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ABSTRACT
The inverse geodesic length (IGL) is a well-known and widely used

measure of network performance. It equals the sum of the inverse

distances of all pairs of vertices in the network. A Stackelberg

game is a strategic game in which one player commits to a

strategy while taking into account that other players will respond

accordingly. We propose a natural defender-attacker Stackelberg

game on a network in which the defender wants to maximize the

IGL level of the network and commits to protecting parts of the

network while having knowledge of the strength of an attacker that

wants to weaken the network. We present several algorithmic and

complexity results concerning the problem of �nding the optimal

commitment for the defender. Some of our computational hardness

results also answer open problems posed in prior work on IGL.
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1 INTRODUCTION
Networks are ubiquitous, most critical infrastructure systems can

be modeled as a network. Examples of such systems include

transportation, power, water (drinking and irrigation), sanitation,

communication and the Internet. Security of these infrastructure is

of great importance requiring them to be robust against random

failures or intentional attacks [1]. Unfortunately, security resources

are often limited, dictating the need to optimize their use.

Strategic aspect of network analysis has emerged as an important

area of research in many �elds including AI (see e.g [2, 27]). The

focus here is to identify the nodes/links that are most critical for a

high performance of a network [2, 5, 26, 41]. The applications are

not only limited to security [2] but also reach as far as epidemiology,

sociology, physics and logistics (see e.g., [17, 21, 26, 41]).
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One important issue in network analysis is how to quantify the

network performance. Some of the frequently used measures of

network performance include component order connectivity (size of

the largest connected component) [10, 13], clustering coe�cient
(probability that two nodes are connected given that both are

connected to a common third node) [40] and inverse geodesic length
(IGL; sum of the inverse distances between all pairs of vertices).

We opt to quantify the network performance by IGL. Formally,

IGL(G ) =
∑
{u,v }⊆V ,u,v

1

d (u,v ) . Our choice is in�uenced by the

frequent use of IGL as a measure of network performance across

various �elds including AI (e.g., [2]), network security (e.g., [17]),

social network (e.g., [28]) and game theory (e.g., [17, 25, 32]).

Moreover, Latora and Marchiori [23] found IGL to be e�ective on

small-world graphs and studied several networks systems to show

that it is the underlying general principle of construction for several

real-world networks including transportation, communication and

neural networks.

Game-theory provides a suitable setting to analyze the

security of a network, facilitating adversarial reasoning [15]. In

particular, security games based on the Stackelberg leadership model
(Stackelberg games) (e.g., [19, 35]) have been of signi�cant interest.

In fact, modeling such adversarial security scenarios by Stackelberg

games is a well-established and widely-used approach in the theory

and practice of security games [33]. In such games a defender

commits to an optimal surveillance or protection strategy so as to

defend some infrastructure such as an airport [33]. One particular

setting in these games is where an infrastructure is de�ned as a

network and the players perform their set of operations on the

nodes and edges of the network (see e.g., [16, 39]). The objective

here mostly is to minimize damage to the network by computing

an optimal allocation of security resources [31, 36].

In this paper, we take IGL as a well-established global measure

of network performance and consider a strategic scenario based

on Stackelberg leadership model. More precisely, we de�ne a

Stackelberg game involving two players—d (defender) and x
(attacker). The attacker x wants to weaken the network G by

reducing its IGL and the defender d wants to minimize the e�ect of

the attack. We suppose that the defender and attacker have budgets

kd and kx . The defender’s set of actions is to protect a number

of vertices kd while the attacker’s set of actions is to remove a

given number of vertices kx . A vertex can only be removed if it

is not protected. If the defender d was to protect an optimal set

of vertices Sd , this set would be of size kd and Sd would be such

that whichever set Sx of kx vertices that the attacker x deletes, the
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IGL value of the remaining graph would still be at least a certain

threshold value T . We model the computation of the optimal set of

vertices that the defender protects by the following computational

problem Defender-Stackelberg Game (DeStackIGL).

Defender Stackelberg Game (DeStackIGL)

Input: A graph G, integers kd , kx and a target inverse

geodesic length T .

