
Automatic Synthesis of Efficient Regular Strategies in
Adversarial Patrolling Games

David Klaška

Faculty of Informatics, Masaryk University

Brno, Czech Republic

xklaska1@fi.muni.cz

Antonín Kučera

Faculty of Informatics, Masaryk University

Brno, Czech Republic

tony@fi.muni.cz

Tomáš Lamser

Faculty of Informatics, Masaryk University

Brno, Czech Republic

xlamser@fi.muni.cz

Vojtěch Řehák

Faculty of Informatics, Masaryk University

Brno, Czech Republic

rehak@fi.muni.cz

ABSTRACT
We give a polynomial-time algorithm for synthesizing efficient regu-

lar strategies in adversarial patrolling games with general topology.

Regular strategies use finite memory to gather some relevant in-

formation about the history of Defender’s moves which results

in substantially better protection of the targets. So far, the scope

of automatic strategy synthesis was limited to positional strate-

gies (which ignore the history) or to regular strategies where the

underlying finite-memory observer had to be supplied manually.
Furthermore, the existing methods do not give any information on

how far are the constructed strategies from being optimal. In this

paper, we try to overcome these limitations. We develop a novel

gradient-based algorithm for synthesizing regular strategies where

the underlying finite-memory observers are constructed algorithmi-
cally. The running time of our algorithm is polynomial which makes

the algorithm applicable to instances of realistic size. Furthermore,

we develop an algorithm for computing an upper bound on the best

achievable protection, and compare the quality of the constructed

strategies against this bound. Thus, we can effectively measure the

“distance” of the constructed strategies from optimal strategies, and

our experiments show that this distance is often quite small.

KEYWORDS
Single and multi-agent planning and scheduling, patrolling games.

ACM Reference Format:
David Klaška, Antonín Kučera, Tomáš Lamser, and Vojtěch Řehák. 2018.

Automatic Synthesis of Efficient Regular Strategies in Adversarial Patrolling

Games. In Proc. of the 17th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2018), Stockholm, Sweden, July 10–15, 2018,
IFAAMAS, 8 pages.

1 INTRODUCTION
Security games are non-cooperative games where the Defender

strives to protect a given set of vulnerable targets against the At-

tacker using the available security forces. A special variant of secu-

rity games are patrolling games, where the Defender (e.g., a police

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

patrol) moves among the targets and tries to discover possible in-

trusions. The Defender’s moves are constrained by the external

environment (streets, passages, etc.) specified as a directed graph,

where the targets form a subset of the vertices. The task is to con-

struct a strategy determining the moves of the Defender so that

the overall protection is maximized. In adversarial patrolling, it is
further assumed that the Attacker knows the Defender’s strategy

and can observe his moves, which leads to Stackelberg equilibrium
as a natural solution concept.

Solving patrolling games of realistic size is challenging, because

even a special variant of this problem is PSPACE-hard [16]. The

existing methods for computing Defender’s strategies are mostly

based on mathematical programming involving non-linear con-

straints, which limits the applicability of these methods only to

small instances of patrolling games. Furthermore, the constructed

strategies are mostly positional, which does not suffice for achieving

optimality. A more general class of regular strategies has recently
been considered in [17]. Here, the history of Defender’s moves is

observed by a suitable finite-state automaton, and the Defender’s

strategy depends on the state of the automaton entered after reading

the history of the moves performed so far. In [17], it was shown that

regular strategies are more powerful than positional strategies, but

no automatic method for constructing the finite-state automaton

is given; it must be supplied manually, which substantially limits

the effectiveness of the whole approach. Furthermore, the existing

works do not provide any tools allowing to estimate how far are the

constructed strategies from being optimal. This is also challenging,

because even approximating the best achievable protection up to

a non-trivial precision is computationally hard (see Section 5 for

more details).

Our contribution. The main result of this paper is a novel

gradient-based algorithm for constructing regular Defender’s strate-

gies in patrolling games. The algorithm automatically computes a

suitable finite-memory structure observing the history. These finite-

memory structures are more flexible than finite-state automata used

in [17], but retain the same expressive power. Instead of employing

mathematical programming with non-linear constraints, our algo-

rithm is based on utilizing symbolic derivatives and proceeds as

follows: First, the vertices of a given patrolling game are assigned a

suitable number of memory elements based on their significance

(which depends on the number of outgoing edges). Then, a suitable

Session 16: Economic Paradigms AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

659

initial regular strategy is chosen, and repeatedly improved in a num-

ber of rounds. In each round, the most promising “direction” for

modifying the current strategy is computed by a certain gradient-

based technique, and the parameters are changed slightly in this

direction. Performing one such round takes only polynomial time,
and hence our algorithm is guaranteed to terminate in polynomial

time if the number of rounds is bounded. This makes the algorithm

applicable to patrolling graphs of realistic size.
The second contribution of our paper is a general algorithm for

computing an upper bound on the maximal protection achievable

for a given patrolling game. The algorithm is parameterized by

a maximal admissible “attack delay” ℓ, and the computed upper

bound is guaranteed to converge to the maximal achievable protec-

tion as ℓ increases. The running time is exponential in ℓ, which is

inevitable because no polynomial-time algorithm for approximating

the maximal achievable level of protection can exist unless P=NP

(see Section 5). Still, the algorithm often terminates quickly, par-

ticularly in situations when the underlying graph of the patrolling

game is sparse. For example, the graphs modeling the structure of

passages or streets satisfy this property.

We implemented our strategy synthesis algorithm, and the pre-

liminary results reported in Section 6 show that high-quality strate-

gies for realistic instances are computable in reasonable time. The

quality is justified rigorously by running our second algorithm for

estimating the achievable protection. To the best of our knowledge,

this is the first framework for solving general patrolling problem

which is guaranteed to produce a solution quickly and can also

evaluate the quality of the computed solution.

