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ABSTRACT
A distributed modular robot is composed of many autonomous

modules, capable of organizing the overall robot into a specific goal

structure. There are two possibilities to change the morphology of

such a robot. The first one, self-reconfiguration, moves each module

to the right place, whereas the second one, self-assembly docks the

modules at the right place. Self-assembly is composed of two steps,

(1) identifying the free positions that are available for docking and

(2) docking the modules to these positions. This work focuses on

the first step. This paper presents a distributed planning algorithm

that can decide which positions can be filled and can create any 3D

shape, including shapes with internal holes and concavities. Our

algorithm consider kinematic constraints and prevents positions

from being blocked. Each module embeds the same algorithm and

coordinates with the others by means of neighbor-to-neighbor

communication.
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1 INTRODUCTION
In this work, we target modular robots composed of many homoge-

neous modules with limited computing resources that can change

the way their modules are connected by releasing or docking some

of them in order to create a given shape, thus creating intelligent

objects. In nature, we have many examples of distributed organized

constructions, for example ants, termites and bees. Decomposing

the rules that govern these beings represents a big challenge for

modular robotic.

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

One of the most interesting capability of a system of modular

robots is the ability of the modules to move towards a different

position, that way changing the global shape or morphology of

the whole. This is called self-assembly or even self-reconfiguration

when modules are always connected during the process.

The expected properties of modular robots [22] are: (1) versatility,

modules can self-assemble into manymorphologies and can be used

to fulfill different tasks, (2) robustness, as a faulty module can be

replaced by another, and (3) affordable price, as the mass production

of identical modules is likely to reduce the overall cost.

Self-reconfiguration and self-assembly are hard problems for

three reasons. First, the number of possible unique configurations

for a modular robot is huge: (c .w)n where n is the number of mod-

ules, c the number of possible connections per module andw the

ways of connecting the modules together [10]. In our locomotive

example with 61,780 modules, there are (12 × 12)61,780 possible

unique configurations for our 12 neighbors modular robot consid-

ering isomorphic configurations. Second, as modules can move or

dock at the same time, the branching factor of the tree describing

the configurations is O(mk ) withm being the number of possible

movements and k the number of modules free to move [1]. Third,

as a consequence of the previous reason, the exploration space of a

reconfiguration between two situations is exponential in n which

prevents from finding a complete optimal planning.

There are two ways of designing the self-assembly algorithm:

centralized on one module or distributed on every module. As we

tackle robots composed of thousands of modules, a centralized algo-

rithm would exceed the available memory on one module whereas

a distributed algorithm would scale well. As the algorithm is dis-

tributed, each robot can be seen as an autonomous agent.

Self-assembly is composed of two steps, (1) identifying the free

positions that are available for docking and (2) docking the modules

to these positions. In our work, we focus on the first step, solving

the problem of assembling 3D structures that may contain internal

holes. While building the whole structure, modules are docking

at available places but some positions may become impossible to

reach, blocked by other modules as pointed by Figure 1.

Previous approaches focus on centralized planning or distributed

planning for configurations without internal holes. In this paper,

we present a distributed algorithm assisted by a shape description

to create close-packed structures and assemble any morphology.

Underwater stochastic assembly has been described on [17].

Robot attraction works by a system of valves that can be controlled.

Thanks to the flow of water, free modules can come to the wanted
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Figure 1: Example of possible and impossible docking posi-
tions due to kinematic restrictions.

position. Attraction gradient [16] is a method of attraction to avoid

that all free modules move concurrently to the same position. It

is one of the methods that can be used in conjunction with the

algorithm presented in this paper. In both cases, local modules

have the knowledge of their neighbor positions that can be filled

and accelerate the convergence to the final structure by means

of message passing or valves to attract modules to dock on these

positions.

The main method consists of an initial seed module that knows

the final shape coded into a string and is given a relative position

over the target shape. This module waits for the connection of

neighbors that are freely around the structure and allows its docking

whenever possible based on the rules that will be described. When

a neighbor is attached to a module already in place, it receives a

position relative to the first one and the final string code of the

map.

