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ABSTRACT
This paper considers the problem of enabling persistent execution

of a multi-drone task under energy limitations. The drones are

given a set of locations and their task is to ensure that at least

one drone will be present, for example for monitoring, over each

location at any given time. Because of energy limitations, drones

must be replaced from time to time, and fly back home where their

batteries can be replaced. Our goals are to identify the minimum

number of spare drones needed to accomplish the task while no

drone battery drains, and to provide a drone replacement strategy.

We present an efficient procedure for calculating whether one spare

drone is enough for a given task and provide an optimal replace-

ment strategy. If more than one drone is needed, we aim at finding

the minimum number of spare drones required, and extend the

replacement strategy to multiple spare drones by introducing a new

Bin-Packing variant, named Bin Maximum Item Double Packing

(BMIDP). Since the problem is presumably computationally hard, we

provide a first fit greedy approximation algorithm for efficiently

solving the BMIDP problem. For the offline version, in which all

locations are known in advance, we prove an approximation factor

upper bound of 1.5, and for the online version, in which locations

are given one by one, we show via extensive simulations, that the

approximation yields an average factor of 1.7.
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1 INTRODUCTION
Aerial drones are emerging as an effective and efficient tool for

monitoring and surveillance. Applications include civil security

operations, continuous surveillance of a disaster scene such as

flooding and forest fires [21], traffic monitoring [10], and event

photography [25]. The main limitation in deploying drones for

such applications is their short flight times: commonly used drones,

equipped with even minimal sensors, have a maximum flight time
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(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
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of approximately 20 to 30 minutes, usually less than that. To over-

come this severe limitation in persistence monitoring tasks, spare

drones should be available to replace drones that are running low

on battery. The replaced drones could fly to a location where their

batteries can be charged or replaced, enabling them to continue in

their task [22].

This paper considers the problem of managing a fleet of drones

that are performing a persistent monitoring task. In particular, the

drones are given a set of locations, and their task is to ensure that at

least one drone will be present over each location at any given time.

To face the drones’ energy limitations efficiently and enable drone

replacement before their batteries drain, it is important to identify

the minimum number of spare drones necessary to accomplish the

persistent monitoring task. We therefore define the Minimal Spare

Drone for Persistent Monitoring Problem, MSDPM, for determining

this minimal number of spare drones, as well as finding a schedule

of drone replacements that guarantees both that the persistent

monitoring tasks are fulfilled indefinitely, and that no drone battery

is drained. The drones are homogeneous with one home for battery

exchange. See an illustration in our simulated environment in Figure

1. We consider two variations of the MSDPM problem: (i) An offline

version, where the set of locations is given in advance, and (ii) An

online version, where the set of locations is given one by one over

time. When a location is given, it must be assigned immediately to

one of the spare drones, which are added as needed.

While the paper describes the MSDPM problem and possible solu-

tions for persistent monitoring for drones, it is valid for any robot

type having energy constraints, performing any persistent task, as

long as the travel cost of the robots in the environment satisfies

the triangle inequality. We first consider the problem of deciding

whether one spare drone is enough, and provide a formula that

can be computed to make this decision. Furthermore, we show that

a simple drone replacement in which the replaced drone always

goes directly to the home is not worse than any other replacement

procedure. When one spare drone is not enough for the drones

to be present at the given locations at all times, deciding on the

minimum of required drones is presumably hard. We first prove

that an optimal replacement procedure could be based on the di-

vision of the locations to independent sets, and assign one spare

drone to each set. The replacement could be done, back and forth,

separately in each set, as in the case that one spare is needed. Based

on this proof, we model the problem of deciding on the minimal

number of necessary spare drones for a given set of locations as a

new variant of the Bin-Packing problem, denoted as Bin Maximum

Item Double Packing (BMIDP). We then provide a first fit greedy

approximation algorithm to efficiently solve the BMIDP problem.
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For the offline version we have proven an approximation ratio of

1.5. For the online version we ran extensive simulations showing

approximation ratio of 1.7.

Figure 1: Five areas requiring persistent monitoring (l1, . . . , l5),
and one recharging station (h1).

2 RELATEDWORK
The problem of energy-aware persistent task performance is related

to different problems in the literature, from theoretical analysis re-

lated to the vehicle-routing problem [12] to practical deployment

of multi-robot teams in continuous missions, with energy-aware

solutions, e.g., [14, 15, 18]. All these related problems lack the com-

bination of two key features that are addressed in our research: (i)

Persistent continuous (non-stop) service (ii) Minimizing the number

of necessary robots for task completion.

The Vehicle Routing Problem (VRP) [2, 7, 17] seeks to generate

routes, aka tours, for a team of agents leaving a starting location

referred to as the depot, visiting a number of goal locations, and

returning back to the depot. For VRP and its variants, one must

find the optimal routing strategy that allows a fleet of vehicles to

visit a set of targets while trying to minimize some objective, which

usually takes the form of travel distance. The solutions will include,

for each robot, a path that visits targets once and then revisits the

first target, which is referred to as a tour. All tours together cover

all of the targets. Then minimizing the maximum period of tours,

yields minimizing the delay between customer visits. From the

complexity point of view, the classical VRP is known to be NP-hard

since it generalizes the Traveling Salesman Problem (TSP) and the

Bin Packing Problem (BPP) which are both well-known NP-hard

problems [9].

In [15] a heuristic for the Continuous Monitoring Problem with

the goal to maximize the visiting frequency of targets is proposed.

