
Optimal Constraint Collection for Core-Selecting Path
Mechanism∗

Hao Cheng, Lei Zhang*, Yi Zhang, Jun Wu, ChongJun Wang

State Key Laboratory for Novel Software Technology at Nanjing University

Nanjing, China

njuchengh@163.com,zhangl@nju.edu.cn

mg1733091@smail.nju.edu.cn,{wujun,chjwang}@nju.edu.cn

ABSTRACT
In path auctions, strategic bidders make bids for commodities. Each

edge of the graph stands for a commodity and the weight on the

edge represents the prime cost. Auctioneer needs to purchase a

sequence of edges in order to get a path from one vertex to an-

other at a low cost. Path auctions can be considered as a kind of

combinatorial reverse-auctions. Computing prices in core-selecting

combinatorial auctions is a computationally hard problem, the same

is true in core-selecting path auctions. This problem can be solved

by core constraint generation(CCG) algorithm. However, we find

that there are many redundant constraints and the constraint col-

lection can be conciser in core-selecting path mechanism. In this

paper, 1) we put forward a new approach to get the constraint col-

lection, and reduce the constraint number from exponential O(2n)
to polynomialO(n2), where n is the network diameter; 2) we prove

that the new constraint collection is not only equivalent to the orig-

inal collection, but also has no redundant constraint in the worst

case; 3) we validate our approach on real-world datasets and obtain

excellent results. Furthermore, we provide new insights to think

over the core-selecting mechanism in combinatorial auctions.

KEYWORDS
path auctions; the shortest path; core; constraint collection

ACM Reference Format:
Hao Cheng, Lei Zhang*, Yi Zhang, Jun Wu, ChongJun Wang. 2018. Optimal

Constraint Collection for Core-Selecting Path Mechanism. In Proc. of the
17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), Stockholm, Sweden, July 10–15, 2018, IFAAMAS, 9 pages.

1 INTRODUCTION
Path auctions have been studied extensively [10, 21, 24] since Nisan

and Ronen [20] introduced algorithmic mechanism design. In path

auctions, auctioneer tries to buy an s-t-path in a directed graph,

where the edges of the graph are owned by bidders. The cost of

each edge is the private information of its owners. Path auction is

an abstract mathematical model of many scenes such as transport

routing, power transmission.

The classic mechanism for path auctions is the well-known

Vickrey-Clark-Groves(VCG) mechanism, where bidders pay the

externalities they impose on all other bidders. VCG mechanism is

∗
Lei Zhang is the corresponding author.

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

the unique mechanism that can guarantee effective allocation and

incentive compatibility theoretically. However, VCG mechanism

has some issues. On one hand, it may result in a low revenue to

the auctioneer [2]. On the other hand, VCG mechanism exists false-

name bids so that some bidders may register fake accounts to get

more profit[24]. These issues have led to considerable interests in

core-selecting mechanism [6–8].

Core-selecting mechanism has been well studied in the area of

combinatorial auctions [3, 17, 22, 23]. It is false-name-proof and

has better revenue performance than VCG mechanism. So it is

widely used in auctions such as spectrum auctions [4], procure-

ment auctions [25] and TV advertising auctions [8]. Core-selecting

mechanism selects the outcome from the core so that no coali-

tion in the auction can improve upon the outcome. However, it

is NP-hard to find an efficient allocation in general combinato-

rial auction, which is also known as the winner-determination

problem[22]. This problem results in that producing an optimal

linear objective over the core is also NP-hard [9]. In core-selecting

mechanism, it needs to compute the optimal allocation for all the

possible coalitions to describe the core, which is complicated. To

solve the computation problem, [9] presents an approach of core

constraint generation (CCG) algorithm. CCG algorithm reduces

the coalitions which requires considering to a moderate number.

Nevertheless, complicated computation is still an important rea-

son that hinders its application. Path auctions can be considered

as a special case of combinatorial auctions. [24] has designed the

core-selecting path mechanism, where computational problem also

exists to produce the core.

The remainder of the paper is organized as follows. We begin by

discussing related work of path auctions and core-selecting mecha-

nism. Section 2 describes priori knowledge of path auctions, using

directed weighted graph for modeling. A new approach to get sim-

plified polynomial constraints is described in section 3 and it also

proves that the new constrains is equal to exponential constraints

in two aspects of necessity and sufficiency. Section 4 proves strictly

that each constraint in the new constraint collection is indispens-

able, in other words, we get the optimal core constraint collection.

In section 5, we design algorithms to verify the correctness above,

analyze the efficiency of the two constraint collections and compare

them with CCG algorithm. Section 6 presents the results of our

experiments. Section 7 concludes with a summary of what we have

accomplished and a discussion of future work.

1.1 Related Work
This paper is based on [24], where they designed the core-selecting

path mechanism that is false-name-proof and put forward a new

Session 2: Mechanism Design 1 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

41

formulation for the core with 2
n
core constraints , n is the network

diameter. They also proved the maximum core payment can be

computed within time of polynomial in n, but they didn’t offer a

polynomial algorithm.

The problem of designing economic mechanisms for path auc-

tions was first studied in [20], where VCG mechanism is applied to

find the shortest path. It is shown that the VCG payments can be

computed using n runs of Dijkstra’s algorithm in O(nm + n2 logn)
time. It is later proved that if the underlying graph is undirected,

the VCG payments can be computed in only O(m + n logn) time

[13]. Previous work has found that VCG path mechanism can be

forced to make arbitrarily high overpayment in the worst case. In

fact the result can be generalized to include all truthful path mech-

anisms [11, 16]. This led to the study of frugal path mechanisms

[1]. Previous work has also studied the VCG overpayment in the

Internet inter-domain routing graph [12] and large random graphs

[15].

