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ABSTRACT
Learning-to-refer is a challenge in expert referral networks, wherein
Active Learning helps experts (agents) estimate the skills of other
connected experts for different categories of tasks that the initial
expert cannot solve and therefore must seek referral to experts
with more appropriate expertise. Prior research has investigated
different reinforcement action selection algorithms to assess via-
bility of the learning setting both with uninformative priors and
with partially available noisy priors, where experts are allowed to
advertise a subset of their skills to their colleagues. Prior to this
work, time-varying expertise drift (e.g., experts learning with ex-
perience) has not been considered though it is an aspect that may
often arise in practice. This paper addresses the challenge of referral
learning with time-varying expertise, proposing Hybrid, a novel
combination of Optimistic Thompson Sampling, Pessimistic
Thompson Sampling and Distributed Interval Estimation Learning
(DIEL). In our extensive empirical evaluation, considering both bi-
ased and unbiased drift, the proposed algorithm outperforms the
previous state-of-the-art (DIEL) and approaches the drift-aware
oracle upper bound.
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1 INTRODUCTION
Learning-to-refer in referral networks is a recently proposed Active
Learning challenge where experts (teachers or autonomous agents)
can redirect difficult instances (or problems) to colleague experts
based on estimates of the colleagues’ topic-conditioned skills. Such
a network of experts is common in human professional networks
such as in clinical contexts and also in consultancy firms. Recent
work [20, 21] has compared a wide variety of referral learning algo-
rithms in the stationary expertise setting, i.e., where distributional
parameters of expertise do not change over time. In this setting,
Distributed Interval Estimation Learning (DIEL), a simple yet ef-
fective algorithm, was found to outperform UCB variants [3, 4],
Q-Learning [13, 27] and ϵ-Greedy algorithms on both real and
synthetic data [20]. A different direction along the lines of adver-
sarial Machine Learning research [5, 14], [17–19] has proposed
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algorithms to work with partially available noisy priors and mech-
anisms to truthfully elicit such priors. However, none of the past
works addressed time-varying expertise that often arise in real
world; expertise may change via refinement of existing skills, acqui-
sition of newer skills, decay of unpracticed skills, and could possibly
depend on practical factors like fatigue, workload etc. Learning to
track drifting expertise of colleagues in a referral network is the
primary focus of this paper.

The partial information [6] or the information obstacle [5] present
in multi-armed bandit (MAB) settings (a gambler trying to maxi-
mize the total amount of reward she receives by pulling one of the
k arms at a time, each arm has an unknown reward distribution) is
a key challenge in referral networks too. When an expert refers a
task to a colleague, there is no way to know how other colleagues
would have performed on the same task. Moreover, local visibility
of rewards, and the distributed nature of learning, i.e., each expert
is independently estimating topical expertise of her colleagues, con-
tributes to the challenges of learning-to-refer. For practical viability,
early-learning-phase performance gain is crucial and over a large
network, as we cannot afford an unbounded number of samples
to estimate topical expertise. Understandably, learning-to-refer be-
comes even more challenging with non-stationary expertise since
weak experts who were discarded for future consideration on any
given topic, could gain expertise over time, becoming real con-
tenders who should not be ignored at a later time in optimizing
referral decisions.

Our contributions are the following: First, we introduce time-
varying expertise in referral networks, a practical consideration not
previously addressed in the literature to the best of our knowledge.
Second, in addition to bidirectional drift, the typical drift model
in the literature, we also consider drift with positive bias, where
agents mostly improve with practice. Third, we widen the pool of
referral learning algorithms by including Thompson Sampling and
its variants, an important set of algorithms with known finite-time
regret bounds, used in practical applications, and with a sustained
interest in the research community [2, 7, 11, 23]. Finally, we pro-
pose Hybrid, a novel algorithm combining components from DIEL,
the state-of-the-art referral learning algorithm, and a conserva-
tive approach used in Thompson Sampling. There is little estab-
lished theoretical basis for the dynamic MAB setting (for example,
Dynamic Thompson Sampling [12] has no known finite-horizon
regret bound and DIEL (which outperforms UCB variants) is based
on earlier algorithms with no known finite-horizon regret bound
even in the static case). However, this paper is geared towards the
design of a learning algorithm robust to expertise drift in referral
networks, a challenging problem not previously studied, rather
than a theoretical analysis. Our empirical evaluation indicates that
our proposed hybrid algorithm is more robust to expertise drift and
tracks drift better than DIEL or Thompson Sampling at the network
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level, improving overall referral accuracy. Although our primary
focus is on referral networks where aggregate performance of the
network is the measuring index, Hybrid’s strong network-level
performance encourages us to believe our work is applicable to the
broader and more general context of multi-armed bandit setting
with non-stationary reward distributions.