The travel distance of a UAV is limited by fuel constraints, however

UAV’s can refuel at any base station. This is similar to [16] where

closed tours through targets and refueling depots for a number of

robots are planned such that each target is visited. They address

the Multi-robot Persistent Coverage Problem (MRPCP), which they

express as a variant of the Vehicle Routing Problem (VRP). The

Multi-Robot Routing problem (MRR) [23] seeks to plan paths for

a team of robots to visit a large number of interchangeable goal

locations as quickly as possible. The VRP variation that most closely

resembles MRR is the Minimum Maximum Multiple Depot Vehicle

Routing Problem (MMMDVRP) [4].

Song et al [11, 22] have suggested an architecture for persis-

tent task performance by a team of multiple UAVs. They suggest a

MILP-based solution, determining the optimal scheduling of UAVs

to tasks, given that the UAVs may have different constraints (includ-

ing energy). Their work is evaluated on the security-escort task:

making sure that a ground vehicle is continuously monitored by a

UAV. They do not examine the question of minimal necessary UAVs,

nor do they consider multiple (static) targets for monitoring, as

examined in this paper. Park and Morison [20] examine a similar

problem of determining the minimal number of UAVs for persistent

robotic service of immobile customers and one home base. They use

Petri-nets modeling, and provide an efficient heuristic algorithm for

determining the minimal number of UAVs and batteries for guaran-

teeing service to customers, similar to the vehicle routing problem.

As opposed to their work, in our work all the targets (customers)

must be continuously attended at all times, not just repeatedly

visited for service and than left. Recent work by Burdakov et al.

[3] considers the problem of replacing security UAVs performing

the mission of surveillance along a perimeter. The goal is to de-

termine which UAV to replace and when, while minimizing the

effect this has on the chances of observing an intruder attempting

to penetrate the perimeter. Also in this case, the authors assume

that the number of UAVs is given, and focus on the optimal re-

placement schedule. Nigam and Kroo [19] offer a heuristic solution

for determining paths for UAVs performing persistent monitoring

by patrolling through an area. Mathew et al. [13] also considers

UAV patrolling paths, with meeting points for UAV recharging. In

both cases, the main focus is either on finding optimal paths and/or

refueling points, and not on determining the minimal number of

UAVs sufficient for the mission.

3 THE MSDPM PROBLEM DEFINITION
In this section we formally define the Minimal Spare Drone for

Persistent Monitoring Problem, MSDPM. A set of drones is given a

task of persistent monitoring, that is, given a set l of k locations,

l = {l1, l2, . . . , lk }, at least one drone should be present at each lo-

cation at all times. The drones have limited energy, thus they must

be replaced before their battery drains. Moreover, when replaced,

they must have enough energy to return them safely to their home

(denoted by h1) for battery exchange. Therefore, the required num-

ber of drones necessary to ensure persistent monitoring is greater

than k . We refer to the p extra drones, that is, the drones used for

replacing the drones in the monitoring task, as spare drones. The
formal definition of the Minimal Spare Drone for Persistent Moni-

toring Problem, MSDPM, is as follows:

Given a set of k locations that require persistent monitoring, a set of
k+p, p > 0 homogeneous drones with maximal battery capacity
L < ∞, and one home locationh1 in which the drones replace batteries.
Determine whether the p spare drones are sufficient for assuring that
each location is monitored indefinitely by at least one drone, and no
drone’s battery will drain unless it is in h1.
The above description is the decision-version of the MSDPM prob-

lem. Our goal is to find the minimal number of spare drones satis-

fying the persistent monitoring task, that is, the minimal number

p∗ such that MSDPM is true.

As discussed in Section 5, the MSDPM problem is a special vari-

ant of the Bin-Packing problem. Since the Bin-Packing problem is

NP − Hard [5, 9], MSDPM is presumably hard as well. We leave the

hardness proof for future work.

As mentioned above, at any given time, we divide the set of

drones into two subsets: Dk = {d1, . . . ,dk } are located in the k
locations, and the other p spare drones, Ds = {ds1 , . . . ,dsp }, are
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Figure 2: The paths are not necessarily straight lines, as long as the
travel cost satisfies the triangle inequality.
either in h1 or on their way to/from some location, and are used

for replacing drones from Dk
in the monitoring task. D = Dk ⊎Ds

.

We will use di or just i (1 ≤ i ≤ k) interchangeably while referring

to a drone that is located in li , and we will use dsi (1 ≤ i ≤ p) for
denoting a spare drone.We assume that all drones are homogeneous,

have the same velocity v , and are all initially located in h1 fully
charged (L). We denote by Ei (t) the battery level at time t of drone
i located at li , and similarly Es i (t) is the battery level at time t of
a spare drone dsi . Let τi denote the most recent time before time

t , in which drone di had full battery charge, Thus Ei (τi ) = L. We

denote by c the rate of discharge per time unit. Following standard

assumptions on battery discharge function (e.g., [3]), Ei (t) decreases
linearly with time: ∀i, 1≤ i ≤k Ei (t) = L − c ·(t − τi ). Similarly we

can obtain: ∀i, 1≤ i ≤p Esi (t) = L − c ·(t − τsi )
The time it takes the drones to get from h1 to their locations

plays an important role in the minimal number of spare drones

defined in the MSDPM problem. We denote by dist(a,b) the distance
between two points a and b. We use the following notations for

these travel times (illustration in Figure 2):

t i j B
dist(li , lj )

v
is the drone’s travel time between li and lj (same

as lj to li ).

t i B
dist(li ,h1)

v
is the drone’s travel time between h1 and li . There-

fore c ·t i is the amount of charge units it takes a drone to get from

h1 to li .
tmax B max

1≤i≤k
(t i ) is the travel time from h1 to the farthest location

limax , imax = argmax

1≤i≤k
(t i ).

We define an important time step, t0, as the time the last drone

initially arrives at its location limax , i.e., t0 B tmax . We assume

that at t0 all the drones are at their locations, and the spares are

at h1. Therefore, Ei (t0) = L − c ·tmax ,∀i 1 ≤ i ≤ k , and Esj (t0) =
L,∀j 1 ≤ j ≤ p.