An efficient encoding of the goal shape description is essential

for a good behavior on a modular robots system as the description

size can grow linearly with the number of robots present. As well

as being memory efficient, it has to be efficient at checking whether

positions are inside the goal shape as it is a recurrent task that

involve energy consumption and time.

The self-assembly algorithm consists of three steps. The first step

is to create the description of the final scene in a spatially efficient

way and transfer it to a seed module within its position on the

representation. The second step is to structure the plane creation,

a solution for a two-dimensional lattice is the first structural goal.

Finally, the third step consists in synchronizing the 2D solutions to

get a three-dimensional representation.

The module we use in our work is a 3D Catom developed in

the Claytronics project [6]. This module is a quasi-spherical robot

with 12 connectors [11]. Neighborhood of each module is placed

in a Face Cubic Centered lattice (FCC) that corresponds to a dense

organization of spheres. This theoretical model is currently under

development to make a 11mm diameter robot.

In the next section, we review the related works and highlight

the difference with our proposal. In section 3, we present the model,

the particularities of the modular robot used, and the details about

the problem we aim to address. Then, we describe how our idea

and algorithm works on section 4. Section 5 is used to discuss the

applications of the algorithm and the results of its performance.

The conclusion and future works are discussed in section 6.

2 RELATEDWORKS
The Self-assembly planning proposed in this paper is complemen-

tary to previous research on self-assembly and self-reconfiguration

systems. Previous methods were proposed although there is a lack

of solutions that work in distributed systems and can handle inter-

nal holes as can be seen on Table 1, which presents an overview of

previous methods.

Werfel and Nagpal [20, 21] proposed an algorithm for distributed

construction of structures without holes. These robots carry blocks

and deploy them at the right position, avoiding empty spaces in the

final object. They use three types of robots displacements to arrive

to the proposed positions: random walking, systematic search and

gradient-following. In our paper, we extend this idea to allow the

construction of structures with holes.

In [17, 18], Tolley et al. worked around the kinematic restrictions

and the importance of planning the self-assembly for their under-

water robots. To have the order in which these robots should be

connected, they start from the virtual assembled shape and remove

the possible robots. Once there is no more robot left, the reverse

order is used to assemble the modules without blockage. They also

proposed an distributed approach to self-assembly layer by layer

that limits the number of available positions for docking and the

overall time for self-assembly. The robots they use do not have

motion but move by the fluid flow they are in, with a control of

their valves attracting robots to their allowed positions.

In [14], Seo et al. present an assembly planning algorithm for

constructing planar structure out of rectangular modular robots

avoiding narrow corridors. Their approach is based on graph prop-

erties as topological sort and results in a specific centralized order

that is deployed to robots before assembly begins. In [15], they

extend their idea to allow models with internal holes.

Jones and Matarić [8] create a transition rule set to self-assembly

agents to generate a consistent assembly of a desired goal structure.

The decisions are made by the agent docking in the existing struc-

ture and not by the structure and, as a result, no attraction rule can

be derived.

Stoy et al. show in [16] an algorithm for 3D self-reconfiguration

representing the final structure with overlapping bricks automati-

cally generated from a CAD model. They adopted a porous scaffold

of modular robots to prevent local minima and ensure that robots

do not get stuck. That leads to a porous representation that allows

modules to move freely in any direction. In our work we look for a

dense representation for the final robot module structure.

Naz et al. published in [9] a parallel, decentralized and asynchro-

nous algorithm for self-reconfiguration in two-dimensional lattice

based robot modules. Their algorithm avoids collisions by having

a gap of one empty cell between robots that are in transit using

communications and can self-reconfigure to almost any compact

goal shapes.