The rest of the paper is organized as follows. Previous work
is summarized in Section 2. Section 3 presents our preliminaries
on referral networks, key assumptions, and modeling choices for
expertise drift. Sections 4, 5 and 6 describe the distributed learning
algorithms we used for comparison, our experimental setup, and
the results. We end with some general conclusions and an outlook
on future work in section 7.

2 RELATEDWORK
The referral learning framework was first proposed in [21], and
subsequently extended [20] with performance comparisons over
of a wide range of competing algorithms, multi-hop referrals, and
consideration of practical factors such as capacity constraints and
evolving networks. [20, 21] considered non-informative priors. In
an augmented setting [17, 18], similar to the line of research in
multi-armed bandits with history where algorithms do not start
from scratch [25], experts are allowed a one time local network
advertisement of a subset of their skills which essentially extends
the setting to partially available noisy priors where eliciting truth-
ful advertisements and effectively initializing with the available
priors are the primary challenges. In this paper, we work with
the uninformative prior setting and consider time-varying exper-
tise which none of the previous works in referral networks has
addressed. Our results expose DIEL’s, the state-of-the-art referral
learning algorithm’s susceptibility to expertise drift as we propose
new algorithms that demonstrate superior tracking of drifting ex-
perts.

Prior work on Interval Estimation Learning (the basic building
block of DIEL) to track time-varying accuracy [8] used a particle
filtering approach. Whereas this approach is elegant, it is infeasible
in our case because it requires a large number of samples even for
a single central learner, and the distributed nature of learning by
each member of the referral network only exacerbates the problem.

From each expert’s point of view, the core problem of learn-
ing appropriate referrals for a given topic is viewed as a mutli-
armed bandit (MAB) problem where referral choices are the arms.
In theMAB literature, time-varying reward distributions were intro-
duced in [28]. Dynamic Thompson Sampling [12], an extension of
Thompson Sampling [26], were suggested for these restless bandits.
Our work is different from previous restless bandits literature in the
following ways: First, there is an obvious difference in scale as we
are dealing with multiple agents learning several threads of referral
policies for each topic and none of these algorithms for restless
bandits has been used in the context of referral learning before nor
in similar distributed network learning. Second, for modelling drift
in reward distribution, Brownian perturbation [12] was used. How-
ever, we notice that human expertise often improve with time and
hence require considering positively biased drifts. We also present a
less common approach in tackling drifts including concept drift [10]
where the most popular approaches are window-based [12].

Previous research on referral networks primarily focused on IEL-
based algorithm (Interval Estimation Learning) [15], UCB (Upper
Confidence Bound) class of algorithms [1, 3, 4, 22], ϵ-Greedy and its
variants [4, 20], and Q-Learning algorithms [13, 27]. In our work,
we compare Thompson Sampling, an algorithm with a long his-
tory [26] that has received a recent surge of interest with proofs on
finite-horizon bounds [2, 16], empirical evidence of strong perfor-
mance [7] and practical application. While Optimistic Thompson
Sampling, a variant of Thompson Sampling, has been previously
proposed in the literature, to the best of our knowledge, we are
showing for the first time that Pessimistic Thompson Sampling,
a counter-intuitive action selection strategy, when combined with
the variance term present in DIEL, could be a viable algorithm ro-
bust to expertise drift. Our proposed algorithm, a combination of
two Thompson Sampling variants and DIEL, uses a performance
gradient-based switching criterion between the algorithms similar
to [9].

3 REFERRAL NETWORK
3.1 Preliminaries
Essentially, a referral network is a graph (V ,E) of size k ; each vertex
vi corresponds to an expert ei (1 ≤ i ≤ k) and each bidirectional
edge ⟨vi ,vj ⟩ represents a referral link indicating ei and ej can refer
problem instances to each other. A subnetwork of expert ei is the
set of her colleagues, i.e., the set of experts linked to an expert ei
by a referral link. A referral scenario consists of a set ofm instances
(q1, . . . ,qm ) belonging to n topics (t1, . . . , tn ) are to be addressed
by the k experts (e1, . . . , ek ).