Each Drone i must stay over location li until it is replaced by

one of the spare drones dsj . When the replaced drone leaves li , it
exchanges names with the spare drone that just arrived: the spare

drone is named di and the replaced drone becomes dsj . Thus we
do not refer to a specific drone by its identity, but by the task it

performs, that is, the location in which it performs its monitoring

task. Exactly 4 switch types describe all possible drone actions

regarding energetic optimal replacements at location li :
SwitchA: dsj travels from h1 to li (Go). When it arrives at li ,

drones i and dsj exchange names (Replace). The former drone i
(which is now dsj ) travels from li directly to h1 (Return).

SwitchA: Go. Replace. Return.

SwitchB: dsj travels from h1 to li (Go). When it arrives at li ,
drones i and dsj exchange names (Replace). The former drone i
(which is now dsj ) travels to some other location lx ∈ l (Go).

SwitchB: Go. Replace. Go.

SwitchC: dsj travels from some location ly ∈ l to li (arrive).
When it arrives at li , drones i and dsj exchange names (Replace).

The former drone i (which is nowdsj ) travels to some other location

lx ∈ l (Go).

SwitchC: Arrive. Replace. Go.

SwitchD: dsj travels from some location ly ∈ l to li (Arrive).
When it arrives at li , drones i and dsj exchange names (Replace).

The former drone i (which is now dsj ) travels from li to h1 and

arrives there (Return).

SwitchD: Arrive. Replace. Return.

We will later prove (in theorem 4.4 and lemma 5.1) that for

minimizing the number of spare drones, it is enough to focus only

on replacements of type SwitchA, where each drone that is replaced
should return directly to h1 to replace its battery.

4 SINGLE SPARE DRONE
In this section we consider the case in which p = 1, that is, D =
{d1, . . . ,dk ,ds1 }, and we should determine whether it is possible to

guarantee persistent monitoring using one single spare drone. To

encompass all possibilities of drones replacements we first define a

mathematical notation.

Figure 7: An illustration of replacement scheme.

Definition 4.1. A replacement scheme R = (i1, i2, . . . , i j , . . . , ik1 )
is a series of time consecutive drone replacements until all the bat-

teries of all k drones are replaced ath1. A drone replacement over lo-

cation li j of switch type sj at time tj is denoted by i j ∈ {1, 2, . . . ,k}
for 1 ≤ j ≤ k1, k1 ≥ k . The series of replacements timings, de-

noted by RT = (t1, t2 . . . , tj , . . . , tk1 ), is non decreasing. The series

of replacement switch types is: RS = (s1, s2 . . . , sj , . . . , sk1 ), where
sj ∈ {A,B,C,D}.
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Figure 8: An illustration of proper replacement scheme.
R=(2, 1, 3, 4, 5, 2, 1, 3, 4, 5, 5) is the replacement scheme illustrated

in figure 7, RS=(B, C, C, C, D, B, D, A, B, D, A) is the corresponding
series of replacement switch types. RT =(10, 20, 30, 40, 50, 60, 70,
80, 90, 100, 110) can be the corresponding series of replacements

timings, if all travel times are equal to 10 time units.

A replacement scheme which contains only drone replacements

of type SwitchA, is most useful, and we refer to it as a proper re-
placement scheme. The length of a proper replacement scheme is

k , and it is a permutations of (1, 2, . . . ,k). R = (2, 1, 3, 4, 5) is the
proper replacement scheme illustrated in figure 8.

A sub-series of a replacement scheme that starts with a spare

drone that leaves h1 to replace a drone which in turn may replace

another drone and so on until the last replaced drone in the sub-

series returns to h1, is referred to as a cycle, defined formally as

follows.

Definition 4.2. A Drone replacement cycle (cycle, in short) is a

sub-series of a replacement scheme R = (i1, i2, . . . , i j , . . . , ik1 ), and
has one of two types:

(1) Cj = (i j1 ) 1≤j1≤k1 is a type 1 cycle, when i j1 is a drone re-

placement of type SwitchA over location li j
1

.

(2) Cj = (i j1 , i j2 , . . . , i jq ) 1≤j1<jq ≤k1 is a type 2 cycle, when:
• i j1 is a drone replacement of type SwitchB over location
li j

1

• i j2 , . . . , i jq−1 are drone replacements of type SwitchC over
locations li j

2

, . . . , li jq−1 , respectively

• i jq is a drone replacement of type SwitchD over location
li jq

We denote a type 1 cycle C = (x) over location lx by Cxx , and a

type 2 cycle C = (v,w,x ,y, z) over a set of locations (for example)

lv , lw , lx , ly , lz by Cvwxyz .

Note that any replacement scheme, R = (i1, i2, . . . , i j , . . . , ik1 ),
has a corresponding series of drones replacements cycles: RC =
(C1,C2, . . . ,Cj , . . . ,Cn ), where k≤n≤k1, When n = k there is no

redundancy, i.e., there are exactly k (number of locations) bat-

tery replacements at h1 during R. Each cycle Cj is one of the

two replacement cycle types, and if R is a proper replacement

scheme, then all of them are type 1 cycles. In the general case

with several spare drones, each cycle is a sub-series of R and

has the form: Cj = (i j1 , i j2 , . . . , i jq ) 1≤j1<jq ≤k1, the concatena-

tion of all cycles gives R up to order of elements due to the si-

multaneous independent performance of cycles by several spare

drones. With one spare drone, the elements of a cycle are consec-

utive in R: Cj = (i j1 , i j1+1, i j1+2, . . . , i jq ) 1≤j1<jq ≤k1, the concate-

nation of all cycles gives exactly R. In the illustration of figure 7:

R = (C1,C2,C3,C4,C5), where C1 = (2, 1, 3, 4, 5) = C21345, C2 =

(2, 1)=C21, C3 = (3)=C33, C4 = (4, 5)=C45, C5 = (5)=C55. In the

illustration of figure 8: R = (C1,C2,C3,C4,C5), where C1 = (2) =

C22, C2= (1)=C11, C3= (3)=C33, C4= (4)=C44, C5= (5)=C55.