In [13], Rubenstein et al. propose a parallel, decentralized and

asynchronous algorithm for the Kilobot swarm system to self-

reconfigure two-dimensional robots in almost any shape. It has been

applied on hardware system with more than a thousand swarm

robots. Their system does not need to avoid collisions as it works

on a lattice-free system and can construct sparse shapes using what

they called collective artificial intelligence. Kilobot swarm system
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Table 1: Robots Planning Algorithm Overview

Author Architecture Dimension Distributed Compact Representation Internal Holes

Werfel and Nagpal [20, 21] Heterogeneous Modular Robots 3D Yes Yes No

Tolley et al. [17, 18] Underwater Modular Robots 3D No Yes Yes

Stoy et al. [16] Porous Scaffold Modular Robots 3D Yes No Yes

Seo et al. [14, 15] Rectangular Modular Robots 2D No Yes Yes

Jones and Matarić [8] Modular Robots 2D Yes Yes Yes

Naz et al. [9] Modular Robots 2D Yes Yes No

Rubenstein et al. [13] Swarm Robots 2D Yes No No

Our method Modular Robots 3D Yes Yes Yes

Figure 2: Catoms in FCC lattice which admit modules to
have up to 12 connected neighbors.

is used also to show error cascades [3] that is produced when using

large systems and the need for robustness.

Gilpin et al. published in [4] about their programmable matter

module system where each module has the size of 12mm per side

and is capable of creating 2D shapes by self-disassembly. They start

with a latched system and the modular robot detach unnecessary

modules. In [5] they propose a 3D creation that rely on stochastic

forces to self-assemble a close-packed crystalline lattice of modules

and then self-disassemble into the specific shape. It is a functional

approach that can reduce the complexity but it requires a bigger

number of robots to assemble a specific shape as some robots will

be discarded by the disassembly.

3 MODEL AND DEFINITION
3.1 Module background
Ourmodular robotmodel is abstracted from themodel of a Claytron-

ics Atoms, as Catoms[7], where modules are placed in a regular

grid, oriented along the ®x , ®y and ®z axes. The grid is defined by a

large set of cells where each cell can only contain one block. Each

cell of the grid has 2 different states: empty or filled with a block.

We first assume that modules are organized in a 2D square lat-

tice and can only communicate with their directed neighbors. Any

communication to distant modules needs a certain number of hops.

Modules have sensors to detect without communication the pres-

ence of docked neighbors.

The position Pc of the cell c in the grid is given by coordinates

in Z2. Each block can be directly connected to up to four neighbors

in a 2D lattice. We will generalize the method to 3D models at

Section 4.2 considering connected overlapping layers.

The following properties are applied to each module:

• Same hardware executing the same program;

• Unique id;

• Is able to get its orientation relative to global referential

using embedded sensors;

• Detect the presence of docked neighbors in the adjacent

cells;

• Communicate with its connected neighbors.

Modules can move freely in different environments, as swarm or

underwater robots, or connected and assisted by neighbors. In both

cases, the movement of docking in a final position must satisfy the

rule of docking (see Rule 1).

Rule 1. Amodule can dock on a cell only if there is no two adjacent
cells in symmetrically opposed planes to that cell that are occupied.

Rule 1 defines a kinematic restriction applied to 2D and 3D lattice.

Indeed, we assume there must be enough space to allow modules

to arrive at the cell. Figure 4 shows an example of case that can

be restricted by Rule 1 if modules A and B are part of different

contiguous row.

Let G be the goal shape, we assume that each module Bi stores
locally a copy of G. A module Bi has a position Pi (xi ,yi ), with
(xi ,yi ) ∈ Z2.

These modules can be extended to use a FCC 3D lattice which

is made of a regular square grid on each horizontal layer

−−→
XY and

interleaved modules on

−−→
XZ and

−−→
YZ axes. Using this lattice allow

modules to have up to 12 neighbors and to create a dense orga-

nization of quasi-spherical modules (Figure 2). In a FCC lattice a

module may have more than one candidate for its top position. To

solve this ambiguity, we use the same coordinate system as defined

in [11], where a FCC lattice is translated in a regular grid.

3.2 Problem definition
The main idea is to start from a single initial seed module S0 which
stores G and has a position in the target object. This module attracts

many others to assemble an intermediate set of modules in the

connectors of S0 that must have a neighbor according to G and

must ensure that all positions in G can still be reached. S0 sends
G to its new neighbors with their relative coordinates. One after

another, new modules in the structure attracts new neighbors to

build a dense target object.
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Figure 3: Importance of sequence planning shown on a
Mugmodelmade by 12,000modules. Redmodules represent
docking problems using two simple planning algorithms.
On the left, choosing a stochastic order produces 3,691 mod-
ules that does not verify the docking rule. On the right, fill-
ing regularly each module neighborhood in sequence re-
sults in 231 positions that could not be filled.