For a per-instance query budget ofQ = 2, the referral mechanism
for a task (we use task and instance interchangeably) qj consists of
the following steps.

(1) A user (learner) issues an initial query to an expert ei (initial
expert) chosen uniformly at random from the network.

(2) Expert ei examines qj and solves it if able and communicates
the solution to the learner. This depends on the expertise
(defined as the probability that ei can solve qj correctly) of
ei wrt. qj .

(3) If not, she issues a referral query to a referred expert within
her subnetwork. The Learning-to-refer challenge is improv-
ing the estimate of who is most likely to solve the problem.

(4) If the referred expert succeeds, she communicates the solu-
tion to the initial expert, who in turn, communicates it to
the user.

Note that if the per-instance query budget >2, the recipient of a
referral can herself re-refer to another expert.

We follow the same set of assumptions made in [21] a detailed
description of which can be found in [18], but we remove the sta-
tionarity assumption on individual expert skills per topic. Some
of the important assumptions are: the network connectivity de-
pends on (cosine) similarity between the topical expertise, and
the distribution of topical-expertise across experts can be char-
acterized by a mixture of Gaussian distributions. We made the
modeling choice regarding network connectivity because of the
general observation that people sharing common expertise areas
are more likely to know each other. Gaussian distribution is widely
used to model real-valued random variables (e.g., height, weight,
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expertise) in natural and social sciences. For topical-expertise distri-
bution, we considered a mixture of two Gaussians (with parameters
λ = {wt

i , µ
t
i ,σ

t
i } i = 1, 2.). One of them (N(µt2,σ

t
2 )) has a greater

mean (µt2 > µt1), smaller variance (σ t2 < σ t1 ) and lower mixture
weight (wt

2 << wt
1). Intuitively, this represents the expertise of

experts with specific training for the given topic, contrasted with
the lower-level expertise of the layman population.

3.2 Expertise Drift
In previous work, [20, 21], the expertise of an expert ei on topicp
was modeled as a truncated Gaussian distribution with small vari-
ance:

expertise(ei , qj ∈ topicp ) ∼ N(µtopicp ,ei , σtopicp ,ei ),
∀p, i : σtopicp ,ei ≤ 0.2, 0 ≤ µtopicp ,ei ≤ 1.

We use a truncated Gaussian since expertise is a probability, it
must remain within [0, 1]. Small variance implies an expert’s within-
topic expertise does not vary by a large amount. In a time-varying
expertise setting, expertise of an expert ei on topicp is expressed as

expertise(ei , qj ∈ topicp ) ∼ N(µtopicp ,ei ,epochk , σtopicp ,ei ),
µtopicp ,ei ,epochk+1 = µtopicp ,ei ,epochk + N(µdr if t , σdr if t )

For convenience, we assume discrete changes at epoch bound-
aries, and within a given epoch, we assume the distributional pa-
rameters on expertise do not change. The epochs can be small,
approximating continuous change. When µdr if t is 0, the unbiased
drift is similar to the Brownian perturbation previously considered
in [12]. The epochs can have arbitrary length and an expert has
no knowledge of the epoch-lengths of their colleagues. After every
discrete change, we ensure that µtopicp,ei ,epochk+1 always remains
within [0, 1] by setting it to 0 (or 1) if it is less than 0 (or greater
than 1). Once µtopicp,ei ,epochk+1 reaches the boundary (0 or 1), we
assume that it remains there until drift in the opposite direction
moves it away from the boundary.

The expertise of people often improve over time by acquiring
a new skill, explicit learning on how to improve a skill, or just
practice through solving more problems. We consider this case
in our positive-bias drifts (with µdr if t > 0), where the overall
expertise of the experts in the network improves on certain topics
over time.

3.3 Reward Assumptions
From the point of view of a single expert, for a given topic, learn-
ing referral policy maps to the classic multi-armed bandit setting
with each arm corresponds to a referral choice, and similar to the
unknown reward distributions of the arms, the expertise of the
colleagues is not known in this case. In order to learn an effective
referral strategy, whenever an expert refers a task to her colleague,
and depending on the outcome of the task, she assigns a reward to
the referred colleague. The computational aspect (e.g., what type
of information regarding the sequence of rewards is necessary?,
how to score an expert depending on her past performance?) of
the referral decision is described in our following section, here we
outline the main assumptions related to rewards.