2 RELATEDWORK
Game-theoretic approaches to security problems based on the

leader-follower (i.e., Stackelberg) gamemodel have been intensively

studied in recent years. Notable practical applications include the

deployment of police checkpoints at the Los Angeles International

Airport [18], the scheduling of federal air marshals over the U.S.

domestic airline flights [19], the arrangement of city guards in Los

Angeles Metro [14], the positioning of U.S. Coast Guard patrols

to secure selected locations [4], and recently also applications to

wildlife protection in Uganda [15].

In patrolling games, the focus was primarily on finding locally

optimal strategies for robotic patrolling units either on restricted

graphs such as circles [2, 3], or arbitrary graphs with weighted

preference on the targets [5, 7]. Alternatively, the work focused on

some novel aspects of the problem, such as variants with moving

targets [10, 13], multiple patrolling units [8], or movement of the

Attacker on the graph [7] and reaction to alarms [9, 12]. Most

of the existing literature assumes that the Defender is following

a positional strategy that depends solely on the current position

of the Defender in the graph and they seek for a solution using

mathematical programming. Few exceptions include duplicating

each node of the graph to distinguish internal states of the Defender

(e.g., in [2] authors consider a direction of the patrolling robot as a

specific state; in [11], this concept is further generalized), or seeking

for higher-order strategies in [5] and [6]. More recently, the use

of regular Defender’s strategies was proposed in [17]. In [1], an

algorithm for computing an ε-optimal strategy for the Defender is

designed, but this algorithm is of exponential complexity.

3 PATROLLING GAMES
The model of patrolling games used in this paper is essentially the

same as in [5, 17]. That is, we allow for an arbitrary topology of

the game graph, we assume that the time needed to complete an

intrusion can be different at each target, and the targets may have

different importance. The adopted solution concept is Stackelberg

equilibrium, where the Defender/Attacker play the roles of the

leader/follower.

A patrolling game is a tuple G = (V ,E,T ,d, c) whereV is a finite

set of vertices (Defender’s positions), E ⊆ V ×V are edges (admissi-

ble moves of the Defender), T ⊆ V is a set of targets, d assigns to

every t ∈ T the numberd(t) > 0 of time units needed to complete an

intrusion at t , and c assigns to every t ∈ T a positive integer weight

specifying its importance (where a higher value means higher im-

portance). We use cmax and dmax to denote max{c(v) | v ∈ T } and
max{d(v) | v ∈ T }, respectively. We require that the directed graph

(V ,E) is strongly connected. It can be safely assumed that the De-

fender spends one unit of time in each vertex, because longer stays

can be modeled by inserting auxiliary vertices and edges. A history
of length ℓ is a finite word v1 . . .vℓ over the alphabet V such that

(vi ,vi+1) ∈ E for all i < ℓ. The empty history is denoted by ε . The
set of all histories is denoted by H , and the set of all non-empty

histories byH+. A walk is an infinite path in G.

A Defender’s strategy is a function σ assigning to every history h
a probability distribution over the successors of the last vertex in h
(if h = ε , then σ (h) is a distribution overV). That is, σ specifies how

the next vertex is chosen after performing a given finite history, and

the choice can be randomized. The initial vertex is chosen according

to σ (ε). We say that σ is positional if σ (h) depends only on the last

vertex of h. Every σ determines a unique probability space over all

walks in G in the standard way.

An Attacker’s strategy is a function π : H+ → {wait, entert |
t ∈ T } specifying whether the intruder should wait or try to attack

a target t after observing a given history of Defender’s moves. The

Attacker is allowed to attack at most once along a Defender’s walk,

whichmeans that if π (h) = entert for some t ∈ T , then π (h′) = wait
for all proper prefixes h′ of h. Given an Attacker’s strategy π and a

Defender’s walkw = v1,v2, . . ., we say the Attacker waits alongw
if π (h) = wait for every finite prefixh ofw . If there is j ≥ 1 such that

π (v1, . . . ,vj) = entert , then we say that the Attacker attacks t along
w , and he is either captured or penetrates t , depending on whether

t appears among the vertices vj , . . . ,vj+d (t)−1 or not, respectively.
Given a Defender’s strategy σ and an Attacker’s strategy π , the
probability of all walks w such that the Attacker penetrates t is
denoted by Pσ (penetrateπt). Note that penetrate

π
t is a measurable

event, because it is the union of countably many events of the form

“the Defender follows h and does not visit t within the next d(t) − 1
steps” over all historiesh such that π (h) = entert and the last vertex
of h is not t .

The expected Attacker’s utility is defined by

EU
σ ,π
A =

∑
t ∈T
Pσ (penetrateπt) · c(t)

Session 16: Economic Paradigms AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

660

and the expected Defender’s utility is defined by

EU
σ ,π
D = cmax −

∑
t ∈T
Pσ (penetrateπt) · c(t).

Note that maximizing the Defender’s expected utility is precisely

the same objective as minimizing the expected Attacker’s util-

ity
1
, i.e., the players objectives are precisely opposite. Intuitively,

EU
σ ,π
A is the expected amount “stolen” by the Attacker, while

EU
σ ,π
D is the expected amount “protected” by the Defender, where

EU
σ ,π
A + EU

σ ,π
D = cmax.