Figure 4: Modular robots and kinematic constraints in a row:
only one contiguous line of blocks can be allowed. Modules
A and B cannot be part of different contiguous line to avoid
positions to get blocked.

Modules should have enough memory to store a description of

the goal shape G. As a consequence we use an optimized shape

description. Stoy and Nagpal[16] propose a vector method that uses

overlapping bricks to overcome the memory and scale problem.

The model defines an approximation of the shape that can be used

to scale the size of the representation although some quality loss.

Another vector method [19] for programmable matter has been

proposed which requires low memory and with no quality loss. It

uses a CSG model as description of the scene and the associated

tree can be easily compressed to be stored in each module.

The robots can attract others only when this action will not cause

future positions to get blocked and lead to holes on the system. For

example, in Figure 4 we show that if cells A and B becomes occupied

before the center cell, creating two contiguous rows, this will lead to

a future position getting blocked. At each row just one contiguous

line of robots should be possible to avoid blocked positions. In

another general example, Figure 3 shows the construction of a mug

without an algorithm that avoid these blocked cells.

The condition of having only one contiguous line of robots by

row is the first of two conditions to avoid unwanted holes in the final

object. The second condition is attracting a node in an existent row

only when one corner of its cells is on a final state, as represented

in Figure 6.

4 DISTRIBUTED SELF-ASSEMBLY
ALGORITHM

Algorithm 1:Algorithm input and function detailed for border

following over module on position P .

Input :
G // global goal shape

P // position of Bi
dir ∈ {N ,E, S,W } // initial direction of following

searchDir ∈ {CW ,CCW } // direction of rotation

1 Function borderFollowing(P ,dir , searchDir ):
2 j ← (dir + 3) mod 4; // predecessor direction

3 for i ∈ [0...3] do
4 Q ← P + NextDir (j, searchDir );
5 if Q ∈ G then
6 borderFollowing(Q, j, searchDir );

7 return;
8 end
9 j ← (j + 1) mod 4;

10 end
11 end

The use of an efficient method for scene encoding is a critical

aspect that can reduce the memory, the time of transfer and the

energy used in a system of self-reconfiguration modular robots. In

this work we use a compact method based on CSG [12] know as

CSG4PM Constructive Solid Geometry for Programmable Matter [19]
that is a vector description that ensures scalability, fidelity and

reduced memory when compared to other methods. This method

consists in defining a tree of objects that can be combined using

boolean operators in order to model the final solid object. Depth-

first search algorithm on the tree can be used to solve the in/out

problem as knowing if the cell C is inside the model or not.

4.1 2D Self-Assembly Algorithm
The algorithm follows these steps: First, the goal object G is en-

coded using the CSG4PM method and transferred to the first seed

module. From the initial seed module it can try to attract mod-

ules on its sides connected to cells that are in G. For each of these

sides it requires specific rules that can be solved using the goal

shape description, the sensor of neighbor presence and neighbor-

to-neighbor communication.

A typical case of forbidden position is created if a row on the goal

shape description has more than one contiguous row of modules

on the system. Only one module, that is called seed, is responsible

for attracting a module to a next or previous line.

Modules can decide if they are seed without any communication

but using the shape description of G. To decide if a module is a seed,

it applies the Rules 2 and 3, for north and south seeds respectively.

The first rule elects the rightmost module that has its north position

inside the shape description as seed. A row can have more than one

seed, for example seed modules B and C in Figure 5. A module can

decide if it is a seed too if its north-east position is not inside the
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Algorithm 2: Algorithm functions for modules attraction.