Recall that L denotes the maximal level of energy per drone.

Therefore, our main goal when considering situations with a single

spare drone, is to decide whether L is enough for enabling the

persistent monitoring tasks over l . We will first focus on proper

replacement schemes specifying the needed constraint on L as a

function of the times it takes the drones to reach the locations in l .

Lemma 4.3. In order to guarantee persistent monitoring on a lo-
cation set l using the set of drones D with a maximum battery level
L, if starting the drone replacements at t0, it is sufficient and nec-
essary when using a proper replacement scheme that the following
requirement is satisfied:

L − 2c ·t i ≥
k∑
j=1

2c ·t j for i = 1, . . . ,k (1)

Proof. Let R = (i1, i2, . . . , i j , . . . , ik ) be a proper replacement

scheme with timings RT = (t1, t2, . . . , tj , . . . , tk ). t1 is the time of

first drone, i1, replacement. The time it takes the spare drone to

travel from h1 to li1 , and for replaced drone (former i1) to get back

to h1 is t1−t0 = 2t i1 . We exchange names such that the spare drone

just arrived at li1 is called i1, and the drone that was replaced and

returned to h1 is called spare.

Ei1 (t1) = L − 2c ·t i1
Eiu (t1) = L − c ·tmax − 2c ·t i1 for u = 2, . . . ,k

t2 is the time of the second drone, i2, replacement. The time for

spare drone to get from h1 to li2 , and for replaced drone (former i2)
to get back to h1 is t2 − t1 = 2t i2 . We exchange names such that the

spare drone just arrived at li2 is called i2, and the drone that was

replaced and returned to h1 is called spare.

Eiw (t2) = L −
2∑

j=w

2c ·t i j for w = 1, 2

Eiu (t2) = L − c ·tmax − 2c ·t i1 − 2c ·t i2 for u = 3, . . . ,k
tk−1 is the time of (k-1)’th drone, ik−1, replacement. The time for

spare drone to get from h1 to lik−1 , and for replaced drone (former

ik−1) to get back to h1 is tk−1 − tk−2 = 2t ik−1 . We exchange names

such that the spare drone just arrived at lik−1 is called ik−1, and the

drone that was replaced and returned to h1 is called spare.

Eiw (tk−1) = L −
k−1∑
j=w

2c ·t i j for w = 1, . . . ,k−1

Eik (tk−1) = L − c ·tmax −

k−1∑
j=1

2c ·t i j (2)

tk is the time of k’th drone (the last in R), ik , replacement. The

time for spare drone to get from h1 to lik , and for replaced drone

(former ik ) to get back to h1 is tk −tk−1 = 2t ik . We exchange names

such that the spare drone just arrived at lik is called ik , and the

drone that was replaced and returned to h1 is called spare.

Eiw (tk ) = L −
k∑

j=w

2c ·t i j for w = 1, . . . ,k

Lets takew =1 to get:

Ei1 (tk ) = L −
k∑
j=1

2c ·t i j =
permutation

L −
k∑
j=1

2c ·t j (3)

In order to have enough battery charge until this stage, where

all k drones replaced battery at h1, and to be able to start a new

cycle of the proper replacement scheme R, and repeat it periodi-

cally, requirements (2) and (3) become the following sufficient and
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necessary requirements (4) and (5):

L − c ·tmax ≥

k∑
j=1

2c ·t j (4)

L − 2c ·t i ≥

k∑
j=1

2c ·t j for i=1,. . . ,k (5)

Requirement (5) holds in particular for i = imax in which case

t i = tmax . Therefore:

L − c ·tmax > L − 2c ·tmax
req .(5)
≥

k∑
j=1

2c ·t j

i.e. requirement (5) implies also requirement (4). We conclude that

requirement (5) which is requirement (1) of the lemma, is sufficient

and necessary for L to be enough battery charge to repeatedly

perform the proper replacement scheme R. �

We generalize Lemma 4.3 to a case in which any series of drones

replacements (containing all 4 switch types) with a single spare

drone, that starts at t0, is allowed. Note that any such series, is

a concatenation of replacement schemes that are not necessarily

proper.

Lemma 4.4. In order to keep persistent monitoring on a location
set l , using the set of drones D with maximum battery charge L,
performing any series of drone replacements that starts at t0, it is
necessary that the following requirement is satisfied:

L−2c ·t i ≥
k∑
j=1

2c ·t j for i = 1, . . . ,k (1)

Proof. Given any series of drone replacements starting at t0,
we notice that it is a concatenation of replacement schemes, let R1 =
(i1, i2, . . . , ik1 ), k1≥k andR2 = (ik1+1, ik1+2, . . . , i j , . . . , ik1+k2 ), k2≥k
be the first two replacement schemes in this concatenation. We

write R1 and R2 as concatenations of drones replacements cycles

(def 4.2, single spare drone, no redundancies): R1 = (C1, . . . ,Ck ),
and R2 = (C

′
1
, . . . ,C ′k ). There are no redundancies, therefore the

total number of cycles in each replacement scheme is k .
R1 ends with drone replacement ik1∈Ck , i.e. at time tk1 the last

drone that until now has not replaced battery, arrives at h1 after
it left location lik