All our rewards are

• bounded: All our rewards are bounded within the the range
[0, 1]. In all our experiments, we considered binary rewards,
with a failed and successful task receiving a reward of 0 and
1, respectively.
• i.i.d: The reward for a given expert on a specific instance
belonging to a topic is independent of any reward observed
from any other experts and any reward or sequence of re-
wards belonging to that topic or any other topic by the same
expert.
• locally assigned and locally visible: Rewards are both lo-
cally assigned and locally visible. For example, reward(ei , t , ej ),
a function of initial expert ei , referred expert ej and topic t ,
is assigned by ei and visible to ei only.

4 DISTRIBUTED REFERRAL LEARNING
As we already mentioned, considering a single expert and a given
topic, learning-to-refer is an action selection problem (the problem
of selecting an appropriate referral maps to selecting an effective
arm in the multi-armed bandit setting). In a distributed setting,
each expert maintains an action selection thread for each topic in
parallel. In order to describe an action selection thread, we first fix
topic to T and expert to e .

Letq1, . . . ,qN be the firstN referred queries belonging to topicT
issued by expert e to any of her K colleagues denoted by e1, . . . , eK .
For each colleague ei , e maintains a reward vector ri,ni where
ri,ni = (ri,1, . . . , ri,ni ), i.e., the sequence of rewards observed
from expert ei on issued ni referred queries. Understandably, N =∑K
i=1 ni . Letm(ei ) and s(ei ) denote the sample mean and sample

standard deviation of these reward vectors. Some of the algorithms
we consider require initializing these reward vectors; we will ex-
plicitly mention any such initialization. In addition to the reward
vectors, for each colleague ei , e maintains Sei and Fei where Sei
denotes the number of observed successes (reward = 1) and Fei
denotes the number of observed failures (reward = 0). Clearly,
without any initialization of the reward vectors, ∀(Sei + Fei ) > 0,
m(ei ) =

Sei
Sei +Fei

(i.e., empirical mean is the ratio of total number of
observed successes and total number of observations).

Like any other action selection problem, learning-to-refer also
poses the classic exploration-exploitation trade-off: on one hand,
we would like to refer to an expert who has performed well in the
past on this topic (exploitation), while ensuring enough exploration
to make sure we are not missing out on stronger experts. We next
provide a short description of different action selection algorithms
that include DIEL, the state-of-the-art, Thompson Sampling, a well-
known high-performance action selection algorithm previously not
used in the context of referral learning, and building blocks of our
proposed algorithm, Hybrid. At a high level, each of the algorithms
computes a score for every expert ei (denoted by score(ei )) and
selects the expert with the highest combined score breaking any
remaining ties randomly.

4.1 Action Selection Algorithms
DIEL:Distributed Interval Estimation Learning (DIEL) is the known
state-of-the-art referral learning algorithm [20]. At each step, DIEL [18]
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selects the expert ei with highestm(ei ) + s(ei )√
ni

. Every action is ini-
tialized with two rewards of 0 and 1, allowing us to initialize the
mean and variance.

The intuition behind selecting an expert with a high expected
reward (m(ei )) and/or a large amount of uncertainty in the reward
(s(ei )) is the following. A large variance implies greater uncertainty,
indicating that the expert has not been sampled with sufficient
frequency to obtain reliable estimates. Selecting such an expert is
an exploration step which will increase the confidence of e in her
estimate. Also, such steps have the potential of identifying a highly
skilled expert. Selecting an expert with a highm(ei ) amounts to
exploitation. Initially, the choices made by e tend to be explorative
since the intervals are large due to the uncertainty of the reward
estimates. With an increased number of samples, the intervals
shrink and the referrals become more exploitative.

Algorithm 1: DIEL(e,T )
Initialization: ∀i,ni ← 2, ri,ni ← (0, 1)
Loop: Select expert ei who maximizes
score(ei ) =m(ei ) + s(ei )√

ni
Observe reward r
Update ri,ni with r , ni ← ni + 1

Thompson Sampling (TS): At each step, for each expert ei , TS
first samples θi from Beta(Sei + 1, Fei + 1). Next, TS selects the
action with highest θi . When the number of observations is 0, θi is
sampled from Beta(1, 1), which isU (0, 1); this makes all colleagues
equally likely to receive referral. As the number of observations
increases, the distribution for a given expert becomes more and
more centered around the empirical mean favoring experts with
better historical performance.