1 Function northAttraction(Bi ):
2 if isNorthSeed(Bi ) // Rule 2

3 then
4 sendAttractSignalTo(⟨xi ,yi + 1⟩);
5 end

6 Function southAttraction(Bi ):
7 if isSouthSeed(Bi ) // Rule 3

8 then
9 sendAttractSignalTo(⟨xi ,yi − 1⟩);

10 end

11 Function westAttraction(Bi ):
12 ifWest(Bi ) ∈ G then
13 if SouthWest(Bi ) ∈ G ∧

hasModuleOnSouthConnector (Bi ) then
14 getAuthorizationToAttract(South(Bi ),WEST );

15 else if isOnInternalHole(Bi ) then
16 borderFollowingToGetAuthorizationToAttract();

17 else
18 sendAttractSignal(⟨xi ,yi − 1⟩);
19 end
20 end

21 Function eastAttraction(Bi ):
22 if East(Bi ) ∈ G then
23 if NorthEast(Bi ) ∈ G ∧

hasModuleOnNorthConnector (Bi ) then
24 getAuthorizationToAttract(North(Bi ), EAST );
25 else if isOnInternalHole(Bi ) then
26 borderFollowingToGetAuthorizationToAttract();

27 else
28 sendAttractSignal(⟨xi ,yi + 1⟩);
29 end
30 end

31 Function getAuthorizationToAttract(Bi ,direction):
32 if direction =WESTt then
33 if isConnected(West(Bi ) then
34 sendAuthorizationToAttract(North(Bi ),WEST ) ;

35 else if direction = EASTt then
36 if isConnected(East(Bi ) then
37 sendAuthorizationToAttract(South(Bi ), EAST ) ;
38 end

39 Function sendAuthorizationToAttract(Bi ,direction):
40 if direction =WESTt then
41 sendAttractSignal(⟨xi − 1,yi ⟩);
42 else if direction = EASTt then
43 sendAttractSignal(⟨xi + 1,yi ⟩);
44 end
45 end

Figure 5: Light-gray modules represent seeds which are re-
sponsible for attracting a newmodule on its north row. Each
contiguous row can have only one seed to avoid blocked po-
sitions. The rightmost module is alway elected, except for
Module A, since it is part of an internal hole.

Figure 6: Cells that should be in place before attracting
neighbors. Before attracting a module in cell A, modules
B and C should already be in place. B and C are not direct
neighbors, so to communicate they need a common neigh-
bor module to know if both are already in place. The con-
structionmethod fills space by addingmodules along the di-
agonal line in both directions simultaneously (NW and SE).

shape description and its north position is. The same can be done

for their opposite direction, a module can be a seed for its previous

row. In this case they use their south and south-west positions as

reference.

The following rules define a module Bi in its position as a north

or south seed:

Rule 2.

isNorthSeed(Bi ) =⇒ ¬isNorthLineOnMerдe(Bi )∧
⟨xi ,yi + 1⟩ ∈ G∧
(⟨xi + 1,yi + 1⟩ < G ∨
⟨xi + 1,yi ⟩ < G)

Rule 3.

isSouthSeed(Bi ) =⇒ ¬isSouthLineOnMerдe(Bi )∧
⟨xi ,yi − 1⟩ ∈ G∧
(⟨xi − 1,yi − 1⟩ < G∨
⟨xi − 1,yi ⟩ < G)
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Figure 5 have in light-gray seeds for their corresponding north

position. Module marked as B is a seed due to the fact that its north

position is in the shape description and their north-east position is

not. Module C is seed as it is the rightmost module of the line and

its north position is inside the shape. An exception is the module A

which is in a case of merging line, a consequence of the internal

hole, and will be discussed later.

A module can attract another to its west side when the cell

located on its south-west has finished. Modules in a regular grid do

not have direct communication with modules in their diagonal, as

the case of the south-west location. A module on its south can be

used as intermediate to this communication when south module is

present (Figure 6). Otherwise, if there is no module on its south, it

can be a case of internal hole and the module sends a message over

the inner border, following the Algorithm 1 to communicate and

have the certitude the module is already in place before attracting

on its west side.

The same method is applied when attracting a module on its east

side but with the symmetrically opposed verification. It is based on

the presence of the module on its north-east location, when it is in

G. If the north-east cell is not inside the shape description it can

attract a module immediately. The Algorithm 2 shows the rules to

attract neighbors on all its four sides.

Modules in the internal border may not yet be in place when

executing a border following algorithm. In this case, the current

module creates a queue of messages which is transmitted after the

docking, sent alongwithmodule position and goal scene description.