1

. This last drone has been replaced at lik
1

by

a spare drone which came from h1 if Ck = Cik
1
ik

1

, or from some

location lz ifCk = Cxyzik
1

(for example).We now carefully examine

the situation at the end of R1. If we sort the locations according
to the time of entry from h1 of the replacement drones, we get:

lj1 , lj2 , . . . , ljk (a permutation of the locations l1, l2, . . . , lk ). Over

lj1 is the drone with earliest entry time, it has entered fromh1 by the
first cycleC1, but not necessarily to its final location lj1 . SimilarlyC2

entered the drone that eventually arrived during R1 to lj2 ,C3 relates

to lj3 , and so on. The drone over lj1 had to make a path fromh1 to lj1 :
{(h1,x), (x ,y), (y, z), (z, j1)} denoted Ph1xyzj1 . These path edges are
scattered among the cycles of R1, after performing them alternately,

this same drone has to wait for the sequential performance of the

path Pj1uvwh1 which is the suffix of the cycle containing the last

path edge (z, j1) of Ph1xyzj1 . Combining Ph1xyzj1 and Pj1uvwh1 we

get a cycle C̃xyzj1uvw therefore by triangle inequality and applying

the same arguments on drones over locations lj2 , . . . , ljk we get

0 ≤ Ejw (tk1 ) ≤ L −
k∑

i=w

2c ·t ji for w = 1, . . . ,k

Each cycle of R2: C
′
1
,C ′

2
, . . . ,C ′k puts out one drone to h1 from

all k locations in some permutation of the locations l1, l2, . . . , lk .
Thus we get requirement (1) of the lemma. �

Let t ′
0
be the time in which all drones have initially arrived at

their locations, and ds1 is at h1. We do not make any assumptions

on the drones activities before t ′
0
. This leads to the following lemma.

Lemma 4.5. In order to keep persistent monitoring on a location
set l , using the set of drones D with maximum battery charge L,
starting drones replacements at t ′

0
, it is necessary when using a proper

replacement scheme, that the following requirement is satisfied:

L−2c ·t i ≥
k∑
j=1

2c ·t j for i = 1, . . . ,k (1)

Proof. In any other start condition t ′
0
, requirement (1) is also

necessary, since in the ideal case (which is not feasible, but is used to

prove that we can use our start condition t0 w.l.o.g) allk drones have

full charge L at time t ′
0
, e.g. Ei (t

′
0
) = L, instead of, Ei (t0) = L−c·tmax

for 1 ≤ i ≤ k . Repeating the same computation as in the proof of

lemma 4.3 using t ′
0
instead of t0, yields the same requirement (5).

Similarly, instead of requirement (4) we get: L ≥
k∑
j=1

2c ·t j , which is

also implied by requirement (5) which is requirement (1). �

We conclude with the general requirement on the battery ca-

pacity of the drones, L, to enable k drones to perform persistent

monitoring on a set of locations l with a single spare drone.

Theorem 4.6. In order to keep persistent monitoring on a location
set l , using the set of drones D with maximum battery charge L, it is
sufficient and necessary that the following requirement is satisfied:

L−2c ·t i ≥
k∑
j=1

2c ·t j for i = 1, . . . ,k (1)

Proof. Follows directly from lemma 4.3, lemma 4.4 and lemma

4.5. �

If the requirement is satisfied, then any proper replacement

scheme (containing only drone replacements of type SwitchA) guar-
antees that the persistent monitoring task is performed indefinitely.

If the requirement is not satisfied, then one spare drone is not
enough for performing persistent monitoring over the given loca-

tions. Thus this requirement solves the MSDPM problem for p = 1.

5 FINDING THE MINIMUM NUMBER OF
SPARE DRONES

In this section we consider the case in which one spare drone is not
enough for performing a given persistent monitoring task. That is,

given the set of k locations l and k drones with battery capacity

of L, requirement (1) is not satisfied, i.e., there is at least one i s.t.

L − 2c ·t i <
k∑
j=1

2c ·t j , or equivalently, L − 2c ·tmax <
k∑
j=1

2c ·t j .

In this case, our goal is to identify the minimal number of spare

drones that are needed to satisfy the task, i.e., solve the MSDPM
problem for general p (the number of spare drones). Recall that D =
{d1, . . . ,dk } ∪ {ds1 , . . . ,dsp } is the set of nd = k +p homogeneous

drones. In order to find the minimum p needed, we prove first that

we can divide l into p disjoint subsets l = S1 ⊎ S2 ⊎ . . . ⊎ Sp , each
will be persistently monitored by a proper replacement schemewith

one spare drone. Note that some drone replacements may happen
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at the same time, in which case they will appear consecutively in

the replacement scheme, breaking ties arbitrarily. However, it is

easy to see there will not be a case of two or more spare drones

that arrive simultaneously to the same location, in order to replace

a drone, because only one drone over a specific location should be

replaced in a single moment, otherwise it will be an energy waste

by the triangle inequality.

Lemma 5.1. If p spare drones are needed in order to keep per-
sistent monitoring on locations set l , using the set of drones D with
maximum battery charge L, performing any series of drones replace-
ments, then it can also be achieved by dividing l intop disjoint subsets
l = S1 ⊎ S2 ⊎ . . . ⊎ Sp such that for each subset Si , persistent mon-
itoring is achieved using one spare drone dsi to repeatedly perform a
proper replacement scheme over the locations in Si .