Next, we describe the basic building blocks of our primary contri-
bution, including a switching algorithm between two action selec-
tion strategies.We first start with two Thompson Sampling variants:
Optimistic Thompson Sampling and Pessimistic Thompson
Sampling. Optimistic Thompson Sampling is an existing vari-
ant [24] while Pessimistic Thompson Sampling is a counter-
intuitive sampling strategy without any prior mention in the litera-
ture. However, we found this strategy to be useful when combined
with DIEL forming Pessimistic TS-DIEL described next.

Optimistic Thompson Sampling (Optimistic TS): Optimistic
TS is very similar to TS with an additional restriction: θi is never
allowed to be less than the mean observed rewardm(ei ); θi is set
tom(ei ) whenever it is less thanm(ei ) (in the boundary condition
when number of observed samples is zero,m(ei ) is considered to
be zero). The reason this sampling technique is called optimistic is
because this technique always assumes that the true mean is at least
as high as the sampled mean. Note that, each time we refer to ei
where θi > m(ei ), we are essentially performing an exploration step.

Pessimistic Thompson Sampling (Pessimistic TS): Pessimistic
TS behaves the opposite way to Optimistic TS: θi is never allowed

Algorithm 3: TS(e,T )
Initialization: ∀i, Sei ← 0, Fei ← 0
Loop: Select expert ei who maximizes
score(ei ) = θi
Observe reward r

if r == 1 then
Sei ← Sei + 1

else
Fei ← Fei + 1

end

Algorithm 4: Optimistic TS(e,T )
Initialization: ∀i, Sei ← 0, Fei ← 0
Loop: Select expert ei who maximizes
score(ei ) =max(θi ,m(ei ))
Observe reward r

if r == 1 then
Sei ← Sei + 1

else
Fei ← Fei + 1

end

to be greater than the mean observed rewardm(ei ) and is set to
m(ei ) whenever it is greater thanm(ei ). Note that, each time we
select an expert ei where θi < m(ei ), we are essentially performing
an exploitation step. Also, notice that without any initialization of
the mean, if any action fails at the first execution, it will never be
chosen again. To circumvent this deficiency, the mean of every
action is initialized the same way as DIEL, enabling the possibility
of future selection.

Algorithm 5: Pessimistic TS(e,T )
Initialization: ∀i, Sei ← 1, Fei ← 1,ni ← 2, and
ri,ni ← (0, 1)
Loop: Select expert ei who maximizes
score(ei ) =min(θi ,m(ei ))
Observe reward r

if r == 1 then
Sei ← Sei + 1

else
Fei ← Fei + 1

end

Pessimistic TS-DIEL: As described in Algorithm 6,this action se-
lection strategy is a novel combination of DIEL and Pessimistic
TS. Essentially, the strategy replaces mean observed reward with
adjusted θi of Pessimistic TS.
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Notice that, in presence of expertise drift, having a conserva-
tive approach towards estimating the mean could prove benefi-
cial because the empirical (historical) mean may overestimate the
true-mean (post drift). We show an extreme two-expert setting
to illustrate this. Say, at time t = 0 to 10 tasks, expertise(e1) = 1,
expertise(e2) = 0.75. At time t = 11 tasks and beyond, expertise(e1) =
0.66, expertise(e2) = 0.75. We ran this simulation for 1000 times
till t = 1000. DIEL converged to e2, the stronger expert (68.3%),
substantially less than pessimistic TS-DIEL (83.6%).

Algorithm 6: Pessimistic TS-DIEL(e,T )
Initialization: ∀i, Sei ← 1, Fei ← 1,ni ← 2, and
ri,ni ← (0, 1)
Loop: Select expert ei who maximizes
score(ei ) =min(θi ,m(ei )) +

s(ei )√
ni

Observe reward r
Update ri,ni with r , ni ← ni + 1

if r == 1 then
Sei ← Sei + 1

else
Fei ← Fei + 1

end

We now describe Hybrid, a combination of Optimistic TS and
Pessimistic TS-DIEL.
Hybrid: Initially, Hybrid starts as Optimistic TS which favors
early exploration. If the performance-improvement gradient is low,
it switches to favoring exploitation through Pessimistic TS-DIEL.
The switching criterion is conditioned on topic and described in Al-
gorithm 7. perfwi

is the mean reward obtained in referral-window
wi (set to 100 referrals). If the performance improvement w.r.t.
the best so far performance perfbest , is below a threshold, either
Optimistic TS has reached saturation, or the performance suffered
because of drift and Hybrid switches to Pessimistic TS-DIEL for
subsequent conservative exploitation. In our experiments, we set
the value of threshold to 0 while noting that the performance wasn’t
highly sensitive to the choice of value as we observed indistinguish-
able performance difference with small values in [+0.05,−0.05].
Tuning was performed through a parameter sweep on a small back-
ground data set generated with similar distributional parameters.