The value of a Defender’s strategy σ in G is defined by

ValG(σ) = inf

π
EU

σ ,π
D

where π ranges over all Attacker’s strategies. Intuitively, ValG(σ)
is the protection guaranteed by σ against an arbitrary Attacker’s

strategy. The value of G is defined by

ValG = sup

σ
ValG(σ)

where σ ranges over all Defender’s strategies, and corresponds

to the best possible protection achievable by the Defender. A De-

fender’s strategy σ is optimal if ValG(σ) = ValG .

4 GRADIENT-BASED STRATEGY SYNTHESIS
In this section, we present our gradient-based strategy synthesis

algorithm for patrolling games. We start by introducing regular

strategies.

4.1 Regular strategies
Definition 4.1. Let G = (V ,E,T ,d, c) be a patrolling game. A

regular Defender’s strategy for G is a triple η = (avail,v0[i0],γ),
where

• avail : V → N is a function assigning to each v ∈ V the

number of memory elements available in v . An augmented
vertex is an expression of the form v[i], where v ∈ V and

i is a positive integer bounded by avail(v). The set of all

augmented vertices is denoted by A. An augmented edge is
a pair (v[i],u[j]) ∈ A × A such that (v,u) ∈ E.
• v0[i0] ∈ A is the initial augmented vertex.

• γ is a transition function assigning to each augmented edge

its probability in the interval [0, 1] so that, for everyv[i] ∈ A,

the sum of the probabilities of all augmented edges of the

form (v[i],u[j]) is equal to 1.

Intuitively, the Defender executing a regular strategy η =
(avail,v0[i0],γ) maintains a bounded counter updated in every

move. The initial vertex is v0 and the initial counter value is i0. If
the currently visited vertex is v and the current counter value is i ,
the next vertex u and the new counter value j are chosen randomly

according to γ , i.e., the probability of choosing given u and j is
γ (v[i],u[j]).

Our definition of regular strategy is somewhat different from the

one used in [17], where the finite strategy memory was formalized

1
In principle, we could use any other constant instead on cmax (including zero) without

influencing the players’ rationality. By using cmax , the Defender’s expected utility

becomes positive, which better corresponds to its intuitive interpretation as “achieved

protection”.

as a deterministic finite-state automaton over the alphabet V read-

ing the history of visited vertices, and the Defender’s moves were

determined by the currently visited vertex and the current state

of the automaton. Our definition is more general as it allows to

simulate the execution of not only deterministic but also probabilis-
tic finite-state automata reading the history (note that the counter

values can be interpreted as states of a finite-state automaton).

4.2 Strategy synthesis algorithm
For the rest of this section, we fix a patrolling game G =

(V ,E,T ,d, c). Our algorithm starts by synthesizing the function

avail. Then, an initial transition function γ0 is chosen, and it is

repeatedly “improved” until a certain termination condition is sat-

isfied and the final γ is produced. When improving a given γ , we
first compute an appropriate “direction” for modifying γ , and then

“shift” γ in this direction. The direction is obtained by taking a

weighted sum of gradients of certain multivariate polynomials in

the “weakest points” of γ . Although our algorithm resembles the

standard gradient-based approach to approximating local extreme

points, it actually differs from the “straightforward” implementa-

tion of gradient descent in several important aspects, which are

discussed in greater detail in subsequent paragraphs. Our previous

experience with unsuccessful implementations shows that these

aspects are essential for obtaining a working algorithm.

Computing the function avail. The complexity of our algo-

rithm depends on the total number of augmented vertices |A|. To

keep this parameter under control, our algorithm inputs an integer

M ≥ |V | specifying the total number of augmented vertices in the

constructed regular strategy. Hence, the constructed avail must

satisfy

∑
v ∈V avail(v) = M .

Intuitively, avail should return a higher value for more impor-

tant vertices, such as crossroads. At the same time, our experience

shows that the values assigned by avail to neighboring vertices

should not be too different, because then the accumulated informa-

tion is not appropriately transferred when moving from vertex to

vertex. Therefore, we use the following procedure for computing

avail. Letm be the integer part of M/|V |, and let k = M −m · |V |.
Furthermore, let v1, . . . ,vn be the vertices of V sorted in descend-

ing order according to the number of immediate successors. The

function avail assigns m + 1 to the first k vertices, and m to the

remaining vertices.

Restricting the set of augmented edges. When improving a

current transition function γ , it may happen that some augmented

edges are assigned very small (or even zero) probability. Our practi-

cal experience shows that these edges should better be disregarded
in the next improvement steps, because they tend to negative values,

and this tendency may “block” further shifts to better strategies.

Therefore, our algorithm keeps a set E of eligible augmented edges

that may still be assigned positive probability. The augmented edges

outside E are assigned probability zero. The set E is only reduced
as the algorithm proceeds; the exact procedure is described below.

Identifying weakest points. To improve a current γ , we need
to identify its “weakest points”. This is achieved by considering, for

every v[i] ∈ A and every target t ∈ T , the expected Attacker’s util-
ity when the Defender starts in the vertexv , the initial counter value
is i , and the Attacker enters t immediately. This expected utility is

Session 16: Economic Paradigms AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

661

denoted by EU
γ
A⟨v[i], t⟩, and it can be computed as follows. Con-

sider the set S ⟨v[i], t⟩ of all sequences w = u1[i1], . . . ,ud (t)[id (t)]
initiated in v[i] such that (uj [i j],uj+1[i j+1]) ∈ E for all j < d(t),
and uj , t for all j ≤ d(t). Then

EU
γ
A⟨v[i], t⟩ = c(t) ·

∑
w ∈S ⟨v[i],t ⟩

d (t)−1∏
j=1

γ (w j ,w j+1) (1)

where w j denotes the j-th augmented vertex in the sequence w .

Furthermore, we put

µ[γ] = max

{
EU

γ
A⟨v[i], t⟩ | v[i] ∈ A, t ∈ T

}
.