Proof. Given any series of drones replacements, we notice that

it is a concatenation of replacement schemes, letR1 = (i1, i2, . . . , ik1 ),
k1≥k andR2 = (ik1+1, ik1+2, . . . , i j , . . . , ik1+k2 ), k2≥k be the first two
replacement schemes in this concatenation. R1 has a correspond-
ing series of drones replacements cycles (def 4.2, no redundancies):

RC
1
= (C1,C2, . . . ,Cj , . . . ,Ck ). R

C
1
can be rewritten using a differ-

ent superscript for each spare drone. Here is an example with 3

spare drones: RC
1
= (C1

1
,C2

1
,C3

1
,C1

2
,C1

3
,C2

2
,C2

3
,C3

2
, . . . ,Cbm ), the to-

tal number of cycles is k . R1 ends, with drone replacement ik1 , i.e. at
time tk1 the last drone that has not yet replaced its battery arrives

at h1 after leaving location lik
1

. This last drone has been replaced at

lik
1

by a spare drone which came from h1 if C
b
m = Cik

1
ik

1

, or from

some location lz if Cbm = Cxyzik
1

(for example). We now carefully

examine the situation at the end of R1. If we sort the locations

according to the time of entry from h1 of the replacement drones,

we get: lj1 , lj2 , . . . , ljk (a permutation of the locations l1, . . . , lk ).
Over lj1 is the drone with earliest entry time, it has entered from

h1 by the first cycle, but not necessarily to its final location lj1 . Sim-

ilarly the second cycle entered the drone that eventually arrived

during R1 to lj2 , and so on. The drone over lj1 had to travel along a

path fromh1 to lj1 : Ph1xyzj1 with edges {(h1,x), (x ,y), (y, z), (z, j1)}
that are scattered among the cycles of R1. Although different cy-

cles can be performed in parallel, those edges of Ph1xyzj1 cannot
be performed in parallel because it is the same drone performing

them. After performing Ph1xyzj1 alternately, this same drone has

to wait the sequential performance of the suffix of the cycle con-

taining the last edge path (z, j1) of Ph1xyzj1 . This suffix starts with

the replaced drone leaving lj1 and ends with some drone arriv-

ing h1, denote it Pj1uvwh1 . Combining these two paths, Ph1xyzj1
and Pj1uvwh1 we get a cycle C̃xyzj1uvw , therefore, by the triangle

inequality and by applying the same arguments to drones over

locations lj2 , . . . , ljk , we know that battery charge L, which is suffi-

cient for R1, is also sufficient for the proper replacement scheme we

now define: R
′

1
= (j1, j2, . . . , jk ). R

′

1
has a corresponding series of

drones replacements cycles, here is an example with 3 spare drones:

(C1

j1 j1 ,C
2

j2 j2 ,C
3

j3 j3
,C1

j4 j4 ,C
1

j5 j5 ,C
2

j6 j6 ,C
2

j7 j7 , . . . ,C
b
jk jk
). We now show

that L is also enough to repeatedly perform R
′

1
. By the triangle

inequality the energetic state of the drones at the end of R
′

1
is bet-

ter than at the end of R1. The second replacement scheme R2 has
a corresponding series of drones replacements cycles RC

2
with k

cycles (definition 4.2, no redundancies). Each cycle of RC
2
puts out

one drone to h1, it is done from all k locations in some permutation

of the locations l1, . . . , lk . Thus instead of R2 we can use R
′

1
and

continue repeatedly. �
Lemma 5.1 means that if the minimum number of spare drones

p is achieved by some replacement scheme, then there is a replace-

ment scheme which uses the same minimum number of spare

drones p in which each spare drone is associated with a subset of

the locations and follows a proper replacement scheme. The subsets

are disjoint and their union includes all the locations. Recall that

the Bin-Packing problem [1, 5, 6, 8, 26] can be described as follows:

Given a set of n items with sizes a1,...,an and a supply of identical

bins (“containers”) with capacity V, find a packing of all items into a

minimal number of bins. This task is one of the classical problems of

combinatorial optimization and is NP-hard [9]. There exist a family

of greedy-based heuristic algorithms for solving the problem with

proven approximation ratio that is no worse than 1.7, for the online

version. The offline version has a proven approximation ratio that

is no worse than 1.22. Following Lemma 5.1, the MSDPM problem is

similar to the Bin-Packing problem: we want to find the minimal

number of spare drones (bins) to jointly attend all locations (items)

for replacement.

Therefore, we can find the minimum number of spare drones p,
and allocate locations to the spare drones, by solving a variation of

the Bin-Packing problem with an additional constraint: in each bin,

items are packed such that the maximum item at this bin is packed

twice. The reason for this is that by lemma 5.1 we can divide l into
p disjoint subsets l = S1 ⊎ S2 ⊎ . . . ⊎ Sp , each will be persistently

monitored by a proper replacement scheme with one spare drone.

Requirement 1 of theorem 4.6 implies that in each set, each drone,

and in particular the one with maximum distance from h1, has to
wait for all other drones to be replaced by a spare drone which takes

a back and forth travel to h1, than to perform one more back and

forth to h1 to start the next replacement scheme. We name this new

variant Bin Maximum Item Doubled Packing (BMIDP). The items to

be packed are the battery charge amounts: 2c ·t
1
, 2c ·t

2
, . . . , 2c ·tk .

The formal definition of the BMIDP is as follows.

Definition 5.2. BinMaximum ItemDoubled Packing (BMIDP). Given
a list of n items S = {1, 2, . . . ,n} with positive sizes: a1, . . . ,an
find the minimum number B of disjoint subsets of S , called Bins,

having the same capacity V , such that, S = S1 ⊎ S2 ⊎ . . . ⊎ SB and

for each subset Sj ∈ {S1, . . . , SB }
∑
i∈Sj

ai +max

i∈Sj
{ai } ≤ V

It follows from the definition that max

i∈S
{ai } ≤

V
2
.

