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ABSTRACT
The Bayesian Theory of Mind (ToM) framework has become a com-
mon approach to model reasoning about other agents’ desires and
beliefs based on their actions. Such models can get very complex
when being used to explain the behavior of agents with different
uncertainties, giving rise to the question if simpler models can also
be satisficing, i.e. sufficing and satisfying, in different uncertainty
conditions. In this paper we present a method to simplify inference
in complex ToMmodels by switching between discrete assumptions
about certain belief states (corresponding to different ToM models)
based on the resulting surprisal. We report on a study to evaluate a
complex full model, simplified versions, and a switching model on
human behavioral data in a navigation task under specific uncer-
tainties. Results show that the switching model achieves inference
results better than the full Bayesian ToM model and with higher
efficiency, providing a basis for attaining the ability for "satisficing
mentalizing" in social agents.
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1 INTRODUCTION
Inferring the mental state of others is a hallmark of our human
capability for social understanding and interaction. We see some-
body walking towards us and immediately think about a number
of possible intentions or goal destinations she might have. This
mentalizing is called Theory of Mind (ToM) [22], underlining that
we are constructing and using a theory of the mental state of other
agents in order to explain their actions. This enables us to prevent
others from harming us or allows us to successfully work together
with them without the need of overly explicit communication.

A common assumption is that humans strive to uncover other
people’s goals [11], their inner beliefs [34] and even social contexts
[28] to a certain extent. However, research has shown that some
mental states are harder to infer than others [32, 33]. While people
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can quite easily detect the desires or goals behind actions of other
people, it is harder to infer their beliefs which potentially differ from
one’s own. Inferences about another agent’s perceptual access, false
beliefs, or emotions are likely to be even more difficult. It has also
been argued that we do not always use our ability for mentalizing to
its fullest extent [16] and that in some situations it is preferable to go
with a lower order of ToM with less recursive mental states [9, 10].
Furthermore, some even argue that humans use a "minimal theory
of mind" due to their bounded cognitive resources [6]. We assume
that it is crucial for humans to employ "satisficing mentalizing"
when inferring other’s mental states. That is, as long as easily
inferred information (like another’s likely goal) is sufficient for one’s
current purposes, one will rarely invest additional cognitive effort
to infer additional mental states such as the other’s current beliefs.
Yet, it is not clear what kind of ToM is needed to "satisficingly"
explain different behavior of different agents.

While some work was directed at simulating mentalizing in a va-
riety of agent-agent interaction scenarios (e.g. negotiation [17], or
interactive narrative [27]), others have tried to employ such models
to increase the abilities of conversational agents or social robots
to interact with and adapt to human users [5, 26]. An approach
that has become increasingly popular in such interactive systems,
but also in computational cognitive science [2], are probabilistic
(Bayesian) models of ToM. These models come with high compu-
tational costs needed to form and maintain beliefs. Consequently,
models are usually optimized to a specific scenario but it is not
clear if alternative models could have achieved equally satisficing
performance. Only few have looked at comparing different ToM
models, e.g. with respect to the modeling agent’s actions [23], but
not with regard to an accuracy-efficiency trade-off and to enable
an agent to choose a suitable ToM model itself.

In this paper, we present work towards social agents that can
switch Bayesian models of ToM to reason about the mental states
of other agents in different situations in a satisficing way, i.e. with
sufficient accuracy and reasonable costs. We start from a complex
Bayesian ToM model and show how simpler models can be con-
structed, each suited to reasoning about agents with different uncer-
tainties about their environment, that can achieve similar accuracy
while being considerably more efficient. The next section provides
background information on mentalizing in humans, the general
Bayesian ToM framework and modeling attempts in social agents.
Then we describe our proposed method and present results from a
comparison of the different models on human behavioral data from
a navigation task inducing different kinds of uncertainties.
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2 BACKGROUND
Mentalizing, or Theory of Mind [22] has been studied for many
years now. Recent research increasingly suggests that ToM is an
adaptive ability and can incur different amounts of effort. During
acquisition, there seems to be an order of difficulty from inferring
desires, over differing beliefs, perceptual access, false belief up to
emotions [32]. Even after acquiring the skills to infer complex (e.g.
recursive) mental states, humans do not always use these skills
to the fullest [9, 16]. While this partly can be due to the cognitive
effort of the underlyingmental inferences, it is not always necessary
or even useful to infer too complex mental states [10]. One way
to regulate the degree of mentalizing might be some measure of
surprise (or predictability). Generally, surprising events are found
to trigger a series of mental steps, starting from recognizing an
event as surprising and ending in revising one’s beliefs [19]. Recent
work shows that surprising actions of other agents cause longer
reaction times in humans, which could correlate to this adaptive
revision of one’s beliefs [20].