Since we aim at minimizing the expected Attacker’s utility, the

weakest point of γ is a pair ⟨v[i], t⟩ such that EU
γ
A⟨v[i], t⟩ = µ[γ].

In our improvement step, we actually consider all points that are

ε-close to µ[γ]. According to our previous experience, this is neces-

sary for achieving a good “improvement direction”. Formally, we

define the set

Wpε [γ] =
{
⟨v[i], t⟩ | µ[γ] − EU

γ
A⟨v[i], t⟩ < ε

}
Here, ε > 0 is a suitable constant (in our experiments, setting

ε = 0.03 · cmax produces rather good results).

Computing the improvement direction. Now we show how

to compute a suitable “direction” for improving the current γ .
For every v[i] ∈ A, we fix an augmented edge (v[i],u[j]) ∈ E

called a pivot, and define Out(v[i]) as the set of all augmented edges

of the form (v[i],u ′[j ′]) ∈ E such that (v[i],u ′[j ′]) is not a pivot.
For every v[i] ∈ A and every (v[i],u ′[j ′]) ∈ Out(v[i]), we fix a

fresh variable X (v[i],u ′[j ′]).
Now, consider the symbolic expression EUA⟨v[i], t⟩ obtained

from the right-hand side of Equation (1) by substituting every

γ (w j ,w j+1) with either

1 −
∑

(w j ,u′[j′])∈Out(w j)

X (w j ,u
′[j ′])

or X (w j ,w j+1), depending on whether (w j ,w j+1) is a pivot or not,

respectively. Observe that EUA⟨v[i], t⟩ is amultivariate polynomial.
Hence, we can easily compute all of its symbolic partial derivatives,

and thus also the gradient of EUA⟨v[i], t⟩ at the point γ , denoted
by Grad[EUA⟨v[i], t⟩](γ). Strictly speaking, Grad[EUA⟨v[i], t⟩](γ)
denotes the gradient of EUA⟨v[i], t⟩ at the point obtained by re-
stricting γ to eligible augmented transitions which are not pivots.

Note that Grad[EUA⟨v[i], t⟩](γ) can be seen as a function return-

ing a concrete numerical value for every eligible augmented edge

which is not a pivot.We extend the domain ofGrad[EUA⟨v[i], t⟩](γ)
to the set of all augmented edges as follows:

• For all augmented edges outside E, the function

Grad[EUA⟨v[i], t⟩](γ) returns zero.
• For every pivot (v[i],u[j]), the function

Grad[EUA⟨v[i], t⟩](γ) returns 1 − Sum, where Sum is

the sum of all values returned by Grad[EUA⟨v[i], t⟩](γ) for
the augmented edges of Out(v[i]).

Now, all of the obtained gradients (extended in the above de-

scribed way) are combined together by taking their weighted

sum, where the weight of a given Grad[EUA⟨v[i], t⟩](γ) is set to
(EU

γ
A ⟨v[i], t⟩ − µ[γ]+ ε)/ε . That is, gradients computed for ⟨v[i], t⟩

x

y

−∇f (x ,y)
−∇д(x ,y)

∇д(x ,y)

−1 · ∇f (x ,y) − 0.9 · ∇д(x ,y)

Figure 1: An illustration of why considering only the weak-
est point is poor.

with higher EU
γ
A⟨v[i], t⟩ have higher weight. The resulting function

is denoted by Dir[γ].
Somenotes.Onemay askwhy is the improvement direction com-

puted in such a “complicated way”. The reasons are worth explain-

ing, because they reflect our previous experience with unsuccessful

naive implementations of gradient descent. A short summary is

given in the next two paragraphs.

Intuitively, Dir[γ] is a direction which should improve (i.e., de-

crease) the Attacker’s expected utility for all weak points ⟨v[i], t⟩ ∈
Wpε [γ] simultaneously. If we considered only the gradient of the

weakest point, this could lead to poor behavior. To illustrate this

phenomenon, consider a simplified situation where the penetra-

tion probabilities are given by the functions f (x ,y) = −9x − y
and д(x ,y) = 9x − y. Then, the Attacker’s expected utility is

the maximum of f and д. Suppose we are currently at the point

(x ,y) = (−1, 0), so the maximum is reached by f . The gradient of
f evaluates to (−9,−1), but the direction (9, 1) is very close to the

direction (9,−1) (depicted in gray in Figure 1), along which д rises

most rapidly. However, considering also the gradient of д (say, with

coefficient 0.9), this yields the direction (0.9, 1.9) along which both

functions are decreasing.

Let us further note that if we fixed a fresh variable X (v[i],u[j])
for all eligible augmented edges (without introducing any pivots)

and simply substituted every γ (w j ,w j+1) in the right-hand side of

Equation (1) with X (w j ,w j+1), the gradient of the resulting multi-

variate polynomial would not reflect that, for every v[i], the sum
of all X (v[i],u[j]) must be equal to one. Ignoring this relationship

among X (v[i],u[j]), where increasing one variable must be com-

pensated by decreasing the others, leads to poor results in practice

(although this is perhaps the most natural way of implementing

gradient descent).