5 EXPERIMENTAL SETUP
Baselines and upper bounds: DIEL, the previously-known state-
of-the-art referral learning algorithm on non-drift setting, is our
baseline. Additionally, we included three Thompson Sampling vari-
ants and two topical upper bounds for performance comparison.
Thompson Sampling variants and the DIEL version we used [18, 20]
are parameter free. The threshold parameter of Hybrid is set to 0.
We considered two upper bounds: Drift-Blind and Drift-Aware.
The Drift-Aware upper bound is the performance of a network
where every expert has access to an oracle that knows the true
topic-mean (i.e., mean(Expertise(ei ,q) : q ∈ topicp ) ∀i,p) of every
expert-topic pair. The Drift-Blind upper bound is the perfor-
mance of a network where every expert has access to an oracle that

Algorithm 7: Hybrid(e,T )
execute Optimistic TS

perfbest ← perfw1
switchFlag← 0
for i = 2, 3, . . . do

if switchFlaд == 0 then
execute Optimistic TS

perf∆ ← perfwi
− perfbest

if perf∆ < threshold then
switchFlaд← 1

end
if perf∆ > 0 then

perfbest ← perfwi

end
else

execute Pessimistic TS-DIEL

end
end

only knows the true topic-mean of every expert-topic pair at the
beginning of the simulation but is agnostic of any subsequent drift.
Data set: Our test set for performance evaluation is the same data
set used in [17]1, which is a random subset of 200 referral scenarios
also used in [18, 20, 21]. Each referral scenario consists of a network
of 100 experts and 10 topics. In our simulation, we start with the
same parameter values describing topical expertise of each expert.
As the simulation progresses, the expertise drifts according to the
drift parameter values are described in Table 1. For modeling ex-
pertise drift, we believe a slow, gradual change in expertise is more
realistic than abrupt changes. Hence, we considered the distribution
for expertise as piece-wise stationary and selected small values for
µdr if t and σdr if t . Recall that in a time-varying expertise setting,
expertise of an expert ei on topicp is modeled as
µtopicp,ei ,epochk+1 = µtopicp,ei ,epochk+N(µdr if t ,σdr if t ).We use
#samples as a proxy for time as is typical in Machine Learning for
evolving or streaming scenarios. For each expert, the epoch bound-
aries are chosen uniformly at random. The total number of epochs
for a given topic is set to 40 (with 10 topics, this essentially means,
the total number of time the expertise of an expert changes is 400).

Drift µdr if t σdr if t
weak, unbiased 0 0.03
strong, unbiased 0 0.06
weak, small positive bias 0.005 0.03
strong, small positive bias 0.005 0.06
strong, large positive bias 0.05 0.06

Table 1: Drift parameters

Performance Measure:We use the same performance measure,
overall task accuracy of our multi-expert system, as in previous
1The data set can be downloaded from https://www.cs.cmu.edu/~akhudabu/
referral-networks.html
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(a) Unbiased, strong drift (b) Steady-state performance closeup: zooming in to 1(a) upper right portion

(c) Small positive bias, strong drift (d) Steady-state performance closeup: zooming in to 1(c) upper right portion

Figure 1: Performance comparison of referral learning algorithms.

work in referral networks. So if a network receives n tasks of which
m tasks is solved (either by the initial expert or the referred expert),
the overall task accuracy is m

n . Q , the per-instance query budget,
is set to 2. Each algorithm is run on the data set of 200 referral
networks and the average over such 200 simulations is reported in
our results section. In order to facilitate comparability, for a given
simulation across all algorithms, we chose the same sequence of
initial expert and topic pairs; for each expert in a network, the
epoch length and expertise shift for each given topic are identical
across different referral algorithm runs.
Computational Environment: Experiments were carried out on
Matlab R2016 running Windows 10.