2.1 Bayesian Theory of Mind
In recent years a lot of research has considered the problem of
inferring the mental states of agents through probabilistic inverse
planning [2, 3, 7, 11, 14, 29, 30], usually in a Bayesian framework
that was termed Bayesian Theory of Mind (BToM) by Baker et al.
[1]. The general idea is to model causal relations between mental
states such as desires, beliefs, preferences and actions. Bayes’ rule
is used to invert the model in order to infer the agent’s desires and
beliefs based on observed actions:

P (d,b |a) =
P (a |d,b)P (d,b)

P (a)
(1)

where P (a |d,b) represents the modeled likelihood of an action
given a desire d and a certain belief b. P (d,b) represents the prior
knowledge about the joint desire and belief distribution. The prob-
ability of the action P (a) serves as a normalization constant. Com-
puting this normalization constant is often difficult since it requires
to marginalize over all desires and belief states.

Baker et al. [3] point out that the inverse planning problem is
ill-posed and "requires strong prior knowledge of the structure
and content of agents’ mental states, and the ability to search over
and evaluate a potentially very large space of possible mental state
interpretations".

One way of enabling the search over large mental state spaces is
by use of sampling, which has even shown to provide better fits to
human data in some conditions [31]. Sampling circumvents the need
to marginalize over possibly infinite domains by approximating
the inference and is the usual approach whenever the probabilistic
models become too complex. However, since we are interested in a
comparative analysis and sampling can be used on simple as well as
complex models, we are not considering the potential added value
of sampling for the remainder of this paper.

Apart from sampling, one generally limits the model to the belief
states and desires one is interested in within a given scenario. Pre-
vious research has shown, that such simplified models can explain
human behavior on a level comparable to humans [2, 3]. However,
different scenarios require one to specify a different set of possible
discrete belief states, thus a new model.

2.2 Artificial Social Agents
Modeling Theory of Mind in artificial systems is not only useful
from the perspective of social psychology but also vastly important
in artificial social agents: Inferring other agent’s plans allows a
better predictability of future actions [11, 25], better adaptation
to other agents as well as collaboration [15]. ToM is also used to
perform social simulations of multiple artificial agents [24]. Overall
these capabilities can help build systems which behave and reason
more like what humans are used to, which is very important for
the acceptance of such systems [8].

Pynadath and Marsella [23] proposed an interesting approach
to form minimal mental models in a multi-agent simulation sce-
nario. Several models of another agent are clustered and considered
equivalent based on different criteria (e.g. the expected utility or
the resulting behavior of the modeling agent) as well as discrete
assumptions about its belief states. Their results, where even the
simplest of those equivalent models performed similarly to complex
ones, show that not all possible belief states need to be considered.

3 OVERALL APPROACH
In order to develop a framework for "satisficing mentalizing" in
social agents, we adopt a twofold approach. First, we construct
different BToM models of different complexity and investigate their
efficiency and accuracy in explaining behavior of different agents.
Importantly, these models rest on different assumptions about the
kinds of uncertainties an agent might have. To that end, we cre-
ate simpler models by making discrete assumptions about certain
beliefs in a complex model that contains the full belief states we
might be interested in. Each set of assumptions yields a different
simplification of the complex model, suitable to explain behavior
under certain conditions. For example, in the simplest case one can
assume that an observed agent holds a true belief about its environ-
ment. In this case, one can omit inferring belief states entirely and
solely focus on inferring the agent’s desire (as shown successfully
in [3]). A competing assumption is that the modeled agent only
knows part of its environment, e.g. being uncertain about the exact
configuration of possible goal states.

Secondly, we propose a method for combining multiple simpler
models when explaining the behavior of agents whose unknown
mental states may require different kinds of assumptions. In or-
der to satisfy the requirements for low computational costs, our
approach will be model-switching, i.e. we look for a method to
determine how well a current model can explain an observed be-
havior and to switch to another more appropriate, potentially more
costly model only if needed. Our current approach to find the most
satisficing model is to start by using the simplest model, i.e. making
strong assumptions about the modeled agent. This corresponds to
assuming initially that the modeled agent is fully competent and
has true beliefs about the environment (e.g. how goal states can be
achieved). This model will be able to explain rational goal-directed
behavior but will make wrong predictions for behavior of agents
holding differing beliefs. To enable this model switching, we are
computing a surprise measure for each observed behavior. If this
surprise measure becomes too large, the framework will re-evaluate
its current assumptions, adapting them if necessary, analogous to
what has been found in surprise theory in humans [19]. The adapted
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set of assumptions corresponds to a new model that explains the
observed behavior better. Note that this surprise measure can be
computed in a number of ways. We will discuss two previously
proposed methods of computing surprise in our example below.