Question: Does there exist a set of vertices Sd with |Sd | =
kd such that IGL(G−Sx ) ≥ T for all Sx ⊆ V (G ) \
Sd with |Sx | = kx ?

This set Sd gives a strategy for the defender against any potential

future attack on kx vertices. Now, given that the defender protects

some vertices, we consider the computational problem of the

attacker, called RMinIGL. In RMinIGL, the defender’s choice is

provided as an input and the attacker’s choice needs to be computed.

Restricted MinIGL (RMinIGL)

Input: A graph G, an integer k , a set of vertices Sd and

a target inverse geodesic length T .

Question: Does there exist a set of vertices X ⊆ V (G ) \ Sd
with |X | = k such that IGL(G − X ) ≤ T ?

This problem is akin to the situation where the defender has

already decided which vertices to protect and it is now the

attacker’s turn to play. For some of our algorithms, we �rst design

an algorithm for RMinIGL and use it as a subroutine to solve

DeStackIGL. We also note that RMinIGL generalizes MinIGL,

which is the special case where Sd = ∅ and was studied in [2].

Contributions. We conduct a comprehensive (parameterized)

complexity analysis of DeStackIGL. First, we observe that

DeStackIGL is co-NP-hard even when restricted to bipartite and

split graphs by a straightforward reduction from MinIGL. In terms

of parameterized complexity, we give several contrasting results:

DeStackIGL is co-W[1]-hard for parameter kx , even when kd is a

constant, but it is FPT for parameter kd when kx is a constant;

DeStackIGL is W[1]-hard for parameter kd + T but FPT for

parameter kx +T . As for structural parameters, DeStackIGL is FPT

when the parameter is kd plus either the vertex cover number or the

neigborhood diversity of the input graph, but it is W[1]-hard when

the parameter is the treewidth of the input graph and kd = 0. Our

results for the vertex cover number and the neigborhood diversity

use a recent FPT result for integer quadratic programming. On
the course to obtain these results we also address some of the

open problems in [2]. In particular, we show that MinIGL is FPT

for parameter neighborhood diversity while it is W[1]-hard for

parameter tw (G ).

Related Work. Our paper is related to two strands of research:

(A) network analysis in particular considering the connectivity or

robustness of a network [3], and (B) security games in which a

defender executes an optimal surveillance or protection strategy

so as to defend some infrastructure [33]. Whereas (A) is studied

in physics, computer science, and social sciences, (B) is an area

of applied game theory, AI, and operations research. There are

several works that either consider (1) algorithmic aspects of network

connectivity [29], or they focus on (2) security games including

those in which defenders, attackers, and infrastructure facilities

are on a network [16, 18, 20, 31, 35, 36, 39]. However, ours is the

�rst work on Stackelberg strategies for defending a network with

IGL as the global measure of the network. We note here that

our algorithmic work using a game-theoretic approach may be

of independent interest to �nding sets of in�uential nodes in a

network. In the case of our model, this set would the one that the

defender protects.

Some works that are closely related are ones where

infrastructures are de�ned as a network on which defender

and attacker(s) can perform their set of actions (see e.g., [16, 39]).

In such games the objective is to minimize damage to a network

by computing a schedule of security resources based on a mixed

strategy, eliminating the possibility of human errors [31, 36]. The

utility the players achieved is based on the value they have for the

certain resources in the network. In our work, we take IGL as the

value that the players want to a�ect.

In several projects on both the theory and applications in security

games, both the defender and attacker are allowed to use mixed

strategies. In this paper, we focus on pure actions as a stepping

stone to understand the algorithmic and complexity aspects of the

underlying problems. Pure strategies are also natural in this setting

where a defender might need to implement her strategies before a

potential attacker decides where to attack.

2 PRELIMINARIES
Graph Theory. Let G = (V ,E) be an undirected, simple graph.

We denote the set of vertices and edges in G as V (G ) and E (G ),
respectively, with n = |V | andm = |E |. For graph terminologies

not de�ned here we refer to [8]. Let u,v ∈ V with u , v . An edge

xy is incident to v if v ∈ {x ,y}. We say that u and v are adjacent or
neighbors if uv ∈ E (G ). We denote the neighborhood of v , i.e., the
set of vertices adjacent to v , as N (v ). The closed neighborhood of v
is N [v] = N (v ) ∪ {v}. The closed neighborhood of a vertex set S is

N [S] =
⋃
v ∈S N [v], and its open neighborhood is N (S ) = N [S] \ S .