In addition to the literature mentioned above, our work is also

related to the literature on core-selecting auction [5–7, 19]. As for

the problem of computation, [9] formulated the core separation

problem, finding the most violated core constraint for any proposed

payment vector. Then they designed CCG algorithm with the sepa-

ration technique, which could achieve a comfortably rapid solution

to produce the bidder-Pareto-optimal core pricing. [14] extended

the CCG algorithm based on separability in allocative conflicts be-

tween participants, and offered fast algorithms for computing core

price in large combinatorial auctions.

2 PRELIMINARIES
We represent a social network by a directed weighted graph G =
(V ,E). The edges represent the commodities for auctions, owned by

strategic agents. Each edge has a prime cost ce ∈ R+, only known

by the agent who owns it. These agents are also the bidders and

they will make bids for the edges in path auctions. The auctioneer

aims to buy an edge collection to achieve a path from a source

vertex s to a target vertex t . The final solution in path auctions is

a profile that describes the chosen path and the payments to the

chosen edges.

This is a problem of mechanism design. Each bidder makes a bid

be > 0, then the mechanism offers an allocation rule to determine a

coalition of winners E ′ = {e1, e2, ..., en } and a payment vector P =
(p1,p2, . . . ,pn) for the winners. So the outcome of path auctions

includes E ′ and P . We use πe to describe the utility of bidder e ,
defined as follows.

πe =

{
pe − ce e ∈ E ′

0 e < E ′
(1)

Denote the auctioneer by 0 and

π0 = −
∑
e ∈E′

pe (2)

The utility of the system including bidders and auctioneer 0(i.e.,

social welfare) is denoted as Π,

Π =
∑
e ∈E′

πe + π0 = −
∑
e ∈E′

ce (3)

Denote the total cost of the shortest path from s to t in the graph

G as d(s, t ,G), so the maximum social welfare is −d(s, t ,G).
In general auctions, assuming bidders are rational and strategic,

they will take strategies to increase their utilities such as reporting a

fake cost, registering some fake accounts to bid, forming coalitions

with other bidders and so on. So the mechanism is expected to be

strategy-proof.

Individual rationality means each bidder is willing to participate

in a mechanism only if they are guaranteed a non-negative utility.

In path auctions, the mechanism should satisfy ∀e ∈ E ′,pe ≥ ce .
Efficiency means the outcome of meachanism gets the maximum

social welfare Π. According to formula (3), it means that the mech-

anism needs to determine the bidders on the shortest path as the

winners. Incentive compatibility means that bidders report the real

edge cost is a dominant strategy in path auctions.

Well-known VCG mechanism is a mechanism that satisfies in-

dividual rationality,efficiency and incentive compatibility theoreti-

cally. But there are numerous issues with VCG[2], which leads to

researches of core-selecting mechanism.

2.1 Core-selecting path mechanism
In the case of path auction, core-selecting mechanism is described

as follows.

Model path auction as a cooperative game (N ,W) and use the

core as a solution concept. N represents all the players in this game.

It includes bidders and the auctioneer. The auctioneer is denoted

by 0.W represents the social welfare. Let L represent subset of N .

For each L, the welfare is defined as

W (L) =

{
−d(s, t ,L), 0 ∈ L

0, 0 < L
(4)

Definition 2.1 (Core outcome). In path auctions, a core outcome

is an allocation and payment profile such that the utility profile

π = (π1,π2, . . . ,πn) satisfies:∑
i ∈N

πi =W (N) (5)∑
i ∈L

πi ≥W (L),∀L ∈ N (6)

W (N) = −d(s, t ,N), which represents the maximum social wel-

fare. It means we should determine the coalition of the shortest

path as the winner coalition. Formula (6) means that the welfare of

the subset L under the profile π is not lower than that under the

definition of formula (4). And core is defined as the total set of core

outcomes. Then we can define the core-selecting mechanism.

Definition 2.2 (Core-selecting path mechanism). A path auction

mechanism is core-selecting if 1) it selects the shortest path; and 2)

the payment vector P is computed so that P ∈ core .
Core-selecting mechanism satisfies individual rationality and

efficiency. And it satisfies the core property in the case of bid-

ders reporting their cost truthfully[24]. The core property means

no coalition (subset of all players) can form a mutually benefi-

cial renegotiation among themselves. In addition, core-selecting

path mechanism relaxes the property of incentive compatibility

so that the bidders may not report truthful cost, which leads to

some researches[5]. But it is not the focal point in this paper, so

Session 2: Mechanism Design 1 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

42

we make the assumption that bidders report their cost truthfully

(i .e . be = ce) in the following discussion.

2.2 Core constraints
To get the core of core-selecting path mechanism, the first step is to

determine the shortest path in the graph, which is easy to compute.

The next step is to generate the constraints in formula (6). However,

the number of constraints in (6) is too huge to compute. Fortunately,

it has a big space to simplify and [24] has simplified the constraint

collection as (C1).

(C1) :
∑
e ∈x

pe ≤ d(s, t ,G − x) − (d(s, t ,G) −
∑
e ∈x

ce) (7)

x is the subset of E ′, E ′ is the edge set of the shortest path.

d(s, t ,G − x) represents the total cost of the shortest path in G − x
and d(s, t ,G) −

∑
e ∈x ce is the total cost of the subset E ′ − x .We

assume that E ′ isn’t a cut set of graph G, which is the prerequisite

of core existence. Then d(s, t ,G − x) always exists in (7).

Figure 1: An example of path auctions. There are 5 bidders
a, b, c, d, e with cost 1, 1, 1, 5, 3.