In the remainder of this section we present a first detailed im-
plementation of this approach in the domain of explaining goal-
directed navigation behavior. Section 4 will then describe in detail
a maze-like environment that we used to gather human behavior
data, under different conditions to induce different kinds of uncer-
tainties in the participants. These data will be then be used for a
comparative evaluation of the BToM models in section 5.

3.1 BToM in a Navigation Task
Our example domain is similar to the foodtruck domain of Baker
et al. [1] in that agents are navigating an environment with multiple
possible goal locations of which the agent will want to reach exactly
one. We add two different sources of uncertainty: First, the agent
may or may not know where the desired goal is. Similar to Baker
et al. they may know potential locations of the goals, but may be
uncertain about the exact mapping between goals and locations.
We will refer to this knowledge as the goal belief of an agent. The
second source of uncertainty, which goes beyond the foodtruck
domain of Baker et al., is that agents may or may not know how to
navigate the maze in order to reach a goal location. We will refer
to this possibly uncertain knowledge as the agent’s world belief.

The full model: Taking these two sources of knowledge into
account, the full BToM model a modeling agent could construct
for observing a behavior at+1 at the next timestep t + 1 given the
previously observed behavior at = a1, ..,at is given by:

P (at+1 |at ) =
∑
д∈G
bд ∈Bд
bw ∈Bw

P (at+1 |д,bд ,bw ,at )P (bw |at )P (bд |at )P (д |at )

(2)
whereG ,Bд andBw represent the potential goals, the goal beliefs,

and the world beliefs, respectively. This factorization assumes that
the beliefs bд and bw are independent of each other1. Furthermore,
we are assuming that our environment fulfills the Markov property
in that future actions are independent of previous actions given
an agent’s goal intention д as well as its beliefs bд and bw which
simplifies the likelihood to P (at+1 |д,bд ,bw ). This assumption is
not always valid, but is an often used simplification which we will
also employ in this example.

For the likelihood, we assume rational agents that usually pick
the optimal actions given their goal and beliefs, but have a small
probability of performing suboptimal actions (cf. [1]):

P (at+1 |д,b
∗
д ,b
∗
w ) =

exp (βU (at+1,b∗д ,b
∗
w ,д))∑

ai ∈A exp (βU (ai ,b
∗
д ,b
∗
w ,д))

(3)

whereU (ai ,b
∗
д ,b
∗
w ,д) represents the expected utility of the agent

after executing action ai with regard to goal д and the beliefs b∗д
and b∗w . This dependents on the agent’s position within the maze
and may be learned through reinforcement learning or computed

1In general, other factorizations with potential dependencies are also possible.

on the fly if the environment is known. The expected utility greatly
depends on the scenario and the chosen reward function. Following
[3] we model equal costs for all available actions, which results in
utilities correlating to the (estimated) remaining distance towards
the goal instead of potentially different rewards for different desires.
In this example we concentrate on agents having exactly one desire,
albeit unknown to the observer. β controls the optimality of the
agent’s actions. As β increases, the agent becomes more rational,
as the probability of choosing suboptimal actions decreases.

The simplest model: To derive a highly simplified model from
this full BToM, we make discrete assumptions about both our belief
variables, i.e. we are assuming true goal beliefs and world beliefs.
This simplifies equation 2 to:

P (at+1 |at ) =
∑
д∈G

P (at+1 |д,b
∗
д ,b
∗
w )P (д |at ) (4)

since both belief distributions have their probability mass con-
centrated only on a single outcome b∗д and b∗w .

Intermediate models: An alternative, less confining assumption
is either over the goal beliefs bд or the world beliefs bw , resulting
in more complex but also more powerful models. The model for
only assuming a true world belief would look like this:

P (at+1 |at ) =
∑
д∈G
bд ∈Bд

P (at+1 |д,bд ,b
∗
w )P (bд |at )P (д |at ) (5)

Basic reasoning works equally in all models. Inference about dif-
ferent mental states can be performed by rearranging the likelihood
using Bayes’ rule as already shown in the general BToM model in
equation 1. Belief updates can be performed by using the posterior
after one observation as prior for the next observation, or alterna-
tively through more complex mechanism such as the BeliefUpdate
in [4] which takes additional information into account.

Note that more complex models are more expressive as they
can explain behavior in additional ways. However, in the Bayesian
framework, more alternatives which are equally likely result in
lower probabilities overall.