Algorithm 1 shows how border following works on a distributed

environment.

The following data is used and transmitted when a module ar-

rives at its final position:

• Target scene description

• Relative position over the target scene

• Queue of messages for merge synchronization

Module A on Figure 5 is not an elected seed as, in this case

of internal hole, it would have two seeds for the same north row

and may lead to a situation as foreseen in Figure 4. The algorithm

verifies that is a point of row merge using the Rule 4. Thereafter, it

should check if it is a case of internal or external hole. It can be done

by running the same algorithm (see Algorithm 1) and counting the

number of turns it made to complete the hole. No communication

is necessary as it only needs the scene description.

Rule 4.

isNorthLineOnMerдe(Bi ) =⇒
(
⟨xi + j,yi ⟩ < G∧

⟨xi + j,yi + 1⟩ ∈ G∧
⟨xi + n + 1,yi ⟩ ∈ G∧
⟨xi + n + 1,yi + 1⟩ ∈ G

)
∀j ∈ {1, . . . ,n}

Figure 7: Example of constructing a model with internal
hole in a two-dimensional square lattice. The task is paral-
lelized as many positions can be filled at the same time. The
modular robot drawn in red detects a section of line merge
made by the internal hole. It sends a message following the
inner border (blue modules) and waits for an unlock mes-
sage. At the moment the message arrives in the south-west
position of the red module, the module sends a response in
the reverse path (green). This verification is necessary be-
fore a module docks on the red module west side in order to
have no position blocked.

Rule 5.

isSouthLineOnMerдe(Bi ) =⇒
(
⟨xi − j,yi ⟩ < G∧

⟨xi − j,yi + 1⟩ ∈ G∧
⟨xi − n − 1,yi ⟩ ∈ G∧
⟨xi − n − 1,yi − 1⟩ ∈ G

)
∀j ∈ {1, . . . ,n}

Figure 7 shows the construction of an object with internal hole.

The red module detects it is in a merge situation and awaits to be

sure the other side is in place before continuing. Modules change

their color to blue to show the route of messages from East to West,

and to green when they are transmitting a response. The message

follows the border of the hole and requires only as extra information

the previous direction of the message.

4.2 3D Self-Assembly
In this subsection we propose a solution for a three-dimensional

lattice self-assembly.

For our 3D self-assembly we assume there can be only one initial

point of start for a contiguous plane. The module that is responsible

for attracting another to the next plane is called 3D seed. Each
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Figure 8: Three classes of target structure: Power Button, Let-
ter C and Bumpy respective representations.

module can locally determine if it is a 3D seed locally using G
description, without neighbor-to-neighbor communication.

Modules can use the same Algorithm 1 but with inverse order

to follow the outter border and verify if they are the module with

the lowest value on ®x axis and then with the lowest value on ®y axis

of the plane outter border. The next plane can be larger or smaller

then the actual plane. In case it is smaller, for each module on the

actual plane they check if the respective next plane module is on a

border and is the lowest. In the case where the next plane is bigger

than the actual plane, the lowest module of the exterior border of

the actual plane is a seed if there is a module on top of it.

A seed module can attract for the next plane only when the

current plane has finished, therefore a consensus on when plane

have finished is necessary. Using the given self-assembly algorithm

generates an implicit spanning tree that is used to send data to the

first module of the plane. Planes can know how many modules they

have using the description scene. This number of modules is used

to confirm the plane is completed.

This method is efficient as each plane starts its construction

immediately after it arrives at a final state, but it does not handle

objects with loops as two planes growing separately and merging

in a certain point. A solution to objects with loops is synchronizing

the planes, constructing each plane one after another. To synchro-

nize plane construction, when a plane is subdivided in many local

connected areas, we define a tree of seeds linking 3D seeds of con-

nected planes. Then when a local connected area has finished, a

message (EndO f Plane) is sent to the root of the tree of 3D seeds.

This root 3D seed sends the authorization to create the next plane

after having received all EndO f Plane messages.