6 RESULTS
Figure 1 compares the performance of referral learning algorithms
in the presence of strong drift (weaker drift shows qualitatively
similar results). Our results demonstrate the following points:

First, the Drift-Aware upper bound outperforms the Drift-Blind
by a considerablemargin, as expected. In fact, apart from Pessimistic
TS, all algorithms eventually outperformed the Drift-Blind upper
bound. This underscores the importance of tracking drift in exper-
tise estimation and continual learning, since starting with a perfect
information on the topical mean of every expert-topic pair was not
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Figure 2: Components of Hybrid.

enough to overcome expertise-drift tracking, even if starting with
imperfect estimates.

Next, we evaluate the relative expertise-tracking performance
of algorithms in the literature. The vertical line at 5000 samples per
subnetwork marks the horizon considered in previously reported
results. Earlier results demonstrated DIEL outperformed several
algorithms including UCB variants, Q-Learning variants [20, 21] in
the stationary expertise setting. In our new results, we find that even
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Figure 3: Switching behavior of Hybrid.

in presence of drift, DIEL still outperforms the TS variants when
the number of observed samples is small, once again highlighting
the early performance gain that made DIEL suitable for multi-hop
referral learning and proactive skill posting. However, with a larger
number of samples under the expertise-drift condition, we find that
both TS algorithms eventually outperform DIEL, thus presenting
better long-term steady-state performance, and superior tracking
of drifting experts.

Next, we focus on Pessimistic TS, a TS variant never consid-
ered in the literature before. As expected, Pessimistic TS per-
forms poorly compared to the other two TS variants indicating
that it is not a viable standalone action selection strategy. However,
combining DIEL and an effective switching strategy after sufficient
exploration proved to bemost resilient combination to time-varying
expertise. This result shows that combining components from dif-
ferent action selection strategies could result in high-performance
algorithms.

Finally, we focus on Hybrid, our primary proposed algorithm.
As shown in Figure 2, Hybrid outperformed both its component
algorithms by combining the benefit obtained through early ex-
ploration of Optimistic TS and subsequent exploitation through
Pessimistic TS-DIEL. The effective switching criterion ensured
sufficient exploration performed before the switch and less explo-
ration later to continue to track expertise drift. As shown in Fig-
ure 1, Hybrid outperforms DIEL, TS and Optimistic TS, the three
algorithms from the literature, among which DIEL was the top per-
former in the stationary expertise setting. The small performance
gap between Hybrid and Drift-Aware upper bound indicates that
any other referral learning algorithm will have at most little advan-
tage2.

Note that each expert decides independently when to switch
from Optimistic TS to Pessimistic TS-DIEL for each topic.
With 10 topics and 100 experts in the network, this effectivelymeans
at the beginning, 1000 threads of Optimistic TS are running in
parallel. We were curious to see when the strategy switch occurred
in aggregate. Figure 3 presents the switching behavior of Hybrid
in presence of strong, biased drift. Since the switch only happens

2We also tried combinations of Dynamic Thompson Sampling and DIELwith a moving
window of observed samples. We did not obtain any perceivable performance benefit.
The dynamic versions of any of the TS algorithms also didn’t offer any performance
benefit.

if Optimistic TS stops improving significantly, the gradual shift
indicates that for different topic-expert pair, that strategy shift
arrives at different operating points depending on the composition
of the subnetwork around each expert, the expertise of the reachable
experts and corresponding drift.

Our results with weak expertise drifts are qualitatively similar.
Figure 5 compares the performance of Optimistic TS, DIEL and
Hybridwith weak, unbiased drift and shows that the relative order-
ings found in previous results are preserved (DIEL and Optimistic
TS have indistinguishable steady-state performance).

Finally, we present our result with a large positive bias, and
strong drift in Figure 4. The relative ordering of previous perfor-
mance is preserved with both DIEL and Optimistic TS outper-
forming the Drift-blind upper bound. However, in this case, we
found that the drift-tracking of Hybrid is near-perfect as shown in
the steady-state close-up in Figure 4(b), where Hybrid is indistin-
guishable from the drift-aware oracle.

7 CONCLUSIONS AND FUTUREWORK
Learning to refer is a recent Active Learning setting where experts
can redirect difficult tasks they cannot solve to other connected
experts. In this work, we introduced the notion of time-varying
expertise in referral networks, an important practical factor not
considered in the literature. Our results indicate that DIEL, the
state-of-the-art referral learning algorithm on referral networks
without time-varying expertise, is vulnerable to expertise drift.
Hence, we proposed a novel combination of Thompson Sampling
and DIEL that performs a gradient-based switch between action
selection strategies which outperformed DIEL on different types
of drift conditions. Moreover, our proposed algorithm achieved a
performance close to the theoretical upper bound.