3.2 Measures of Surprise
Computing surprise values for events can be done in many differ-
ent ways. Several measures were based on the probability of the
observed event (cf. [18]), while others have taken the difference
between a prior and a posterior distribution (after observing some
event) of a current hypothesis as measure of surprise [12]. The lat-
ter Bayesian surprise is not applicable in our scenario as we do not
have a single clear "model posterior". Instead, we are considering
the following two methods:

S1: The surprise due to an action is the KL divergence between
the probability our model predicts for the next action and the prob-
ability of actually observing that action (omitting the conditioning
on the past for brevity):

S1 (a) = KL(Q (a) | |P (a)) =
∑

Q (a) log(
Q (a)

P (a)
) (6)
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where Q (a) is the probability of having observed action a and
P (a) is the probability our model predicted action a occurring.
Assuming a perfect observer, i.e. Q (a) = 1 only for the behavior
that actually occurred, this reduces to:

S1 (a) = −loд(P (a)) (7)
That is, the surprisal of an action is equivalent to the negative

log of its predicted probability, a measure also known as the self-
information of an action in information theory. This value can
also be understood as a measure for the prediction error (the more
certain the model is in predicting the action observed, the lower the
surprise). This formwas also used as in [18].While an interpretation
as error measure is appealing, this surprise measure is not intuitive
in situations in which multiple actions are equally likely to achieve
an hypothesized goal. In this case, the probability for the observed
action is lowered since the probability mass is split upon all equally
likely possibilities. Lower probabilities will result in larger surprise
values, even though the observed action might have been perfectly
reasonable. This motivates the second method:

S2: The surprise due to an action is the log of the difference
between the probability of the most likely action and the probability
of the observed action:

S2 (a) = loд(1 + Pmax − P (a)) (8)
where Pmax represents the probability for the most likely action

in that situation. This measure was also used to explain human
empirical data [18]. Further, it does not have the problemmentioned
above and results in lower surprise values overall. However, this
measure requires the computation of the maximum probability of
an action in that situation. This computation requires evaluating
all possible actions, which can quickly become infeasible.

We can easily extend both surprise measurements to entire se-
quences of actions by stating that the surprise for a sequence of
actions is the sum of surprises of each action:

S1 (a1, ..,at ) =
t∑
i=1
−loд(P (ai )) (9)

S2 (a1, ..,at ) =
t∑
i=1

loд(1 + Pmaxi − P (ai )) (10)

While the S1 for sequences directly follows from logarithmic
identities, we define S2 for sequences this way mainly for conve-
nience. Computing Pmax for the entire sequence would be infeasi-
ble in all but the simplest cases.

As both measures have their advantages and disadvantages, in
the evaluation (see next section) we applied both measurements
and did not find any substantial differences. As S1 provides the
better computational performance, we will thus report only results
obtained using S1 in the following.

3.3 Model Switching
Given a number of alternative, differently complex models and a
measure of surprise to assess the explanatory quality of a given
model, it is now possible to realize the ability for autonomously
switching models. Our current, first approach is to continuously

check whether a surprise threshold γ is exceeded by the current
model and, if so, to switch to the model that yields the lowest
surprise. After switching, the threshold is increased by 50% to pre-
vent the model from constantly switching back and forth when
explaining difficult behavior.

This is obviously a very simple strategy that will run into prob-
lems when the number of alternative models (sets of assumptions)
to evaluate increases. As shown in the next section, in the present
example with only three distinct sets of assumptions, evaluating all
models is still a lot more efficient than evaluating the full complex
model. Yet, more sophisticated ways of switching models are ob-
viously possible. For example, switching could follow a hierarchy
of increasingly more complex models, ideally inspired by findings
from human psychology regarding the ToM scales [32]. Actually
learning and adapting such a hierarchy of suitable assumptions
from past observations is subject of our own ongoing work.

4 SCENARIO
To test how well the different models along with their correspond-
ing discrete assumptions are suited to explain real behavior, we
collected behavioral data of humans navigating within a simple
environment. We created six different mazes of equal size (20 by
13 blocks). A block in the world was either a free space, a wall
or a goal position. Goals were of different color which was how-
ever unknown unless an agent created a line of sight with the goal.
Otherwise, each goal looked identical. The agent, represented as a
smiley, could move over free blocks as well as goal positions but
not through walls. Such a simplified environment was used in re-
lated studies [2, 13, 28, 34] for it can be realistically tackled using
BToM models, while still eliciting sufficiently complex intentional
behavior and corresponding mental states in the participants.