When applying BMIDP to find the minimal number of bins, B,
the resulting solution is equivalent to finding the minimal number

of spare drones p, the capacity V equals L (the energy capacity of

the drones), and the sizes ai are the battery charge amounts 2c ·t i
which a spare drone requires in order to go from h1 to li and for the
replaced drone to go back from li to h1. We consider two versions

of the BMIDP problem: (i) The offline version, in which all items are

known in advance. It solves the offline version of the MSDPM problem
where the set of locations is given in advance (ii) The online version,
in which items are given one by one. It solves the online version of

the MSDPM problem where the locations are given one by one over

time. BMIDP is a Bin-Packing variant, since Bin-Packing is NP-Hard
[5, 9], BMIDP is presumably hard as well. Therefore: (i) We adjust

First Fit (FF) online Bin-Packing approximation and call it Max

Item Doubled First Fit (MIDFF) for the BMIDP online version. (ii) We
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Algorithm 1: MIDFF approximation for BMIDP (def 5.2)

1: Initialize: one empty bin
2: for All items i = 1, 2,...,n do
3: for All bins j = 1,...,last opened bin do
4: MAX ← max(size of item i, max item size in bin j)
5: SUM ← sum of item sizes in bin j+size of item i+MAX
6: if SUM ≤ V then
7: Pack item i in bin j.
8: Break inner loop to proceed with next item.
9: end if
10: end for
11: if Item i did not fit any bin then
12: Create new bin and pack item i in it.
13: end if
14: end for

adjust First Fit Decreasing (FFD) offline Bin-Packing approximation

and call it Max Item Doubled First Fit Decreasing (MIDFFD) for the
BMIDP offline version. MIDFF and MIDFFD works in a very similar

way to FF and FFD respectively, see Algorithm 1. Given an item we

iterate over bins already open by the order of bin openings. We put

the item in the first bin in which it fits. If the item doesn’t fit in any

bin, we open a new bin and put the item in it. In MIDFF and MIDFFD
the current weight of a bin is the sum of sizes of items in it plus the

size of the maximum item in the bin. This is the variation from FF

and FFD. Therefore, when checking an item’s fit to a bin, we first

check if its weight is greater than the current maximum item in

the bin. As with FFD and FF, MIDFFD is the same as MIDFF, except
that improved approximation factor is obtained by first sorting (we

know all locations in advance) the items in decreasing order by size.

We first prove an approximation factor ≤ 1.5 for MIDFFD, than for

MIDFFwe show via extensive simulations an average approximation

factor of 1.7.

5.1 MIDFFD approximation for offline BMIDP
We are using in the following proofs an equivalent Bin-Packing

definition, where all sizes: ai ∈ (0, 1] (1 ≤ i ≤ n), and V = 1. The
equivalence is straightforward by dividing the original sizes by the

original capacity. Thus definition 5.2 becomes:

Definition 5.3. BMIDP equivalent. Given a list of n items S =
{1, 2, . . . ,n} with sizes: ai ∈ (0,

1

2
] i = 1,...,n. Find the mini-

mum number B, of disjoint subsets of S , called Bins, such that,

S = S1 ⊎ S2 ⊎ . . . ⊎ SB and for each subset Sj ∈ {S1, . . . , SB }∑
i∈Sj

ai +max

i∈Sj
{ai } ≤ 1

In order to prove approximation factor ≤ 1.5 to MIDFFD we start

with two lemmas (we extend the proof of 1.33 approximation factor

for FFD [24], to accommodate MIDFFD).
Lemma 5.4. Let then items of definition 5.3 be sorted in descending

order: 1
2
≥ a1 ≥ . . . ≥ an . If an optimal packing for BMIDP (OPT)

uses B bins, then all bins in MIDFFD packing for BMIDP, after bin
number B, must have items of size ≤ 1

3

Proof. Suppose by contradiction that ai is the first item >
1

3
to

be packed by MIDFFD in bin B+1. All items that where packed by

MIDFFD before ai are greater or equal to it since all items are sorted

in descending order of size, therefore a1,a2,...,ai−1 are also greater
then

1

3
, and by the assumption on ai they are packed in the first

B bins. Thus each of the first B+1 bins has exactly one item each,

and i = B+1. It follows that in any packing solution, including the

optimal, there must be at least B+1 bins, a contradiction. �
Lemma 5.5. Let then items of definition 5.3 be sorted in descending

order: 1
2
≥ a1 ≥ . . . ≥ an . If an optimal packing for BMIDP (OPT)

uses B Bins denoted S1, . . . , SB , then the number of items MIDFFD
packs, in bins after bin number B, is at most B − 1.

Proof. Suppose by contradiction that the number of items MIDFFD
packs in bins after bin number B, is at least B. Denote the bins

of MIDFFD packing by T1, . . . ,TB1
B1 > B. Denote the sizes

of the first B items of those packed in bins after bin number B:
x1,x2,...,xB . LetWj =

∑
i∈Tj

ai + max

i∈Tj

{ai } denote the total size of

items packed in bin number j, including maximum item doubled.

The items packed by MIDFFD in the first B bins T1,...,TB + the

B items x1,x2,...,xB are a subset of the total n items, therefore:

n∑
i=1

ai +
B∑
j=1

max

i∈Tj

{ai } ≥
B∑
j=1

Wj +
B∑
j=1

x j =
B∑
j=1
(Wj+x j )

Wj + x j > 1 otherwise MIDFFD would pack x j in Tj , therefore:
B∑
j=1
(Wj + xj ) >

B∑
j=1

1 = B. Recall that items are sorted in decreas-

ing order, therefore MIDFFD packs items in bins in an optimal way

regarding doubling the maximum item of a bin, thus:

B∑
j=1

max

i∈Tj

{ai } =

B∑
j=1

max

i∈Sj
{ai }, and we get a contradiction:

n∑
i=1

ai +
B∑
j=1

max

i∈Sj
{ai } > B,

because all the n items can be packed in B bins by OPT. �
Theorem 5.6. Max Item Doubled First Fit Decreasing (MIDFFD)

uses at most 1.5B bins if the optimal packing for BMIDP (OPT) uses B
Bins.