The shortest path from s to t is the edge set denoted by {a,b, c}
and the total cost is 3. According to (C1), we need to find the

nonempty subset of {a,b, c} and bring into formula (7). Then we

get 7 constraints as follows.
a ≤ 4,b ≤ 4, c ≤ 3

a + b ≤ 5,b + c ≤ 7,a + c ≤ 7

a + b + c ≤ 8

(8)

Let x = {a}, then the shortest path is 6 in the graph G − {a}. So
we have the constraint a ≤ 6− (3− 1) = 4. Similarly we can get the

other constraints. Moreover, due to individual rationality, we also

have the three constraints

a ≥ 1,b ≥ 1, c ≥ 1 (9)

There are 10 constraints above. An outcome satisfying these

constraints is a core outcome, for instance a = 2, b = 1, c = 2. The

constraints in (C2) produce a problem of linear programming and

core is the feasible domain of this linear programming. However, the

computation is also complicated because the number of constraints

is 2
n − 1, n is the length of the shortest path. In order to generate

the constraint related to x , we need to compute d(s, t ,G − x) by
shortest path algorithm. Therefore, 2

n − 1 constraints in (C1) in-
dicate that the problem of core computation is difficult. To reduce

the computational complexity, we put forward a new constraint

collection in this paper.

3 A NEW CONSTRAINT COLLECTION
We denote the edge set of the shortest path from s to t as E(s, t)1

and the vertex set of this path as V (s, t)2 including s and t . Then a

new constraint collection (C2) is defined as

(C2) :
∑

e ∈E(a,b)

pe ≤ d(a,b,G − E(a,b)) (10)

In (C2), (a,b) is a vertex pair fromV (s, t), andb is aftera.d(a,b,G−
E(a,b)) is the total cost of the shortest path from a to b in the graph

removing the edges of E(a,b). If there is no path from a to b after

removing E(a,b), this pair (a,b) is not included in (C2).
For example, in figure 1, the constraints of (C2) are as follows.

c ≤ 3

a + b ≤ 5

a + b + c ≤ 8

(11)

We can see that the constraint number is much smaller than

(C1). Given |E ′ | = n, the number of (a,b) is n(n+1)
2

, which means

we can only run
n(n+1)

2
times shortest path algorithms. So the

computational complexity is reduced greatly and could be accepted

for practical application.

Theorem 3.1. The two constraint collections (C1) and (C2) de-
scribe the same core.

This theorem means that (C2) is equivalent to (C1). Next, we
will prove theorem 3.1 from two aspects, necessity and sufficiency.

Necessity is to prove (C1) ⇒ (C2) and sufficiency is to prove

(C2) ⇒ (C1).

3.1 Necessity: (C1) ⇒ (C2)
Firstly, we have two lemmas for the shortest path.

Lemma 3.2. Given s and t , the cost of shortest path is not longer
than other paths in the graph.

Lemma 3.3. A subpath of a shortest path is itself a shortest path.

Figure 2: The graph removing E(s1, t1).

In figure 2, (s1, t1) is an arbitrary vertex pair from V (s, t). The
dotted line represents E(s1, t1). The curved arrow represents the

shortest path from s1 to t1 inG − E(s1, t1). And the cost of this path
is d(s1, t1,G − E(s1, t1)), denoted by d2. Then we can find a path

which is s → s1 → t1 → t signed by solid arrows. This path exists

after removing E(s1, t1) and its cost is d2 +d(s, t ,G)−
∑
e ∈E(s1,t1) ce .

According to lemma 3.2, we have

d(s, t ,G − E(s1, t1)) ≤ d2 + d(s, t ,G) −
∑

e ∈E(s1,t1)

ce (12)

1E(s, t) = ∅ if s = t
2V (s, t) = {s } if s = t

Session 2: Mechanism Design 1 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

43

In (C1), let E(s1, t1) be the subset x , we have∑
e ∈E(s1,t1)

pe ≤ d(s, t ,G −E(s1, t1)) − (d(s, t ,G) −
∑

e ∈E(s1,t1)

ce) (13)

Since (s1, t1) is arbitrary, combine two formulas (12) and (13) and

we can derivate any constraint of formula (10) in (C2). So we prove
(C1) ⇒ (C2).

3.2 Sufficiency: preparation theorems
We consider arbitrary subset x in (C1). By removing x , the short-
est path is divided into several parts. Denote these parts as sets

S(0), S(2), . . . , S(m). Each set represents a subpath of the shortest

path except S(0) and S(m)3. So s ∈ S(0), t ∈ S(m). Moreover, the sub-

path belonging to S(i) is also the shortest in graphG − x according

to lemma 3.3.

Figure 3: A situation including the shortest path in graph G
and G − x . Top: The straight path from s to t represents the
shortest path in graph G. The dotted arrows represents the
removed subset x ; Bottom: The path signed with red arrows
represents the shortest path in graph G − x .

A situation is described as figure 3. In figure 3, we have x =
E(s1, t1) ∪ E(s2, t2) ∪ E(s3, t3). And the shortest path is divided into

four parts as S(1), S(2), S(3), S(4). Every set S(i) represents the ver-
tices and edges of a subpath. And the boundary vertices are also in

these sets, for example t1, s2 ∈ S(1).
Denote the shortest path from s to t inG −x as E2, whose cost is

denoted as d(E2). So we have d(E2) = d(s, t ,G − x). In figure 3, E2
is the s-t-path signed with red arrows. According to the definition,

E2 can’t pass any edge in x , but it may pass some edges in S(i).
Assuming that a set S(i), (0 < i < m) has common edges with E2.
Here are two theorems for S(i).

Theorem 3.4. there exists at least one common vertex a in S(i)
and E2, which satisfies

(1) in E2, the edge ending at the vertex a belongs to S(i);
(2) in E2, the edge starting at the vertex a doesn’t belongs to S(i).