Our main goal is to use this dataset to compare the simplified
models, the full BToM model, and the combined model that rests
on the switching strategy described above. Crucially, we wanted to
get realistic data of behavior produced by humans with different
kinds of uncertainties about their task environment. To that end
we designed three different task conditions that induce different
kinds and degrees of uncertainties, and that would correspond to
different discrete assumptions within our modeling framework.

4.1 Conditions of Uncertainty
No uncertainty: In this first condition, we revealed the entire

maze and showed the participants a single goal location, which
they were told to reach. As a results, participants should have had
full knowledge about the goal position (true goal belief) as well as
any paths leading to it (true world beliefs) without any uncertainties
regarding their task (see left maze of Figure 1 for an example).

The corresponding model for this condition is the simplest and
also the one our observer will start with when considering the
switching model. It is summarized by equation 4 above.

Goal uncertainty: In the second conditions, participants only had
a true world belief. Uncertainty in the goal beliefs was introduced by
showing the participants four goals, which all looked the same until
they created a line of sight with them. The participant’s instruction
read "Find your way to the X exit" where X was replaced with the
color of the goal theywere supposed to reach. Since each participant
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saw each individual maze only once they had no way of knowing
the position of their desired goal beforehand. An example of a
situation in this condition can be seen in the middle of Figure 1:
The agent currently has a line of sight to the blue target (B), it can
therefore rule out all possible goal locations where the blue target
is not at the seen location.

This condition corresponds to the intermediate model already
presented in equation 5. We update the belief about potential goal
locations similar to [1]:

P (bд |at+1) ∝ P (ot |st ,bд )P (bд |at ) (11)
where P (ot |st ,bд ) represents the probability of actually observ-

ing what the agent sees at time t given his current belief in the goal
positions bд and the agent’s current state (i.e. position within the
maze) st . This is modeled by checking if the believed goal position
is visible from the agent’s current position and if it matches the
assumed goal. We assign a probability of θ to scenarios that match
reality and 1 − θ to scenarios that do not match, e.g. seeing a red
goal when one is assuming a blue one. θ represents the probabil-
ity of making correct observations and is set to 1 for the results
reported below. However, allowing a slight observation error does
not change the results significantly. Lastly, P (bд |at ) is our previous
belief about goal positions.

World uncertainty: In the last condition, participants hold a true
belief about goal positions but had uncertainty regarding the world
structure. This was achieved by only showing a single goal and
instructing the participants to "Find your way to the shown exit".
Therefore, there was no ambiguity of where they would need to go
in order to reach their goal. However, as can be seen on the right
of Figure 1, participants were only able to see up to three blocks of
the maze around them. Again, since they never saw the same maze
twice, they had no way of knowing their way to the goal location.

This, again, corresponds to an intermediate model as in equation
5 but with the fixed belief swapped around:

P (at+1 |at ) =
∑
д∈G

bw ∈Bw

P (at+1 |д,b
∗
д ,bw )P (bw |at )P (д |at ) (12)

Since we are assuming that agents have no knowledge about the
mazes’ structure, we cannot compute the true remaining distance
to the goal positions for the utilities in this case. Theoretically, one
would need to represent all possible worlds in Bw , computing the
remaining distance to the goal positions for each of these potential
worlds. Already with the very simple 2D environment of size 13 by
20 there are 213∗20 = 1.85×1078 different wall configurations, many
of which would not even contain traversable paths towards the goal.
Even if one would a priori select only worlds with reachable goals,
the number of possible goals would still be intractable and it does
not seem likely that humans are considering multiple potential wall
placements in an unknown maze. Therefore, we are employing the
"free space assumption" that any field which has not been seen yet
is traversable. Under this free space assumption, we can compute
the distance to the goal with standard search algorithms like A*
and use this as the expected utility.

The actual belief distribution simplifies greatly under this as-
sumption:

P (bw ) ∝




0 , if bw contains walls in unknown areas
1
|w | ∗ f , if bw contains false beliefs about already

seen areas
1 , if bw corresponds to the seen environment

with no walls in the unknown area.
(13)

where |w | represents the number of mistakes in bw and f rep-
resents the probability of forgetting past observations. Assuming
further that agents have perfect memory (i.e. setting f = 0) al-
lows one to reduce the domain of world belief Bw to only a single
entity in each situation, thus greatly simplifying the resulting in-
ference. Since both the specialized and the complex models use
this simplification, the comparison between these models remains
unaffected.