Improving the current transition function. Intuitively, im-

proving the current γ simply means to add Dir[γ] to γ . However,
there are still some issues. First, all augmented edges for which

γ +Dir[γ] returns a value smaller than δ are removed from E (here,

δ > 0 is another parameter of our algorithm). If E is reduced, the

currentγ is modified so that it returns zero for all elements outside E

(the complement of E is denoted by Ec , and the resulting transition

function by γ ⟨Ec := 0⟩), and the probabilities of the remaining aug-

mented edges are normalized so that, for every v[i] ∈ A, the sum

of the probabilities of all augmented edges of the form (v[i],u[j]) is
again equal to one. Otherwise, we evaluate the protection achieved

by γ + Dir[γ] using the evaluation procedure described below. If

γ + Dir[γ] dominates γ (i.e., achieves better protection than γ), we
set γ = γ + Dir[γ] and continue with the next iteration. Otherwise,

Session 16: Economic Paradigms AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

662

we try to “shorten” Dir[γ] by repeatedly setting Dir[γ] = Dir[γ]/2,
until the shift by Dir[γ] yields an improvement or the number of

trials reaches a fixed bound smax. In the latter case, the algorithm

terminates immediately because no substantial progress can be

achieved any further.

Termination condition. As we already mentioned in the previ-

ous paragraph, our algorithm terminates if the current γ cannot be

improved by a shift Dir[γ]/2smax
. To ensure fast termination, we

also set a fixed bound imax on the maximal number of improve-

ment steps. That is, when the total number of improvement steps

reaches imax, our algorithm terminates.

Computing the initial augmented vertex. After computing

the final transition function γ , we determine the initial augmented

vertex v0[i0]. This is achieved as follows. We construct a directed

graph where A is the set of vertices, and the edges Ê are given by

(v[i],u[j]) ∈ Ê iff γ (v[i],u[j]) > 0. Then, we identify the bottom

strongly connected components B1, . . . ,Bn of (A, Ê). Since the

Defender visits some of these components with probability one

when playing according to γ (regardless where he starts), he can

only improve the achieved protection by starting directly in the

most convenient Bj . Since all augmented vertices of Bj are then
visited infinitely often with probability one, the achieved protection

is equal to

cmax −max{EU
γ
A⟨v[i], t⟩ | v[i] ∈ Bj , t ∈ T } .

Hence, the optimal Bj is the one maximizing the above expression,

and v0[i0] can be set to any augmented vertex of this optimal Bj .
This also explains how to compute the protection achieved by a

given transition functionγ , whichwas needed in one of the previous
paragraphs.

The obtained strategy synthesis algorithm is shown in Algo-

rithm 1. Note that Algorithm 1 is parameterized by the constants

ε , δ , smax, and imax, which need to be set to appropriate values

(see Section 6). Furthermore, we need to determine the initial tran-

sition function γ0 and the initial set E0 of eligible edges. Usually,

E0 contains all augmented edges, and γ0 is chosen either randomly,

or set to some specific transition function (one good option is to

choose γ0 so that it selects among all augmented edges uniformly

at random).

The running time of Algorithm 1 is polynomial in M , dmax and

the size of G. This can be shown by analyzing the time needed

for computing one iteration of the main loop. It is not completely

obvious that one improvement step can be completed in polynomial

time, because the right-hand side of Equation 1 is of exponential

size. This is overcome by using dynamic programming, and thus

avoiding the explicit construction of this large expression.

5 EVALUATING DEFENDER’S STRATEGIES
As we already mentioned in Section 1, the existing literature does

not offer any general method allowing to estimate how far is the

constructed Defender’s strategy from being optimal. Ideally, we

would like to compare the value of the constructed strategy with the

value of the game (i.e., the value of an optimal Defender’s strategy).

Unfortunately, no polynomial-time algorithm computing (or even

approximating) the value can exist unless P = NP:

Algorithm 1: Strategy synthesis.

input :G = (V ,E,T ,d, c),M such thatM ≥ |V |
output :A regular strategy η = (avail,v0[i0],γ)

1 compute avail
2 E ← E0

3 γ ← γ0
4 i ← 0

5 repeat
6 j ← 0

7 i ← i + 1

8 compute Wpε [γ]
9 compute Dir[γ]

10 E ′ ← {τ ∈ E | γ (τ)+Dir[γ](τ) < δ }

11 if E ′ , ∅ then
12 E ← E \ E ′

13 γ ← γ ⟨Ec := 0⟩

14 γ ← normalize(γ)
15 else
16 while γ dominates γ + Dir[γ] and j ≤ smax do
17 Dir[γ] ← Dir[γ]/2
18 j ← j + 1

19 end
20 if γ does not dominate γ + Dir[γ] then
21 γ ← γ + Dir[γ]
22 end
23 end
24 until i = imax or j > smax

25 compute the initial augmented vertex v0[i0]

26 return (avail,v0[i0],γ)

Theorem 5.1. It is NP-hard to distinguish whether the value of a
patrolling game is equal to 1 or bounded by 1 − 1/N , where N is the
number of vertices.

To see this, consider the NP-complete Hamiltonian cycle problem;

an instance is a directed graph G and the question is whether there

exists a Hamiltonian cycle visiting each vertex exactly once. We

can interpret G as a patrolling game where all vertices are targets,

c(v) = 1, and d(v) = N for all v , where N is the number of vertices.

If there is a Hamiltonian cycle in G, then the value of the associated

patrolling game is equal to 1; and if there is no Hamiltonian cycle,

the value is bounded by 1 − 1/N .

Consequently, there is no polynomial-time algorithm approxi-

mating the value of a given patrolling game with N vertices up to

the precision 1/2N , where N is the number of vertices, unless P =

NP (if there was such an algorithm, it could be used to decide the

NP-hard Hamiltonian cycle problem).

In light of Theorem 5.1, we can hardly expect to construct a

polynomial-time algorithm approximating the value of a given pa-

trolling game. In this section, we design an algorithm computing

an upper bound for the value, which is guaranteed to converge

to Val(G) as a certain parameter ℓ increases. The running time

is (unavoidably) exponential in ℓ, but the algorithm can produce

Session 16: Economic Paradigms AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

663

relatively good bounds even for small ℓ’s. Furthermore, it is espe-

cially well-suited for patrolling graphs where the vertices have a

small number of outgoing edges. For example, patrolling graphs

modeling an ATM network in a city or the structure of passages in

some building have this property.