Proof. We assume there exists no vertex which meets the re-

quirements. Denote the end vertex of one common edge in S(i) as
vi . In E2, the edge starting at vi must belong to S(i), otherwise, vi
is just the vertex we are looking for. Denote the next vertex as vi+1
and we have vi+1 ∈ S(i). Similarly the edge starting at vi+1 also
belongs to S(i), so the next vertex vi+2 also belongs to S(i). Keep
deriving and we will find that all the vertices after vi belongs to
S(i). Due to i < m, This conflicts with the factor that t ∈ S(m). So

the theorem 3.4 is established. □

3S (0) may represent {s } and S (m) may represent {t }

We denote the two conditions above as property A. In figure 3,

a1 is a vertex satisfying property A. Similarly we can get theorem

3.5.

Theorem 3.5. There exists at least one common vertex b in S(i)
and E2, which satisfies

(1) in E2, the edge ending at the vertex b doesn’t belong to S(i);
(2) in E2, the edge starting at the vertex b belongs to S(i).

Proof is similar to the proof of theorem 3.4. Also, denote the two

conditions above as property B. And the vertex b1 satisfies B in the

figure 3.

3.3 Suffciency: properties for the vertices
According to the theorem 3.4, 3.5, If S(i) has common edges with

E2, where 0 < i < m, Then we can find a vertex a satisfying A and

a vertex b satisfying B. Moreover, we find the vertex a and b have

the properties below. Denote the subpath repersented by S(i) as
ti → si+1, then for the vertex a, we have

Proposition 1. In E2, the subpath a → t has no common edges
with E(a, si+1), which belongs to S(i).

Proof. Assuming that property 1 is wrong. The situation can

be described as figure 4, where E2 is represented by the red arrows.

And the edge b ′ → a′ is a common edge between E(a, si+1) and
the subpath a → t in E2. We know that the shortest path from b to

a′ is the straight path belonging to S(i). However, due to that the

edge starting at a doesn’t belong to S(i), the subpath from b to a′ is
not the shortest in E2. This produces a contradiction according to

lemma 3.3, so the property is true for vertex a. □

Figure 4: A counter-example for property 1.

In figure 3, as for the vertex a1, this property means the subpath

a1 → t of E2 has no common edges with E(a1, s3), which belongs

to S(2). On the basis of symmetry, we have a similar property for

vertex b.

Proposition 2. In E2, the subpath s → b has no common edges
with E(ti ,b), which belongs to S(i).

The proof is similar. In figure 3, as for the vertex b1, this prop-
erty means the subpath s → b1 of E2 has no common edges with

E(t2,b1), which belongs to S(2).

3.4 Sufficiency: path division
Based on the conclusion above, then we consider the traveling

process from s to t of path E2.
At first E2 starts at s, s ∈ S(0), then it may pass some edges in S(0)

and leave S(0) at a vertex satisfying propertyA, denote this vertex as
a0. Or E2 may not pass any edge in S(0) and leave S(0), then denote

that a0 = s . After leaving S(0), E2 will arrive at a set S(i), (i > 0),

which is the first set with common edges. If i ,m, firstly E2 arrives

Session 2: Mechanism Design 1 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

44

at a vertex denoted as b1 that satisfies property B, then it passes

some edges in S(i) and leave S(i) at a vertex denoted as a1, which
satisfies property A. Then E2 will arrive at a set S(j), (j > i), which
is the first set with common edges after leaving S(i). We can also

find the vertex b2 and a2 in S(j) if j ,m. Repeat the process until

E2 arrives at S(m). Then E2 may arrive at a vertex that satisfies

property B, denoted as bk , and E2 will reach the target vertex t
using the subpath in S(m), which is the shortest. Or E2 may arrive

at the target vertex t directly, where we sign that bk = t .
Therefore, we find a division of path E2 as

s → a0 → b1 → a1...bk−1 → ak−1 → bk → t

We denote the set S(i) passed by E2 as S
′(0), S ′(1), ..., S ′(k) in

order, so S ′(0) = S(0), S ′(k) = S(m).

Take figure 3 as an example, the division of E2 is s → a0 →

b1 → a1 → b2 → t . And the sets passed by E2 is S(0), S(2), S(3).
We denote them as S ′(0), S ′(1), S ′(2).

According to lemma 3.3, these subpaths are the shortest in graph

G − x . Then we consider the first part of the subpaths,

s → a0,b1 → a1, ...,bk → t

The two endpoints in these subpaths is in the same set S ′(i),
so the shortest path between them in G − x is the same as G. We

denote thatU =
⋃k−1
i=0 E(ai ,bi+1), then the total cost of these paths

above is d(s, t ,G) −
∑
e ∈U ce

considering the rest paths:

a0 → b1,a1 → b2, . . . ,ak−1 → bk

Denote the total cost of path ai → bi+1 as Li , then we have

k−1∑
i=0

Li = d(E2) − (d(s, t ,G) −
∑
e ∈U

ce) (14)

It can be proved that a0 satisfies the property 1 and bk satisfies

the property 2. In E2, we know that ai → bi+1 is a subpath of the

path s → bi+1 and ai → t . Due to the property 1, 2 and that bi+1
belongs to the first set S(j), (j > j ′) which has common edges after

S(j ′), then we can draw a conclusion that subpath ai → bi+1 has
no common edges with E(ai ,bi+1). Therefore, the path ai → bi+1
still exists in the graph G − E(ai ,bi+1).

