in particular in the context of Boolean games and iterated Boolean

games We have obtained a diverse landscape of complexity results,

ranging from problems that are coNP-complete to problems solv-

able in 3EXPTIME. In particular, our results show that, in general,
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Boolean Games iBGs

C-membership coNP PSPACE

∃-stability Σ
p
2

2EXPTIME

∀-stability Π
p
3

in 3EXPTIME

∃-stable-maximal D
p
2

2EXPTIME

∀-stable-maximal in Π
p
4

in 3EXPTIME

Table 1: Overview of main complexity results.

reasoning about local (Nash) equilibria may be harder than reason-

ing about the “global” concept of Nash equilibrium. A summary of

our main complexity results is in Table 1.

Additional complexity results. An inspection of many of the

proofs underlying our results shows that minor variations can

be applied so that the same complexities can be obtained for (some

of) the problems we studied with respect to other solution concepts

and models of games. For instance, with respect to the former, we

know that the same complexities hold for the maximality prob-

lems if we consider subgame perfect Nash equilibrium or dominant

strategies. On the other hand, with respect to the latter, also the

same complexities hold for the maximality problems if we consider

SRML games [8].

Local equilibria. To the best of our knowledge the concept of

local equilibria has not been previously studied in the way we have

presented it in this paper. However, there are games where the

concept of locality has been investigated in other forms. For in-

stance, in graphical games [5]—where games are given as graphs

with each node representing a player and edges representing play-

ers’ choices—a player may be required to best respond only to the

behaviour of its neighbours. This is clearly a different notion of

locality, but it also embodies the idea that a player’s behaviour

may be analysed only with respect to a subset of the overall set of

players in the game. The concept of local (Nash) equilibrium has

also been studied in the context of economic games [1], continuous

games [17], and social networks [21]. These are all different notions

of locality, both between them and with respect to ours. However,

these other notions of locality share one common feature: they try

to characterise the fact that if the space of strategies is reduced

then a global optimum may not be achieved, only a local one (as

constrained by the reduced space of strategies under consideration),

which may be easier to compute or model more faithfully the fact

that players in a game may have only bounded rationality.

Strategy Logic and Formal Verification. Our results also relate to

recent work on rational synthesis [6, 11] and rational verification [7,

8, 20]. In these papers the concept of locality is not present, neither

the concept of cost functions in the way we use them here. However,

the solutions in such papers make use of Strategy Logic (SL), which

at one point we also use here. Although SL can easily provide some

upper bounds, as shown in this paper, this does not immediately

mean that they are optimal (cf., ∀-stability). In addition, SL does

not yield optimal upper bounds for BGs and other related settings.

For these we would need another logic.

Future work. From a practical point of view, it should be possible

to have an implementation of local equilibria for BGs or for games

with imperfect recall using MCMAS [12], since MCMAS supports

SL with memoryless strategies [4]. From a theoretical point of view,

ways to lower the overall complexity of the problems we considered

should be investigated. Two promising directions are to consider

games with simpler types of goals, or games with simpler strategy

models.
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