For the rest of this section, we fix a patrolling game G =

(V ,E,T ,d, c). Our algorithm (see Algorithm 2) uses the following

simple observations about optimal strategies:

Lemma 5.2. Let G = (V ,E,T ,d, c) be a patrolling game. Then
the Defender can commit to an optimal strategy σ such that every
vertex v ∈ V is either not visited at all, or it is visited infinitely
often with probability one. Furthermore, every target v ∈ T such that
c(v) > ValG is visited infinitely often.

A proof of Lemma 5.2 is simple and standard
2
. Algorithm 2 gradu-

ally computes a setU of vertices that must be visited infinitely often

when the Defender commits to an optimal strategy, and terminates

when U cannot be extended any further (new additions to U are

first collected in an auxiliary setAux). The setU is initialized to the

set of all targets with the maximal weight (line 1). Observe that the

Attacker can choose an arbitrary vertex u ∈ U and wait until the

Defender visits u, which happens with probability 1. Our algorithm

proceeds by evaluating the expected utility of the Attacker when he

decides to attack in at most ℓ steps after the Defender visits the cho-

sen u ∈ U . This is achieved by constructing and solving a zero-sum

matrix game Gu, ℓ , where the maximizer/minimizer corresponds to

the Attacker/Defender. The equilibrium value Eq(Gu, ℓ) then corre-

sponds to the expected utility of the Attacker. Since the Attacker

can wait until the Defender visits u and then “simulate” the maxi-

mizer’s strategy from the equilibrium strategy profile computed for

Gu, ℓ , we can conclude that ValG ≤ cmax − Eq(Gu, ℓ). This explains

line 4. Then, at line 5, we extend U with all targets v ∈ T whose

weight is larger than the current upper bound on the value (see the

second part of Lemma 5.2). Finally, we extendU with all vertices

that must inevitably be visited when moving among the vertices

contained in U (see line 6). Formally, Attractor(Aux) consists of all
v ∈ V for which there exist vertices t ,u ∈ Aux such that every path

from t to u passes through v .
It remains to explain the construction of the zero-sum matrix

game Gu, ℓ . The actions of the minimizer (modeling the Defender)

are all histories h of length precisely dmax + ℓ initiated in u. The
actions of the maximizer (modeling the Attacker) correspond to

Attacker’s strategies such that an attack is performed in at most ℓ

steps after visitingu. Formally, letH+u, ℓ+1 be all non-empty histories

of length at most ℓ+1 initiated in u. The maximizer’s actions are

all functions π : H+u, ℓ+1 → {wait, entert | t ∈ T } satisfying the

following conditions:

• If π (h) = entert , then π (h′) = wait for every proper prefix

h′ of h.
• For every h ∈ Hu, ℓ+1 of length ℓ+1, there exist a prefix h

′

of h (not necessarily proper) such that π (h′) , wait.
Intuitively, the second condition ensures that the Attacker performs

some attack in at most ℓ steps after visiting u no matter what the

2
If σ is an optimal strategy visiting some vertex only finitely often with positive

probability, one can easily show the existence of another optimal strategy σ ′ where
this probability is (arbitrarily) small. Consequently, there is an optimal strategy σ ′′
where this probability is zero. The second part of Lemma 5.2 is trivial.

Algorithm 2: Computing an upper bound on Val(G).
input :G = (V ,E,T ,d, c), ℓ ∈ N0
output :An upper bound on Val(G)

1 Aux ← {v ∈ T | c(v) = cmax}

2 repeat
3 U ← Aux

4 µ ← cmax −max{Eq(Gu, ℓ) | u ∈ U }

5 Aux ← {v ∈ T | c(v) > µ}

6 Aux ← Attractor(Aux)
7 untilU = Aux

8 return µ

Defender does. For every pair of actions (h,π), there is a unique
decomposition of h into h = h1vh2 such that the length of h1v is

at most ℓ+1 and π (h1v) = entert for some t ∈ T . The maximizer’s

payoff for (h,π) is either 0 or c(t), depending on whether t appears
among the first d(t) elements of vh2 or not, respectively.

Observe that the action spaces of the minimizer and the maxi-

mizer grow exponentially in ℓ. However, if the number of outgoing

edges is small for most vertices, and dmax is not too large, the

size of Gu, ℓ may stay reasonable and admit algorithmic analysis.

For an increasing ℓ, we obtain better and better approximation of

the infinite-horizon patrolling game, and hence the computed µ
converges to ValG .

6 EXPERIMENTAL RESULTS
In this section we evaluate Algorithms 1 and 2 experimentally,

concentrating on specific instances modeling patrolling in large

buildings (such as galleries or museums), where a guard keeps

visiting the individual rooms, paying more attention to those with

higher value. Since the passages can be walked in both directions,

the edge relation is symmetric. Furthermore, the number of passages

connected to a given room is typically small.

A concrete example is shown in Figure 2. The building consists

of four floors connected by three stairways (left, middle, right). The

rooms at each floor are connected by a central corridor connecting

the rooms. We assume that each room is a potential target, and its

value depends on the total value of all items stored in the room.

This determines the weights assigned to vertices in Figure 2. The

time needed to complete an attack in each room is the same and

set to 15 time units.