Then we consider the vertex pair (ai ,bi+1), According to the

constraint in (C2) and lemma 3.2, we have∑
e ∈E(ai ,bi+1)

pe ≤ d(ai ,bi+1,G − x) ≤ Li (15)

combining k formulas in (15), we have∑
e ∈U

pe ≤

k−1∑
i=0

Li (16)

Put the formula 14 into 16, we can get the formula as∑
e ∈U

(pe − ce) ≤ d(E2) − d(s, t ,G) (17)

Then we can see that x ⊆ U becauseU consists of all the edges

which E2 doesn’t pass in the original shortest path. According to

individual rationality, we have pe − ce ≥ 0, so∑
e ∈x

(pe − ce) ≤
∑
e ∈U

(pe − ce) (18)

By combining formula (16) and formula (18), we have∑
e ∈x

(pe − ce) ≤ d(E2) − d(s, t ,G) (19)

(19) is the same as formula (7) in (C1). It is established for arbi-

trary subset x ,so we prove the sufficiency. Therefore, theorem 3.1

is true.

4 WORST CASE
Due to the basis of conclusion above, we know that the constraint

collection (C2) can produce the core correctly. However, (C2) may

have some redundant constraints like the figure 1.

Definition 4.1 (redundant constraint). A constraint is redundant

if the feasible domain does not change after removing it from the

collection.

To test the redundancy of (C2), we construct a worst case as the
figure 5

Figure 5: A specific graph, where the number on the edge is
the cost.

Figure 5 is a case, where the length of the shortest path is n.
Firstly, we consider a sample situation including verticesv0,v1,v2,v3
and connected directed edges. If auctioneer want to buy a path from

v0 to v3, the shortest path is the three edges at the cost of 1. Then

the bidders owning the three edges will win in core-selecting path

auction. Denote the payment vector as P = (p1,p2,p3) in order,

then the constraint collection (C2) will be
p1 ≤ 3, p2 ≤ 3, p3 ≤ 3

p1 + p2 ≤ 5, p2 + p3 ≤ 5

p1 + p2 + p3 ≤ 7

(20)

To produce the core, we also need constraints p1 ≥ 1,p2 ≥

1,p3 ≥ 1. These constraints form a core constraint collection ac-

cording to (C2). And we can find that none of them is redundant.

Theorem 4.2. For a constraint, if we can find a payment vector
out of the core, which is feasible after removing this constraint, then
this constraint is not redundant.

Proof. The appearance of a feasible payment vector out of the

core means that the feasible domain change after removing this

constraint, so it is not redundant. □

If all the constraints of (C2) in this case is not redundant,then

we have the theorem.

Session 2: Mechanism Design 1 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

45

Theorem 4.3. To produce the core correctly, the number of con-
straints is at least n

2

2
+ 3

2
n, where n is the length of the shortest path.

Proof. To prove the theorem 4.3, we construct a worst case as

figure 5. In this case, the auctioneer aims to buy a path from v0 to
vn . And we can prove that none of the constraints in (C2) and n
constraints related to individual rationality is redundant to produce

the core. The number is exactly
n2

2
+ 3

2
n.

Denote the payment vector as the (p1,p2, ...,pn). Firstly we have
n constraints as

pi ≥ 1, 0 ≤ i ≤ n (21)

Remove the constraint pi ≥ 1, we can find an payment vector

where pi = 0.5 and other price equals 1, which is out of the core.

So these constraints is not redundant.

Secondly, as for following constraints in (C2)

pi ≤ 3, 1 ≤ i ≤ n (22)

They are also not redundant because we find an payment vector

where pi = 4 and other payment equals 1, which is not in the core.

Except the constraints above, remaining constraints in (C2) can
be described as

j∑
k=i

pk ≤ 2(j − i) + 3, 1 ≤ i < j ≤ n (23)

Denote one of the constraints as RC , we can find a payment

vector out of the core after removing RC as

pk =


3, k = i, j

2, i < k < j

1, other

(24)

This payment is not in the core as a result of blocking RC . And
we can prove that it satisfies all the other constraints. Firstly it sat-

isfies the constraints of pi ≥ 1. Represent anyone of the remaining

constraints in (C2) as

j′∑
k=i′

pk ≤ 2(j ′ − i ′) + 3, (25)

0 ≤ i ′ < j ′ ≤ n, (i ′, j ′) , (i, j)

We consider these constraints in three cases.

Case 1: j ′ − i ′ > j − i . According to the payment vector, there

are at most 2 payments equal to 3 and j − i − 1 payments equal to

2, so

j′∑
k=i′

pk ≤ 3 ∗ 2 + 2 ∗ (j − i − 1) + ((j ′ − i ′) − (j − i)) ∗ 1

= j ′ − i ′ + j − i + 4 ≤ 2(j ′ − i ′) + 3

(26)

Case 2: j ′ − i ′ = j − i . Due to (i ′, j ′) , (i, j), there are at most

one payment equal to 3 and j ′ − i ′ − 1 payments equal to 2, so

j′∑
k=i′

pk ≤ 3 ∗ 1 + 2 ∗ (j ′ − i ′ − 1) + 1 ∗ 1 = 2(j ′ − i ′) + 2 (27)

Case 3: j ′ − i ′ < j − i . there are at most one payment equal to 3

and other payments equal to 2, so

j′∑
k=i′

pk ≤ 3 ∗ 1 + (j ′ − i ′) ∗ 2 = 2(j ′ − i ′) + 3 (28)

Above all, we can see that the payment vector satisfies all the

constraints except RC.

This vector is a feasible payment vector out of the core after re-

moving RC . Therefore, none of the constraints above is redundant

in this worst case. That is, these
n2

2
+ 3

2
n constraints are indispens-

able in this example. So it needs at least
n2

2
+ 3

2
n constraints to

produce the core correctly, the theorem 4.3 is true. □

In addition, the size of constraint collection based on (C2) and

rational individual is exactly
n2

2
+ 3

2
n, which means it is the optimal

core constraint collection for path auctions.