In this work we are not directly interested in making inferences
about the actual world structure, since we do not believe that hu-
mans are likely to make such inferences either. Instead we are
interested in inferring whether or not agents hold a true and com-
plete belief over the world structure or not, in which case we are
making the free space assumption. The full model therefore treats
Bw as a binary variable deciding between true world belief and free
space assumption. This belief is updated similar to the belief about
goal desires, i.e. by inverting the likelihood using Bayes’ rule.

4.2 Procedure
We had 122 participants for our web-based study from Crowdflower
who received a e0.2 upon completion. We did not restrict the coun-
try of origin of our participants. Of these 122 participants, 110
completed all six mazes while the remaining 12 stopped after 1
to 5 mazes. Overall, we collected data from 687 completed trails.
The raw data as well as the scripts used to produce the results re-
ported here can be found in [21]. Participants first saw a short text
telling them that they will be asked to complete a series of different
scenarios. Upon acknowledgement, the participants saw their first
maze with instructions about which goal to reach on top of the
maze as an overlay, which stayed until the participant performed
an action (which was also instructed). Participants controlled the
agent using either the keyboard or labeled buttons on the sides
of the maze. The instructions were additionally shown below the
maze throughout the trail along with the control instructions. Each
action was logged by our server. Upon completion of the task, the
next maze was presented in the same way. After completing the
sixth and last maze, participants were given a code that they could
enter in the Crowdflower study for being compensated. The condi-
tions were randomly combined with either of two variants of the
six mazes, only ensuring that each condition appeared twice for
each participant and that each participant was presented with six
different mazes. The order in which the mazes where presented to
the participants was also randomized.

5 EVALUATION
Asmentioned before, in this work we are less interested in howwell
any particular model predicts human behavior. Previous research
has shown that the BToM framework is suitable to explain an
agent’s behavior in such navigation tasks. In fact, our simplest
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Figure 1: The three different conditions on the same map as seen by the participants: Left - No Uncertainty, Middle - Goal
Uncertainty, Right -World Uncertainty. The yellow smiley represents the agent controlled by participants, the green squares
represent possible goal locations. As can be seen in the middle, an actual goal color is only revealed when an agent has a line
of sight towards the goal position. Multiple goal locations were only shown in the True World Belief condition.

model and the No Uncertainty condition are very similar to previous
research [3]. Here, we are instead interested in comparing the three
simpler models (True World Belief, True Goal Belief, True World
and Goal Belief ), the Switching model, and the full model making
No Assumption (eq. 2)2. For the switching model we computed
the initial threshold γ0 based on the average surprise value on
part of the data from the No Uncertainty condition. For the results
reported below, we rounded the obtained threshold to 20 (although
the results are stable across a range of different values). Likewise,
the optimality parameter β = 1.5 was determined by testing the
fit of all models on a number of samples from each condition. We
will first consider objective statistics across all the recorded data,
before discussing some concrete examples of the behavior of the
different models.

5.1 Accuracy
To evaluate how well each of the five models can explain the hu-
man behavior, we use the negative log likelihood of the behavior
produced by the models, which in this case corresponds to our S1
surprise measure for entire trajectories (see Table 1). The average is
taken over all trials from the respective condition, or all trials over-
all respectively. As can be seen, the Switching model outperforms
any single model in each of the different conditions. The differences
are significant (p<0.005 according to Wilcoxon signed-rank test)
for all other models and conditions except for the Goal Uncertainty
condition where the test yields a p-value of 0.00583. The full model,
which makes none of the simplifying assumptions of the other mod-
els, performs better than the specialized models overall. In the Goal
Uncertainty condition it achieves similar performance (no signifi-
cant difference according to the Wilcoxon signed-rank test) to the
True World Belief model. This is due to the fact that both models
make the exact same inferences (the Kullback-Leibler divergence
between the goal belief distributions taken after every action is
effectively 0). In the No Uncertainty and the World Uncertainty con-
ditions, the models making the corresponding assumptions achieve

2This does not mean that there are no assumptions overall, cf. the likelihood function.
3For complete statistics as well as access to the raw data see [21]

better results than the full model. Note that the large standard de-
viations in all but the No Uncertainty condition are due to large
behavioral variations in the data.

5.2 Efficiency
Since we are interested in satisficing mentalizing, accuracy is only
one of two important criteria. The other one, efficiency, refers to the
fact that mental inferences need to be performed relatively quickly,
especially in social interactive agents that have to act towards other
agents in a timely manner. Table 2 reports the relative time needed
by a model to evaluate a single action in the different conditions,
normalized to the simplest and quickest model (True World and
Goal Belief )4. Note, that the Switching model needs to perform
occasional re-evaluations of all models, which is why we also report
the average number of re-evaluations per trial.