5 EXPERIMENTAL EVALUATION
We have implemented and evaluated the algorithm using VisibleSim

[2], a C++ simulator for modular robots. VisibleSim enables the

users to run event-based simulations. An event is a task executed

by the module simulating one of its actuator, for example attracting

a new robot and sending a message. Messages and events can be

pushed to the system with communication and actuator simulated

delays. In order to test our algorithm, we use random delays with

a large range which change the orders of docking, making each

evaluation executed on the system unique.

We studied the number of messages by the scaling factor and

the number of simultaneous attracting positions for four classes

of target structure (called “power button”, “letter c”, “bumpy” and

“2D locomotive”) presented in Figure 8 and Figure 9. We made

Figure 9: Locomotive example made by 61,780 Catoms con-
structed using the distributed 3D self-assembly algorithm.
Each cell in the target shape could be filled with modules.

a more realistic experimentation using a locomotive 3D model

shown in Figure 9, described by 61,780 Catoms. In order to have a

proper comparison with the other target structures we used a lateral

view of the locomotive for a 2D representation. Efficiency of our

algorithm is affected by geometrical and topological characteristics

of the goal shape:

• The “power button” model proposes a simple case of internal

hole (homeomorphic to a torus) with concave parts;

• The “letter c” model is a concave shape homeomorphic to a

sphere;

• The “bumpy” model contains several internal holes at once;

• The “2D locomotive” groups many complex areas with holes,

convex and concave parts.

For each representation three versions were used, each one scal-

ing the size of the structure by two. As for the representation of the

power button, we start with a structure using 815 robots, scale it to

3, 318 and 13, 233 modules. Through our experiments, we show the

effectiveness of our method in terms of number of messages and

number of available docking positions at the same time.

5.1 Messages Evaluation
The number of messages scales linearly with the number of modules

as shown in Figure 10. The messages on the system are composed

of an initial communication, where a recently docked module sends

a message to a neighbor module, asking for initial data as a rel-

ative position. This initial communication increases the number

of messages by 2n. Communication is also used to define when

a position can be occupied and requires more communication de-

pending on the target structure. Therefore, by experimental results,

the proposed algorithm requires an average of 5n messages. For

example, the bumpy structure has more internal holes and requires

a greater number of messages, but no significant difference was

found between the four classes of the target structure.

Session 13: Robotics: Multi-Robot Coordination AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

556



	0

	10000

	20000

	30000

	40000

	50000

	60000

	70000

	1000 	5000 	10000

M
es

sa
ge

s

Modules

Power	Button
Letter	C
Bumpy

2D	Locomotive
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Figure 11: Relative number of available docking positions
over the percentage of construction. It shows parallelism of
the method by having as many docking positions as possi-
ble at the same time. The thick lines represent the standard
deviation in a certain construction percentage.

5.2 Available Docking Positions Evaluation
The number of available positions attracting modules can speed up

the convergence to the final object as many modules can arrive at

the same time in different positions. The movement of free modules

to their correct position has a large impact in the overall time of the

self-assembly. The algorithm attracts new modules in the diagonal

of the target structure, and placing the initial seed at a position

relative to the middle of the structure can make the convergence

twice as fast as there are two diagonals, one facing the west side and

the other facing east. The number of available docking positions

is related with the goal morphology and the position of the initial

seed.

Be D the number of available positions and N the total number

of modules,
D√
N

is a relation of the number of available docking

positions that does not change when scaling the target. Figure

11 shows the relative number of available docking positions by

the construction percentage. As power button can have up to 4

diagonals being filled at the same time it has, at a certain step of

the construction, more available docking positions.

6 CONCLUSION
We presented a distributed algorithm for a system of modular robots

that is capable of generating an attraction list of its available posi-

tions. Our algorithm prevents positions from becoming impossible

to reach and is able to create close-packed structures with internal

holes that are applicable to a variety of modular robotic systems. A

time-consuming task in a self-assembly system is to find the exact

location for the modules to dock. We show with our results that

the algorithm can have many simultaneous docking positions and

accelerate the creation of a model with a linear number of messages.

In future works, we hope to extend the actual plane-by-plane

algorithm to be able to have more available parallel docking posi-

tions on a 3D lattice. We would also like to combine this planning

with algorithms to control module movements. Finally, it would be

interesting to have the algorithm implemented and tested on an

existing hardware.
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