5 PRICING ALGORITHMS
In the experiment, we use the bidder-Pareto-optimal core outcome

as our experimental result, which is defined as

Definition 5.1. A core outcome is bidder-Pareto-optimal if there

is no other core outcome weakly preferred by every bidder in the

winner coalition.

Theorem 5.2. An outcome is bidder-Pareto-optimal if it owns the
maximum total payment in the core.

Proof. The total payment is maximum in the core, so there ex-

ists no outcome which could increase one’s profit without reducing

the profit of others in the winner coalition. Then the outcome with

a maximum payment is bidder-Pareto-optimal in the core. □

We use the maximum total payment in the core as our experi-

mental result. And we design the pricing algorithms based on the

constraint collection of (C1) and (C2), denoted as C1 and C2 algo-

rithm. Then we implement CCG algorithm for path auctions for

the purpose of comparison.

5.1 C1 Algorithm
Review the constraint collection (C1)∑

e ∈x
pe ≤ d(s, t ,G − x) − d(s, t ,G) +

∑
e ∈x

ce (29)

Let βx be d(s, t ,G −x) −d(s, t ,G)+
∑
e ∈x ce for each x . So all βx

form a vector β , then we have

ApT ≤ βT (30)

(30) represents (C1). A is a 2
n ∗ n matrix, n is the edge number

of the shortest path. Ai j equals 1 only when the i-th set x include

the j-th edge ej , or Ai j equals 0. t is the vector of payment profile.

Then we can calculate the maximum payment by solving linear

programming LP-1

LP-1 : α =max p × 1

subject to : ApT ≤ βT

p ≥ c

(31)

Session 2: Mechanism Design 1 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

46

c is the cost vector and α is the maximum payment. LP-1 has n
decision variables and 2

n + n constraints. C1 algorithm computes

A and β and then get the outcome by solving LP-1.

5.2 C2 Algorithm
Review the constraint collection (C2)∑

e ∈E(a,b))

pe ≤ d(a,b,G − E(a,b)) (32)

(a,b) is a vertex pair of E(s, t) and b is after a. Similarly, let β ′
(a,b)

be d(a,b,G − E(a,b) for each pair (a,b). So all β ′
(a,b) form a vector

β ′
, then we have

A′pT ≤ β ′T
(33)

Similarly, (33) represents (C2).A′
is a

n(n+1)
2

× n matrix, n is the

edge number of the shortest path. A′
i j equals 1 only when the j-th

edge ej is in the set E(a,b) or A′
i j equals 0. Then we can calculate

the maximum payment by solving linear programming LP-2

LP-2 : α =max p × 1

subject to : A′pT ≤ β ′T

p ≥ c

(34)

LP-2 has n decision variables and
n(n+1)

2
+ n constraints. The

constraint number greatly decreases comparing C1 algorithm. So

C1 algorithm computes A′
and β ′

and then get the outcome by

solving LP-2.

5.3 CCG Algorithm
In CAs, the number of core constraints is exponential in n. To solve
the problem of computation, [9] puts forward CCG algorithm in

expectation of a moderate number of constraints. CCG algorithm

uses the method of constraint generation that considers only the

most valuable constraints. Then we design a transmutative CCG

algorithm for path auction according to [9].

Definition 5.3 (most blocking path). As for an outcome O includ-

ing Em and P , replace the bid in Em with the payment in P and

denote the shortest s-t-path as E ′m , if total cost of edges in E ′m is

equal to the total value in P , then O has no blocking paths. Other-

wise, E ′m is the most blocking path for the outcome O .

In our CCG algorithm, we denote the shortest path as Em and

the payment vector P as (p1,p2, . . . ,pn). We initialize the payments

using VCG payments for each bidders. Moreover, we initialize the

constraint set LP for CCG as follows.{
pi ≤ pVCGi , 1 ≤ i ≤ n

pi ≥ wi , 1 ≤ i ≤ n
(35)

wi is the weight of each edge, which represents the quoted price.

Then for the outcome with Em and P , by replacing the bid with P in

the graph G we find the most blocking path E ′m . If the total weight

of E ′m is not equal to the total payment of P , let x = Em ∩ Em′
, the

constraint related to E ′m is∑
i ∈Em\x

pi ≤
∑

i ∈E′
m\x

wi (36)

Then we add the constraint (36) into the constraint set LP , and solve
the problem:

max P × 1
subject to : LP

(37)

We use the solution above to update the outcome O , iterate
through the above process until the total cost of E ′m is equal to the

total payment of P . Then we get the result ofOb , which is a bidder-

Pareto-optimal core outcome. The pseudocode of CCG algorithm is

given as follows.

Algorithm 1 CCG Algorithm for Path Auction

Input: Directed graphG = (V ,E,W) (inG each edge has a nonneg-

ative weight wi ,wi ∈ W), G ′ = (V ,E,W ′),W ′
:= W ; source

vertex s; target vertex t ;
Output: Maximum

∑
i ∈Em pi

1: Em := edges of the shortest path in the graph G
2: ∀i ∈ Em , pVCGi := VCG payment of bidder i

3: LP := {pi ≤ pVCGi ,pi ≥ wi |i ∈ Em }

4: // LP is the constraint set for CCG

5: ∀i ∈ Em ,wi ∈W
′,wi := pi

6: E ′m := edges of the shortest path in the graph G ′

7: while
∑
i ∈Em pi ,

∑
j ∈E′

m
w j do

8: x := Em ∩ E ′m
9: LP := LP ∪ {

∑
i ∈Em\x pi ≤

∑
i ∈E′

m\x wi }

10: pi := argmaxi ∈E
∑
i ∈W pi , subject to LP

11: ∀i ∈ Em ,wi := pi
12: E ′m := edges of the shortest path in the graph G ′

13: end while

6 EXPERIMENT
6.1 Experiment data
We use the network datasets of SNAP[18] datasets to construct the

graph in our experiment. The network is described as follows.