The patrolling game of Figure 2 has 28 vertices, which is far

beyond the reach of the existing strategy synthesis algorithms

based on mathematical programming (the number of nonlinear

constraints in these programs is larger than 20
15
). Also observe

that a good Defender’s strategy cannot be constructed by hand.

The Defender needs to randomize to achieve an optimal protection,

and he should possibly also return to previously visited rooms with

some small probability (particularly if these rooms have a high

weight). A naive approach cannot take into account all of these

aspects, the problem is inherently complicated.

Algorithms 1 and 2 can process the instance of Figure 2 without

any problems. The upper bound computed by Algorithm 2 when

Session 16: Economic Paradigms AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

664

97 940 45 132 243 155 1

61 156 108 210 104 88 729

103 264 251 163 37 213 43

20 205 531 199 223 230 262

Figure 2: A patrolling game representing a building.

M ValG(η) Avg. execution time [s]

28 · 1 321.629 0.001

28 · 2 619.476 0.076

28 · 3 632.721 0.142

28 · 4 649.356 0.515

28 · 5 649.355 0.707

28 · 6 674.371 22.545

Table 1: Results achieved for the building of Figure 2.

setting ℓ = 3 is equal to 679.991. For ℓ = 4, our experimental

implementation of Algorithm 2 did not terminate in reasonable time.

The parameters of Algorithm 1 were set as follows: ε = 0.03 · cmax,

δ = 0.01, smax = 10, imax = 1000. In this setup, the number of

iterations of the main loop in Algorithm 1 was always smaller than

imax, i.e., the improvement was always terminated in situations

when no further progress was achievable (i.e., the variable j reached
the value smax). The initial transition function γ0 was set randomly,

and E0 was set to all augmented edges.

We experimented with a different amount of available memory

elements. Initially, we set M = 28, which corresponds to construct-

ing a positional strategy (i.e., avail(v) = 1 for each vertex). Then,

we tried to increase M to higher multiples of 28 so that avail(v)
is equal to 2, . . . , 6 for each vertex. Since the initial γ0 is chosen
randomly, we ran Algorithm 1 repeatedly one hundred times, each

time with a freshly chosen γ0, and collected the best result.

The efficiency of the constructed regular strategies increases

with increasingM . The results are summarized in Table 1, which

also shows the average execution time
3
of our experimental imple-

mentation of Algorithm 1 on an average PC (that is, we report the

average execution time of the 100 independent runs of Algorithm 1).

Note that the computed positional strategy performs rather poorly,

but forM = 28 ·6, the value of the obtained regular strategy reaches

674.371, which is quite close to the upper bound 679.991 computed

by Algorithm 2.

The behaviour of the regular strategy constructed forM = 28 · 6

cannot be described intuitively. In practice, the strategy needs to

be implemented in a small electronic device carried by a human

3
The running time data only illustrate that Algorithm 2 can indeed process instances

of realistic size in reasonable time. More careful implementations would certainly

terminate in much lower time.

floors rooms on fl. stairways cmax ValG(η) bound

3 5 3 886 562.538 568.547

3 5 3 992 679.995 684.940

3 7 1 855 604.364 609.948

3 8 3 635 402.893 409.388

4 7 3 940 674.371 679.991

4 7 3 824 569.397 575.641

5 6 3 996 635.702 640.809

4 10 3 930 627.643 633.746

5 9 3 878 592.211 596.384

5 9 3 996 632.857 636.012

4 12 1 820 519.670 525.428

5 10 3 973 672.765 678.489

Table 2: A summary of experiments.

patroller, which determines the next room to visit on-the-fly au-

tomatically. Note that the device needs to “remember” the table

defining the transition function of the constructed regular strategy,

and implement a random generator to perform the randomized

choice.

To evaluate our algorithms on a wider set of instances, we exper-

imented with a dozen of different building models. The summary

of our experiments is given in Table 2. The shape of the consid-

ered buildings is always rectangular, parameterized by the number

of floors, the number of rooms at each floor, and the number of

stairways connecting the floors (the building of Figure 2 has three

stairways). The weights of rooms are assigned randomly, we report

just the maximal weight cmax. The parameters of Algorithms 1 and 2

are set to the same values as above. TheM was always set to 6 · |V |,
where the number of vertices is always equal to the number of

floors times the number of rooms at each floor. The results are

equally satisfactory as the ones obtained for our first example of

Figure 2.

7 CONCLUSIONS
We presented an efficient gradient-based algorithm for computing

regular Defender’s strategies in adversarial patrolling games. We

demonstrated the applicability of our algorithm to instances of

realistic size and shown that the quality of computed strategies is

provably close to optimal.

An interesting open question is whether regular strategies are

sufficiently powerful to achieve optimality. That is, we wonder

whether for each patrolling gameG there exists a regular Defender’s
strategy η such that ValG(η) = ValG . It is known that strategies de-

pending only on the last k visited vertices, where k is some constant,

are insufficient to achieve optimality (see [17]). In particular, this

applies to positional strategies. However, no example witnessing

the insufficiency of regular strategies has so far been given, and

we conjecture that regular strategies are sufficiently powerful to

achieve optimal protection.

Since the preliminary experimental results reported in Section 6

are encouraging, a natural question is what are the actual applica-

tion limits of the proposed framework. Given the computational

hardness of the studied problems, we cannot expect that Algo-

rithm 1 works equally well for all types of instances, and a more

Session 16: Economic Paradigms AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

665

intensive testing would probably identify some class of problem-

atic instances. Still, we conjecture that Algorithm 1 would produce

high-quality solutions after “tuning” its key parameters on small

instances with the help of Algorithm 2.

Another direction for future research are patrolling problems

with several patrollers, possibly under specific assumptions about

their coordination.