5.3 Behavior Processing Examples
Due to the great variability of the human data across differently
complex mazes, aggregated statistics can only convey so much
information. To illustrate how the different models process human
behavior, we analyze two actual trials from the Goal Uncertainty
and the World Uncertainty conditions and present them in Figures
2 and 3, respectively. The red trajectory in the maze represents the
actions participants performed, and the green squares represent
the potential goal locations. In the World Uncertainty condition,
participants only saw the goal, marked with a T. The modeling
agent, however, has to consider any of the four locations as potential
intended goals of the agent. The bottom part of the Figure shows the
resulting surprise values computed by the different models against
the action number. The vertical lines indicate when the current
assumptions in the Switching model exceeds the surprise threshold
and a re-evaluation resulting in a potential switch was done.

In the Goal Uncertainty example (Fig. 2), the participant searched
each of the four possible goal locations before finding her desired
goal. The True World Belief model and the full model behave sim-
ilarly, with the complex model being better able to explain the
4We report relative timings in order to highlight the models’ differences, not tied to
any experimental system. For completeness, the average times of the quickest model
in seconds on a 3.5Ghz Xeon machine for Overall, No Uncertainty, Goal Uncertainty
andWorld Uncertainty, respectively, are: 7.63e-5, 5.57e-5, 8.15e-5, 9.65e-5

Session 12: Socially Interactive Agents 1 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

475



Table 1: Average surprise values and their standard deviations for the different models (rows) applied to the three conditions
(columns); numbers in bold represent the lowest values (best). * signals significant difference to the No Assumption model
(p<0.005) according to Wilcoxxon signed-rank test. A more complete analysis can be found in [21].

Model Overall No Uncert. Goal Uncert. World Uncert.
No Assumption 43.6975 (41.98) 29.1360 (11.04) 48.8868 (38.29) 53.1374 (58.02)

True World and Goal Belief 47.8146 (59.76) 13.8305 (12.54) 75.3903 (56.71) 54.5828 (73.36)
True World Belief 49.0316 (44.56) 32.9640 (13.26) 50.8797 (39.45) 63.2752 (61.28)
True Goal Belief 45.6111 (51.67) 22.8657 (15.75) 72.0591 (47.27) 42.2535 (65.58)

Switching 34.1854 (46.29) * 13.0823 (10.38) * 48.7999 (40.96) 40.8646 (62.75) *

Table 2: Relative time needed by a model to evaluate an action, normalized to the most efficient model (second row). In the
bottom row, the average number of model switches per trial is given in parentheses.

Model Overall No Uncert. Goal Uncert. World Uncert.
No Assumption 553.17 758.09 519.25 437.12

True World and Goal Belief 1 1 1 1
True World Belief 5.19 6.78 4.94 3.88
True Goal Belief 24.25 35.11 23.38 18.94

Switching 26.41 (1.42) 9.47 (0.29) 32.19 (2.41) 23.86 (1.57)

observed behavior. The True Goal and True World Belief model as
well as the True Goal Belief model start with lower surprise values.
The first jump in surprisal with the 19th action is due to the agent
initially making to moves upwards at the intersection before turn-
ing around and going to the lower left goal, When turning around in
the 34th action after seeing the lower left goal, the surprise for the
True Goal and World Belief model and the True Goal Belief model
increases quickly: an agent knowing where its goal is would not
inspect a goal and turn away from it after seeing it. However, the
Switching model does not switch models since their surprisal is still
lower than the True World Belief ’s until the 64th action.

In the World Uncertainty example (Fig. 3), the participant had
limited sight but first moved directly in the direction of the goal
before discovering the wall. After exploring the lower side for a
path to the other side of the wall, the participant turned around and
moved around the top side of the maze before reaching her goal. In
this case, all models start off very similarly, mainly because the first
actions are equally likely for all goals. In fact the first 17 actions
are optimal for reaching the true goal location. However, starting
with the 18th action, the simplest model can no longer explain the
behavior well enough, resulting in a switch after the 19th action to
the True Goal Belief model.

Thus, after a few deviations from the optimal behavior in both
examples, the Switching model detects that the simplest model
cannot explain the behavior and switches to a better model. In the
Goal Uncertainty condition, the model first switches to the True
Goal Belief model and only later switches to the best model.