• Facebook network. The dataset consists of friend lists from

Facebook. The data was collected from survey participants

using Facebook app.

• Wikipedia voting network. The network contains voting

data for Wikipedia administrators elections . vertices in the

network represent wikipedia users and a directed edge from

vertex i to vertex j represents that user i voted on user j.

• p2p-Gnutella04 and p2p-Gnutella08. The dataset describes

the Gnutella peer-to-peer file sharing network from August

4 2002 and August 8 2002. Vertices represent hosts in the

Gnutella network topology and edges represent connections

between the Gnutella hosts.

• Twitter network. This dataset consists of friend list from

Twitter. The data was crawled from public sources.

The detailed network statistics are given in table 1.

In these networks, the true information of cost is hard to get. So

we use reported cost data from a micro-blog advertising platform

weiboyi
4
, where micro-bloggers are asked to report their cost to

4
http://www.weiboyi.com/

Session 2: Mechanism Design 1 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

47

Table 1: Network statistics.

Networks Vertices edges dmax 90-percentile dmax
Facebook 4,039 88,234 8 4.7

Wiki-Vote 7,115 103,689 7 3.8

p2p04 10,876 39,994 9 5.4

p2p08 6,301 20,777 9 5.5

Twitter 81,306 1,768,149 7 4.5

make recommendations to friends in their social network. Then we

assign the edges randomly with cost dataset.

We use the four networks for our first experiment. In each net-

work, we generate 1000 problem instances where the source vertex

s and target vertex t are selected uniformly at random from all

vertices. All experiments were ran on 2.3 GHZ Inter Core i5 pro-

cessor. And we describe the graph with networkx 2.0 and solve the

linear programming with SciPy 0.19.1 on a runtime environment

of Python 2.7.14. The result is shown in the table 2.

Table 2: Average payment under reported cost distribution.

Networks

Avg. sho-

rtest cost

Avg.VCG

pay

Avg.C1

max-pay

Avg.CCG

max-pay

Avg.C2

max-pay

Facebook 2,601.2 7,898 5,511.50 5511.50 5,511.50

Wiki-Vote 1,014.75 3,005.75 2,630.10 2,630.10 2,630.10

p2p04 5,202 15,572 9,351.58 9,351.58 9,351.58

p2p08 5,606 17,366 10,501.12 10,501.12 10,501.12

From the table 2, it is obvious that the maximum payment com-

puted by CCG, C1 and C2 is always the same in our experiment.

The result confirms that the algorithm of CCG and C2 designed is

equivalent to C1 algorithm.

6.2 Computational efficiency
The result of average runtime in the first experiment is given in

table 3.

Table 3: Average runtime performance (in seconds).

Networks VCG C1 CCG C2

Facebook 0.202 16.050 0.441 0.550

Wiki-Vote 0.297 7.179 0.615 0.602

p2p04 0.468 64.778 0.860 1.420

p2p08 0.205 29.102 0.433 0.665

As is shown in table 3, CCG and C2 algorithm are both much

faster than the original C1 algorithm. Moreover, the runtime of

CCG and C2 algorithms are approaching runtime of VCG so we

conclude that the two algorithms achieve a predominant compu-

tation for the core. Furthermore, we experiment with dataset of

Wiki-vote network and Twitter network for further comparison.

In each network, we randomly selected 50 vertex pairs based on

different length of the shortest path. The result is shown in figure

6.

4 6 8 10

length of the shortest path

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

W
ik
i-
vo

te
ru
nt
im

e
/s

VCG

CCG

C2

4 6 8 10

length of the shortest path

10

20

30

40

50

60

T
w
it
te
r
ru
nt
im

e
/s

VCG

CCG

C2

Figure 6: Relationship between runtime and length of the
shortest path based on CCG and C2 algorithm and take VCG
as baseline. Left: Experiment with Wiki-vote. Right: Experi-
ment with Twitter.

It can be concluded from figure 6 that C2 performs better than

CCG in the experiment with dataset of Twitter, but it’s opposite

in the experiment with dataset of Wiki-vote.Overall, CCG and C2

algorithm are both excellent to compute the core outcome. As for

n bidders, CCG algorithm considers all the possible 2
n
coalitions

and the corresponding exponential set of core constraints. And the

solution of CCG is a method constraint genneration. However, C2

algorithm just considers polynomial constraints, which actually

reduces problem size for the core-selecting path mechanism. In

fact, better performance can be achieved if we combine the two

algorithms together.

7 CONCLUSION
In this paper, we reduce the constraint number of core-selecting

path mechanism from magnitude of 2
n
to n2, which is proved

strictly. Moreover, we prove that the number of constraints is at least

n2

2
+ 3

2
n in core-selecting path mechanism. The experimental results

illustrate that the new constraint collection is correct meanwhile

CCG algorithm and C2 algorithm are both predominant to compute

the core outcome.

This approach can be used in combinatorial auctions which

have similar structural properties with path auctions. Moreover,

our approach offers heuristics for simplified computation in core-

selecting combinatorial auctions.

ACKNOWLEDGEMENTS
This paper is supported by the National Key Research and Devel-

opment Program of China (Grant No. 2016YFB1001102), the Na-

tional Natural Science Foundation of China (Grant Nos.61502227,

61375069), the Collaborative Innovation Center of Novel Software

Technology and Industrialization at Nanjing University and the

Fundamental Research Funds for the Central Universities (Grant

Nos.020214380036, 020214380038).