ACKNOWLEDGEMENT
The authors are supported by the Czech Science Foundation, grant

No. 18-11193S.

REFERENCES
[1] M. Abaffy, T. Brázdil, V. Řehák, B. Bošanský, A. Kučera, and J. Krčál. 2014. Solving

Adversarial Patrolling Games with Bounded Error. In Proceedings of AAMAS 2014.
1617–1618.

[2] N. Agmon, S. Kraus, and G. Kaminka. 2008. Multi-Robot Perimeter Patrol in Ad-

versarial Settings. In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA2008). IEEE Computer Society Press, 2339–2345.

[3] N. Agmon, V. Sadov, G. A. Kaminka, and S. Kraus. 2008. The impact of adversarial

knowledge on adversarial planning in perimeter patrol. In Proceedings of AAMAS
2008. 55–62.

[4] B. An, E. Shieh, R. Yang, M. Tambe, C. Baldwin, J. DiRenzo, B. Maule, and G.

Meyer. 2014. Protect—A Deployed Game Theoretic System for Strategic Security

Allocation for the United States Coast Guard. AI Magazine 33, 4 (2014), 96–110.
[5] N. Basilico, N. Gatti, and F. Amigoni. 2009. Leader-follower strategies for robotic

patrolling in environments with arbitrary topologies. In AAMAS. 57–64. http:
//portal.acm.org/citation.cfm?id=1558020

[6] N. Basilico, N. Gatti, and F. Amigoni. 2012. Patrolling security games: Definition

and algorithms for solving large instanceswith single patroller and single intruder.

Artificial Intelligence 184–185 (2012), 78–123.
[7] N. Basilico, N. Gatti, T. Rossi, S. Ceppi, and F. Amigoni. 2009. Extending algorithms

for mobile robot patrolling in the presence of adversaries to more realistic settings.

In WI-IAT. 557–564.
[8] N. Basilico, N. Gatti, and F. Villa. 2010. Asynchronous Multi-Robot Patrolling

against Intrusion in Arbitrary Topologies. In AAAI. http://home.dei.polimi.it/

ngatti/Download/Papers/BasilicoGattiVilla-AAAI2010.pdf

[9] N. Basilico, G. DeNittis, andN. Gatti. 2016. A Security GameCombining Patrolling

and Alarm-Triggered Responses Under Spatial and Detection Uncertainties. In

Proceedings of AAAI 2016. 404–410.
[10] B. Bosansky, V. Lisy, M. Jakob, and M. Pechoucek. 2011. Computing Time-

Dependent Policies for Patrolling Games with Mobile Targets. In AAMAS.
[11] B. Bosansky, O. Vanek, andM. Pechoucek. 2012. Strategy Representation Analysis

for Patrolling Games. In AAAI Spring Symposium.

[12] E. Munoz de Cote, R. Stranders, N. Basilico, N. Gatti, and N. Jennings. 2013.

Introducing alarms in adversarial patrolling games: extended abstract. In AAMAS.
1275–1276. http://dl.acm.org/citation.cfm?id=2484920.2485180

[13] F. Fang, A. X. Jiang, and M. Tambe. 2013. Optimal Patrol Strategy for Protecting

Moving Targets with Multiple Mobile Resources. In AAMAS.
[14] F.M. Delle Fave, A.X. Jiang, Z. Yin, C. Zhang, M. Tambe, S. Kraus, and J. Sullivan.

2014. Game-Theoretic Security Patrolling with Dynamic Execution Uncertainty

and a Case Study on a Real Transit System. Journal of Artificial Intelligence
Research 50 (2014), 321–367.

[15] B. Ford, D. Kar, F.M. Delle Fave, R. Yang, and M. Tambe. 2014. PAWS: Adaptive

Game-Theoretic Patrolling for Wildlife Protection. In Proceedings of AAMAS 2014.
1641–1642.

[16] H.-M. Ho and J. Ouaknine. 2015. The Cyclic-Routing UAV Problem is PSPACE-

Complete. In Proceedings of FoSSaCS 2015 (Lecture Notes in Computer Science),
Vol. 9034. Springer, 328–342.

[17] A. Kučera and T. Lamser. 2016. Regular Strategies and Strategy Improvement:

Efficient Tools for Solving Large Patrolling Problems. In Proceedings of AAMAS
2016. 1171–1179.

[18] J. Pita, M. Jain, J. Marecki, F. Ordónez, C. Portway, M. Tambe, C. Western, P.

Paruchuri, and S. Kraus. 2008. Deployed ARMOR Protection: The Application

of a Game Theoretic Model for Security at the Los Angeles Int. Airport. In

Proceedings of AAMAS 2008. 125–132.
[19] J. Tsai, S. Rathi, C. Kiekintveld, F. Ordóñez, and M. Tambe. 2009. IRIS—A Tool for

Strategic Security Allocation in Transportation Networks Categories and Subject

Descriptors. In Proceedings of AAMAS 2009. 37–44.

Session 16: Economic Paradigms AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

666

http://portal.acm.org/citation.cfm?id=1558020
http://portal.acm.org/citation.cfm?id=1558020
http://home.dei.polimi.it/ngatti/Download/Papers/BasilicoGattiVilla-AAAI2010.pdf
http://home.dei.polimi.it/ngatti/Download/Papers/BasilicoGattiVilla-AAAI2010.pdf
http://dl.acm.org/citation.cfm?id=2484920.2485180

	Abstract
	1 Introduction
	2 Related work
	3 Patrolling games
	4 Gradient-based strategy synthesis
	4.1 Regular strategies
	4.2 Strategy synthesis algorithm

	5 Evaluating Defender's strategies
	6 Experimental results
	7 Conclusions
	References