6 DISCUSSION
Our evaluation study yielded several interesting insights. First,
simpler models can outperform the complex full model in certain
situations with regard to both accuracy and efficiency. This is not
surprising as the simpler models were designed to correspond to a
specific condition – an approach commonly taken when employing
the BToM framework [2, 14]. A complex model, in contrast, may

0 20 40 60 80 100 120

Action number

0

20

40

60

80

100

S
co

re
(S

1)

True Goal and World Belief

True World Belief

True Goal Belief

Switching

No Assumptions

Figure 2: Top: Trajectory of a participant in the Goal Uncer-
tainty condition (start positionmarked with an S, the actual
target indicated with T). Bottom: Resulting surprise values
calculated by the different models (vertical lines indicate re-
evaluations in the Switching model).

consider too many possibilities instead of focusing on the important
parts, a result in line with the findings in [10, 23].

Secondly, our results stress that while simpler BToM models can
perform well in certain scenarios, they will often perform much
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Figure 3: Top: Trajectory of a participant in the World Un-
certainty condition (start position marked with an S, true
target indicated with T). The participant had a limited field
of view as shown in Fig. 1 (right) and only got to see the true
goal. Bottom: Resulting surprise values calculated by the dif-
ferent models (vertical lines indicate re-evaluations).

worse in different scenarios. This speaks to the necessity of switch-
ing models in a way that guarantees that currently observed be-
havior is explained sufficiently. Interestingly, our straight-forward
approach to model-switching shows both the performance of spe-
cialized models – in fact, it even outperforms the specialized models
in accuracy under all conditions – as well as the flexibility required
to adapt to qualitatively different mental states of the modeled
agents. The fact that the Switching model achieves a better perfor-
mance than the single specialized models points to the variability of
human behavior in this experiment. A number of participants man-
aged to perform objectively optimal actions even in the conditions
with uncertainty, either by luck or due to the constraints of the
mazes. Such cases of successful behavior under incomplete knowl-
edge are arguably not unusual and the combined model will switch
to the assumptions that are objectively wrong but correspond to
the observed behavior. Likewise, the relatively large standard devi-
ations can be explained as follows: On the one hand, we aggregated
the data from six mazes of different complexity, due to space con-
straints in this paper. Some of the mazes allowed for many equally
optimal actions, while others were a lot more constrained (just
compare the mazes in Figures 2 and 3). Therefore, the average sur-
prise value can vary greatly between the different mazes. On the
other hand, the dataset comprises a number of "outliers", partici-
pants which performed action sequences that none of the models
assuming rational actions could explain.

Thirdly, the simple models, albeit varying in computational com-
plexity, are orders of magnitude more efficient than the full model.
Crucially, even with its quite naive strategy of evaluating all simple
models in case the surprisal exceeds a current threshold, the Switch-
ing model is still somewhat comparable to the True Goal Belief
model. This is because the additional re-evaluations are only per-
formed a few times per trail. Indeed, one could easily add another
ten models of similar complexity to the True Goal Belief model, and
would still outperform the full model.

In sum, our approach to construct a limited set of simpler mod-
els that correspond to relevant but qualitatively different mental
states, and to combine them by way of a rather simple switching
strategy fulfills the requirements for a satisficing model of ToM.
The Switching model achieves the best accuracy and is efficient
enough to evaluate the behavior online, i.e. while the participants
are navigating the maze which take on average ∼0.59s per action.
Improving upon this naive switching strategy, e.g., by learning
potential assumption hierarchies from past observations may be
possible and is something we are currently working on.

Finally, we note that these results were obtained with specific sur-
prisal measures. As already mentioned above, the S1 score reported
here is not very intuitive in cases when different possible behav-
iors are observed. However, the S1 score corresponds to the log
likelihood of the respective models given the observed trajectory,
which is sufficient for assessing the performance of these models.
S2 results in the same relative ranking of the models and yields
more understandable absolute values, but at higher computational
costs. In future work we will consider further alternative scores
that might be useful for evaluating and switching models.

7 CONCLUSION
In this paper, we have considered the questionwhat kind of Bayesian
models of Theory of mind can be satisficing. We have compared
the performance of simpler, specialized BToM models with a more
complex general model on behavioral data from humans subjected
to different uncertainties in a navigation task. The results show
that simpler models are not only computationally more efficient,
but can even outperform the full model in the situations that they
were designed for. However, in other situations, the simpler models
usually fail to perform well, which makes it hard to apply them
to a wider variety of tasks. In order to avoid having to evaluate
a complex model, which can be computationally intractable, we
proposed the use of a surprisal measure in order to decide when to
switch from one specialized model, mirroring certain assumptions
about the observed agents, to another. We have shown that such a
switching model can, on average, explain behavior even better than
any simple or the complex model, without the computational cost
of the full complex model. This suggests that switching between
simplifying assumptions can yield satisficing models of Theory of
Mind, taking advantage of many of the shortcuts humans usually
employ when reasoning about the behavior of others.
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