Session 2: Mechanism Design 1 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

48

REFERENCES
[1] Aaron Archer and Éva Tardos. 2007. Frugal path mechanisms. ACM Transactions

on Algorithms (TALG) 3, 1 (2007), 3.
[2] LawrenceMAusubel and Paul RMilgrom. 2002. Ascending auctions with package

bidding. Advances in Theoretical Economics 1, 1 (2002).
[3] Edward H Clarke. 1971. Multipart pricing of public goods. Public choice 11, 1

(1971), 17–33.

[4] Peter Cramton. 2013. Spectrum auction design. Review of Industrial Organization
42, 2 (2013), 161–190.

[5] B Day and Paul Milgrom. 2010. Optimal Incentives in Core-Selecting Auctions.

Handbook of Market Design (2010).

[6] Robert Day and Paul Milgrom. 2007. Core-selecting auctions. International
Journal of Game Theory, July (2007).

[7] Robert Day and Paul Milgrom. 2008. Core-selecting package auctions. interna-
tional Journal of game Theory 36, 3-4 (2008), 393–407.

[8] Robert W Day and Peter Cramton. 2012. Quadratic core-selecting payment rules

for combinatorial auctions. Operations Research 60, 3 (2012), 588–603.

[9] Robert W Day and Subramanian Raghavan. 2007. Fair payments for efficient

allocations in public sector combinatorial auctions. Management Science 53, 9
(2007), 1389–1406.

[10] Ye Du, Rahul Sami, and Yaoyun Shi. 2010. Path auctions with multiple edge

ownership. Theoretical Computer Science 411, 1 (2010), 293 – 300. https://doi.org/

10.1016/j.tcs.2009.09.032

[11] Edith Elkind, Amit Sahai, and Ken Steiglitz. 2004. Frugality in path auctions. In

Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms.
Society for Industrial and Applied Mathematics, 701–709.

[12] Joan Feigenbaum, Christos Papadimitriou, Rahul Sami, and Scott Shenker. 2005.

A BGP-based mechanism for lowest-cost routing. Distributed Computing 18, 1

(2005), 61–72.

[13] John Hershberger and Subhash Suri. 2001. Vickrey prices and shortest paths:

What is an edge worth?. In Foundations of Computer Science, 2001. Proceedings.
42nd IEEE Symposium on. IEEE, 252–259.

[14] Jean Honorio and Luis Ortiz. 2015. Learning the Structure and Parameters of

Large-Population Graphical Games from Behavioral Data. Journal of Machine

Learning Research 16 (2015), 1157–1210. http://jmlr.org/papers/v16/honorio15a.

html

[15] D.R. Karger and E. Nikolova. 2006. On the Expected VCG Overpayment in Large

Networks. In Decision and Control, 2006 45th IEEE Conference on. 2831–2836.
https://doi.org/10.1109/CDC.2006.377149

[16] Anna R. Karlin, David Kempe, and Tami Tamir. 2005. Beyond VCG: Frugality

of Truthful Mechanisms. In Proceedings of the 46th Annual IEEE Symposium on
Foundations of Computer Science (FOCS ’05). IEEE Computer Society, Washington,

DC, USA, 615–626. https://doi.org/10.1109/SFCS.2005.25

[17] Daniel Lehmann, Liadan Ita Oćallaghan, and Yoav Shoham. 2002. Truth revelation

in approximately efficient combinatorial auctions. Journal of the ACM (JACM)
49, 5 (2002), 577–602.

[18] Jure Leskovec, A Krevl, and SNAP Datasets. 2014. Stanford large network dataset

collection, 2014. URL: http://snap. stanford. edu/data/index. html (2014).
[19] Paul Robert Milgrom. 2004. Putting auction theory to work. Cambridge University

Press.

[20] Noam Nisan and Amir Ronen. 1999. Algorithmic mechanism design. In Proceed-
ings of the thirty-first annual ACM symposium on Theory of computing. ACM,

129–140.

[21] LC Polymenakos and Dimitri P Bertsekas. 1994. Parallel shortest path auction

algorithms. Parallel Comput. 20, 9 (1994), 1221–1247.
[22] Michael H Rothkopf, Aleksandar Pekeč, and Ronald M Harstad. 1998. Computa-

tionally manageable combinational auctions. Management science 44, 8 (1998),
1131–1147.

[23] Makoto Yokoo, Yuko Sakurai, and Shigeo Matsubara. 2004. The effect of false-

name bids in combinatorial auctions: New fraud in Internet auctions. Games and
Economic Behavior 46, 1 (2004), 174–188.

[24] Lei Zhang, Haibin Chen, Jun Wu, Chong-Jun Wang, and Junyuan Xie. 2016.

False-Name-Proof Mechanisms for Path Auctions in Social Networks.. In ECAI.
1485–1492.

[25] Yuefei Zhu, Baochun Li, Haoming Fu, and Zongpeng Li. 2014. Core-selecting

secondary spectrum auctions. IEEE Journal on Selected Areas in Communications
32, 11 (2014), 2268–2279.

Session 2: Mechanism Design 1 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

49

https://doi.org/10.1016/j.tcs.2009.09.032
https://doi.org/10.1016/j.tcs.2009.09.032
http://jmlr.org/papers/v16/honorio15a.html
http://jmlr.org/papers/v16/honorio15a.html
https://doi.org/10.1109/CDC.2006.377149
https://doi.org/10.1109/SFCS.2005.25

	Abstract
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 Core-selecting path mechanism
	2.2 Core constraints

	3 A new constraint collection
	3.1 Necessity: (C1) (C2)
	3.2 Sufficiency: preparation theorems
	3.3 Suffciency: properties for the vertices
	3.4 Sufficiency: path division

	4 worst case
	5 Pricing algorithms
	5.1 C1 Algorithm
	5.2 C2 Algorithm
	5.3 CCG Algorithm

	6 Experiment
	6.1 Experiment data
	6.2 Computational efficiency

	7 Conclusion
	References