A path between u and v is an alternating sequence of vertices and

edges that starts with u and ends with v , with each edge in the

path being adjacent to the preceding and succeeding vertex, and

each vertex occurring at most once in the sequence. The length of a

path is its number of edges. The distance between u and v , denoted
by d (u,v ), is the length of a shortest path between u and v . The
ith neighborhood of a vertex v is the set of vertices at distance i
from v and is denoted by N i (v ). If there is no path between u and

v then their distance is in�nite. A pair of vertices at �nite distance

is connected. Let S ⊆ V . A graph induced on S is denoted as G[S],
i.e., V (G[S]) = S and E (G[S]) = {uv ∈ E : u,v ∈ S }. Similarly, we

denote byG − S the graphG[V \ S]. A connected component ofG is

a maximal subgraph of G where each vertex pair is connected.

Two verticesu andv are twins if N (u) \{v} = N (v ) \{u}. Vertices
u,v are true twins if they are twins and uv ∈ E (G ). A graph G has

neighborhood diversity η, if there exists a partition of V (G ) into at

most η sets, such that all the vertices in each set are twins; such

a partition is called the neighborhood partition of G and can be

computed in polynomial time [22]. A vertex cover of a graph G is

a set of vertices such that each edge is incident to at least one of
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these vertices. The vertex cover number of a graph is the smallest

size of a vertex cover of the graph.

A tree decomposition of a graph is a set of bags connected in a

tree-like fashion, where each bag is a subset of vertices of the graph,

each edge of the graph is contained in at least one bag and the

bags containing a speci�c vertex of the graph form a (connected),

non-empty subtree of the tree.

Game Theory. A 2-player game is de�ned by a tuple (N ,A,u).
The set N = {1, 2} denotes the set of players. The termA = A1 ×A2

denotes the set of action pro�les of the players whereA1 andA2 are

the action sets of player 1 and 2 respectively. Finally, u = (u1,u2) is
the utility function pro�le of the players where uj : A → R is an

utility function for player j ∈ N . A Stackelberg game is a strategic

game in which one player is de�ned as the leader who can make

a decision and commit to a strategy before other players who are

de�ned as followers. We focus on a two-player zero sum game. In

such games, for all action pro�les a ∈ A, u1 (a) + u2 (a) = 0. We

focus on pure strategies for both the defender and attacker. As is

standard in Stackelberg games modelling security scenarios, we

will typically consider player 1 as the defender (d) and player 2 as

the attacker(x ).

Parameterized Complexity. A parameterized decision problem

Π is in FPT (Fixed Parameter Tractable), if there is an algorithm

solving any instance x with parameter k in time f (k ) · |x |c ,
where f (k ) is a computable function of k and c is a constant. A

parameterized reduction from a parameterized decision problem Π1

to a parameterized decision problem Π2 is an algorithm, which, for

any instance I of Π1 with parameter k produces an equivalent

instance I ′ of Π2 with parameter k ′ such that there exists a

computable function f such that k ′ ≤ f (k ) and the running time of

the algorithm is f (k ) · |I |O (1)
. The complexity classW [1] is a class

of parameterized decision problems closed under parameterized

reductions. It is unlikely for aW [1]-hard problem to be in FPT

[9]. A para-NP-hard problem is NP-hard even for constant values

of the parameter. We refer to [7, 9] for a detailed exposition of

parameterized complexity. A kernel, or kernelization algorithm for

a parameterized problem is a polynomial time algorithm producing

an equivalent instance of the same parameterized problem such that

the size of the resulting instance is upper bounded by a function of

the input parameter.

3 ALGORITHMS AND COMPLEXITY
For any instance (G,k,T ) of MinIGL an instance (G,kd ,kx ,T

′)
of DeStackIGL can be obtained, by setting kd = 0, kx = k and

T ′ = T + ϵ , where 0 < ϵ ≤ 1

2
, that is equivalent to the complement

of MinIGL. This implies that the complexity results known for

MinIGL also apply to DeStackIGL.