Our work can be extended in the following ways.

• Evolving networks: When the estimated perf∆ falls below
a threshold, the assumption is the exploration component
of our hybrid algorithm has largely saturated. However, in
evolving networks where new experts can join in and old
experts can drop off of the network, this could also mean
that a subset of old experts should be replaced by a set of
new experts with initially unknown expertise. Distinguish-
ing between the case of network composition change and
expertise drift to select the best learning strategy under both
conditions presents a new challenge.
• Topic-dependent drift: In this work, we assumed the dis-
tribution parameters for drift do not vary across topics. How-
ever, in real world, some topics may be prone to rapid skills
change, whereas others are more stable. It is not yet clear
if the proposed methods are robust to a mixture of drift
distributions.
• Expertise-level-dependent drift:We assumed that the na-
ture of drift is independent of the present expertise. However,
in real life, a strong expert is unlikely to lose or improve her
skill rapidly, whereas a weak expert may be more likely to
substantially improve in a short span of time, i.e. a student
rapidly learning to become a true expert. Extending our work
to expertise-level-dependent drift could be a possible future
direction.
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(a) Large positive bias, large drift (b) Steady-state performance closeup: zooming in to 4(a) upper right portion

Figure 4: Performance comparison of referral learning algorithms with large positive bias, large drift.
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Figure 5: Performance comparison with unbiased weak
drift.

• Finite horizon bound for algorithmswith variance term:
In our experimental results both on real data and synthetic
data [20], we have found that DIEL’s finite horizon perfor-
mance is substantially better than a wide range of algorithms.
In [4], an algorithm UCB1-tuned was found to have supe-
rior empirical performance than UCB1. In this paper, we also
found that Pessimistic TS-DIEL could be a useful com-
ponent for dealing with expertise drift. However, none of
these algorithms’ theoretical finite-horizon regret bounds
are known; they all have a variance term in common (which
is precisely the reason for the difficulty in proving the finite-
horizon regret bound). We would like to attract the atten-
tion of the MAB community towards this observation to see
whether tight regret bounds might be determined, as many
of these algorithms have demonstrated strong performance
in practice.

ACKNOWLEDGMENTS
The authors would like to thank Manuel Blum, Jeffrey P. Bigham
and anonymous AAMAS reviewers for their constructive feedback
to improve the manuscript.

REFERENCES
[1] Rajeev Agrawal. 1995. Sample mean based index policies with O (log n) regret

for the multi-armed bandit problem. Advances in Applied Probability (1995),
1054–1078.

[2] Shipra Agrawal and Navin Goyal. 2012. Analysis of Thompson Sampling for the
Multi-armed Bandit Problem.. In COLT. 39–1.

[3] Jean-Yves Audibert, Rémi Munos, and Csaba Szepesvári. 2007. Tuning bandit
algorithms in stochastic environments. In International Conference on Algorithmic
Learning Theory. Springer, 150–165.

[4] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-time analysis of
the multiarmed bandit problem. Machine Learning 47, 2-3 (2002), 235–256.

[5] Moshe Babaioff, Yogeshwer Sharma, and Aleksandrs Slivkins. 2014. Character-
izing truthful multi-armed bandit mechanisms. SIAM J. Comput. 43, 1 (2014),
194–230.

[6] Giuseppe Burtini, Jason Loeppky, and Ramon Lawrence. 2015. A survey of
online experiment design with the stochastic multi-armed bandit. arXiv preprint
arXiv:1510.00757 (2015).

[7] Olivier Chapelle and Lihong Li. 2011. An empirical evaluation of thompson
sampling. In Advances in neural information processing systems. 2249–2257.

[8] Pinar Donmez, Jaime Carbonell, and Jeff Schneider. 2010. A probabilistic frame-
work to learn from multiple annotators with time-varying accuracy. In Proceed-
ings of the 2010 SIAM International Conference on Data Mining. SIAM, 826–837.

[9] Pinar Donmez, Jaime G Carbonell, and Paul N Bennett. 2007. Dual Strategy
Active Learning. Machine Learning ECML 2007 (2007), 116–127.
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