Proof. There are at most B−1 extra items by lemma 5.5, each of

size ≤ 1

3
by lemma 5.4. Thus, there can be at most

B−1
2

extra bins.

Therefore, the total number of bins needed by MIDFFD is B + B−1
2
=

1.5B − 1

2
�

5.2 MIDFF approximation for online BMIDP
For the online version of BMIDP we hypothesize that the approx-

imation factor of MIDFF is ≤ 2. In order to find an estimation of

the approximation factor of MIDFF, we conducted extensive experi-

ments with various parameters settings to check what values the

approximation factor gets. Note that all distance units are presented

as battery units required for traveling this distance. The parameters

in the experiments are: (i) k - Number of locations for persistent

monitoring, (ii) Maximum distance - The maximum distance from

h1 of all locations for persistent monitoring. (iii) Minimum distance

- The minimum distance from h1 to all locations for persistent

monitoring. (iv) V - Capacity of all Bins, which equales the bat-

tery capacity L of all drones. This value must be at least twice as

Maximum distance.

While searching for the value estimation for the MIDFF approxi-

mation factor we also checked the influence of the parameters on

it and on the number of spare drones. We also checked the same

for MIDFFD to confirm our theoretical result of theorem 5.6 and to

make MIDFF and MIDFFD comparable. In order to avoid intractable

computation of BMIDP optimal value, we used the minimal number

of spare drones =

∑
i∈S

ai

V−min

i∈S
{ai }
< OPT , instead of OPT.

Therefore, the experimental approximation factor is a strict upper

bound of the real approximation factor.
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In all cases shown in Figures 9 - 11, we iterate at least 100 times,

where in each iteration we generate uniformly random samples

of k locations distances in the range (min dist, max dist). For both

versions of the BMIDP problem, those are the item sizes to be packed.

For the online version, the items ordering is kept random as in the

sample, simulating locations that are given one by one along time,

with no constraint on the order, as in the MSDPM online version

problem. For the offline version, items are sorted by decreasing

order, simulating a set of locations given in advance as in the MSDPM
offline version problem. We compute the number of spare drones

needed and the approximation factor and report the average over

the 100 iterations. Each of the figures presents a unique setup of

three parameters as constants, and present the influence of the

remaining fourth parameter as it changes, i.e. the impact of the

change in the fourth parameter on the approximation factor and

on the number of spare drones.

(a) expr. approx. factor (b) spare drones

Figure 9: Influence of increasing battery capacity L.
In all the graphs, upper line is the MIDFF results and lower (better)

is the MIDFFD. Figure 9 describes the influence of L (the battery

capacity) on the approximation factor and the number of spare

drones. The parameters setup: (i) k - constant 50 locations to be

monitored. (ii) Maximum distance - constant 100 (iii) Minimum

distance - constant 0 (iv) L - Varies between 200 and 300. As L
grows we need less spare drones, because more locations can be

allocated to each spare drone (in the BMIDP problem: we can pack

more items in a bigger bin). The approximation factor also gets

better with increased capacity because packing gets easier as more

efficient packing opportunities are available, making less penalty

to greedy suboptimal decisions.

(a) expr. approx. factor (b) spare drones

Figure 10: Influence of increasing k , the number of locations.
Figure 10 reports the influence of k , the size of the location set l

on the approximation factor and the number of spare drones. Pa-

rameters setup: (i) k - Varies from 10 to 200. (ii) Maximum distance

- constant 100 (iii) Minimum distance - constant 0 (iv) L - constant

200. As k grows we need more spare drones, because we must visit

more locations with the same energy capacity L (have to pack more

items in bins with constant capacity in the BMIDP problem). The

approximation factor gets worse as k increases, because the packing

becomes more complicated and there is greater penalty for greedy

suboptimal choices that are made more frequent. However, there is

an asymptotic limit which evolves from the real approximation fac-

tor. The experimental value is compatible with our theoretic result

in theorem 5.6 of 1.5 for MIDFFD, the experimental approximation

factor is a strict upper bound for the real one, therefore > 1.5 . We

also see here 1.7 asymptotic limit for MIDFF.

(a) expr. approx. factor (b) spare drones

Figure 11: Influence of increasing the minimum distance from h1.

Figure 11 describes the influence of the minimum distance on the

approximation factor and the number of spare drones. Parameters

setup: (i) k - constant 50 (ii) Maximum distance - constant 100 (iii)

Minimum distance - Varies from 0 to 50. (iv) L - constant 200. As

the minimum distance grows, the random samples of k locations

distances in range (min dist, max dist) have higher distance values,

therefore the items to pack are bigger. We need more spare drones,

since each drone can visit less locations that are more distant (we

have to pack bigger items in bins with constant capacity, in the

BMIDP problem). The approximation factor on the other hand gets

better with increasedminimumdistance, because the items becomes

more homogeneous as the samples are from a smaller range and

we get more uniform item sizes. Packing gets easier when items are

more uniform as there’s less penalty to greedy suboptimal decisions,

which are more likely to be corrected in next items (distances)

packings, compared to the case of heterogeneous items (distances).

6 CONCLUSIONS
In this paper we introduced the problem of enabling persistent exe-

cution of a multi-drone task under energy limitations. The drones

are given a set of locations and their task is to ensure that at least

one drone will be present, over each location at any given time.

Because of energy limitations, drones must be replaced from time

to time, and fly back home where their batteries can be replaced.

Our goals are to identify the minimum number of spare drones

needed to accomplish the task while no drone battery drains and

to provide a drone replacement strategy.
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