Theorem 3.1. DeStackIGL is co-NP-hard even when restricted

to bipartite or split graphs.

We provide a parameterized reduction from Maximum Partial

Vertex Cover (MaxPVC) problem to show that DeStackIGL is

co-W[1]-hard for parameters kd and kx combined. In MaxPVC

we are given a graph G and integers k and t , and the question is

whether there exists a set S ⊆ V (G ) such that |S | ≤ k and at least t
edges are incident to at least one vertex in S .MaxPVC is know to be

W[1]-hard when parameterized by k [14]. The following theorem

shows that DeStackIGL is co-W[1]-hard for parameter kx even

when kd is a constant.

Theorem 3.2. DeStackIGL is co-W[1]-hard for parameter kx ,
even when kd = 1.

Proof. Let (G,k, t ) be an instance of MaxPVC with n =
|V (G ) | vertices andm = |E (G ) | edges. We construct an instance

(G ′,kd ,kx ,T ) forDeStackIGL, whereV (G ′) = V (G )∪{u}, E (G ′) =
E (G ) ∪ {uvi |vi ∈ V (G )}, kd = 1, kx = k and T = n +m + ϵ − (k +

t ) + 1

2

(
(n−k ) (n−k−1)

2
− (m − t )

)
for some ϵ with 0 < ϵ ≤ 1

2
. We

show that (G,k, t ) is a Yes-instance if and only if (G ′,kd ,kx ,T ) is
a No-instance. Let us assume that (G,k, t ) is a Yes-instance and has
a solution S ⊆ V (G ) with |S | = k . Clearly, in G ′ the best choice for
d is to protect u, as |N (u) | ≥ |N (vi ) | for all vi ∈ V (G ′) \ {u} and
u connects each pair in V (G ′) \ {u}. Thus, Sd = {u}. As u cannot

be attacked, dist(vi ,vj ) ≤ 2 for every two vertices vi ,vj ∈ V (G ′),
irrespective of the vertices attacked by x . This means that the

optimal choice for x is to maximize the number of pairs of vertices

at distance 2. Say x attacks the set of vertices Sx = S . But this means

IGL(G ′ − Sx ) = n +m − (k + t ) + 1

2

(
(n−k ) (n−k−1)

2
− (m − t )

)
< T .

Thus (G ′,kd ,kx ,T ) is a No-instance.
Conversely, let us assume that (G ′,kd ,kx ,T ) is a No-instance.

Note that u is the optimal choice for d , hence x must choose from

V (G ′) \ {u} = V (G ). But this means that we can cover at least

t edges by selecting a set of vertices S of size k in G otherwise

(G ′,kd ,kx ,T ) is a Yes-instance. Hence (G,k, t ) is Yes-instance. �

We now show that DeStackIGL becomes FPT for parameter kd
when kx is bounded by a constant. Given an instance (G,kd ,kx ,T )
of DeStackIGL, let S be the set of all vertex subsets of size kx inG .
Notice that in time O (nkx ) we can �nd all candidate sets Sxi ∈ S
and compute their IGL impact I where I (Sxi ) = IGL(G ) − IGL(G −
Sxi ). We sort Sxi ∈ S in decreasing order of their IGL impact.

Next, we iteratively de�ne a series of kx -hitting set problem

instances with universe Ui and collection Ri . In the Minimum

d-Hitting Set problem the input is a collection of subsets R, each
of size at most d , of a �nite universe U and an integer k , and the

question is whether there exists a set H ⊆ U with |H | ≤ k such

H contains at least one element from each subset in R. In each

iteration i , we perform the following two steps;

(1) We de�ne an instance of kx -hitting set by setting Ri =
{S1, S2, · · · , Si−1, Si } and setting Ui =

⋃
Si ∈Ri V (Si ), where

S1, S2, · · · , Si are chosen in order from S.

(2) We compute a hitting set of size kd for the instance, if one

exists, using an FPT algorithm parameterized by kd .

We iterate until a No-instance is found. It is well known that

Minimum d-Hitting Set is FPT for parameter k when d is a

constant [30], and the fastest known algorithms [12, 38] run in

time (d − 0.9245)k |U |O (1)
. Consequently, we have an algorithm

with a running time of nkx · (kx −0.9245)
kd ·nO (1)

for DeStackIGL.

Theorem 3.3. DeStackIGL is FPT for parameter kd when kx ∈

O (1) and can be solved in time nO (1) · (kx − 0.9245)
kd .

Proof. Since kx ∈ O (1), all subsets of size kx in G can be

found in polynomial time. Similarly, using an all-pair shortest
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paths algorithm [34], the IGL impact of a subset can be computed

in polynomial time. Clearly, since the number of sets in S is

polynomial, they can be sorted in decreasing order of their IGL

impact in polynomial time. It remains to show that once we have

a sorted list of candidate sets S, iteratively solving kx -hitting
set instances provides an optimal solution to DeStackIGL. First,

consider the optimal choice of the attacker x . The attacker will

choose a candidate set from S with maximum IGL impact that

contains no unprotected vertex. This is because once the defender

protects a vertex from a candidate set, the attacker cannot choose

this exact same candidate set (note that the attacker can still choose

other vertices from the candidate set, but all such choices are also

separately contained inS). Therefore, the defender’s optimal choice

is to protect at least one vertex from as many candidate sets with

highest IGL impact as possible. This leads naturally to the iterative

kx -hitting set solution described above. �

We now consider the target inverse geodesic length T as

parameter and show that DeStackIGL is W[1]-hard for parameters

kd and T combined. We provide a parameterized reduction from

the Cliqe problem where, given a graph G and an integer k , the
question is whether G has a clique of size k . Cliqe is one of the

classic NP-complete problems and and is also know to beW [1]-hard

when parameterized by k [9].

Theorem 3.4. DeStackIGL is W[1]-hard for parameter kd +T .

Proof. Let (G,k ) be an instance of Cliqe. We construct an

instance (G,kd ,kx ,T ) of DeStackIGL by setting kd = k , kx =

n − k and T =
k (k−1)

2
. We show that (G,k ) is a Yes-instance if and

only if (G,kd ,kx ,T ) is a Yes-instance. Suppose that (G,kd ,kx ,T )
is a Yes-instance. Since x has enough budget to delete all but the

protected vertices in G and kd = k , (G,kd ,kx ,T ) can only be a

Yes-instance if d defends vertices that induces a graph with inverse

geodesic length at least
k (k−1)

2
. But for a graph on k vertices to

have inverse geodesic length
k (k−1)

2
, all vertex pairs need to be

at distance 1, and so d defends a complete graph on k vertices.

Thus (G,k ) is a Yes-instance. Conversely, suppose that (G,k ) is a
Yes-instance and there exists a solution S of size k . But this means d
can defend a clique Sd of size kd with IGL(G[Sd ]) =

k (k−1)
2

. Hence

(G,kd ,kx ,T ) is a Yes-instance. �

Given the hardness result for the combined parameter kd +T , we
now consider the parameter T in combination with kx and show

that DeStackIGL is FPT for parameter kx +T by designing a kernel

of size O (k2x +T ). We de�ne the following reduction rules that are

applied in the same order they are de�ned here.

Reduction Rule 3.5 (Isolated Vertices). If there exists a vertex

x ∈ V (G ) such that |N (x ) | = 0, then delete x .

For the next two reduction rules, let q := 2

√
9

16
+T − 3

2
, which

is the positive solution for the equation T = q + 1

2

(q
2

)
.

ReductionRule 3.6 (HighDegree Vertices). If there exists a vertex
x ∈ V (G ) such that |N (x ) | ≥ q + kx and kd ≥ 1, then return Yes.

Reduction Rule 3.7 (Bounded Edge Set). If |E (G ) | > T + kx (q +
kx − 1) and kd ≥ 1, then return Yes.

The correctness proof for these rules is straightforward and we

skip it here due to space constraints.

Theorem 3.8. DeStackIGL has a kernel of size O (k2x +T ).

Proof. Given an instance (G,kd ,kx ,T ) of DeStackIGL by

applying Reduction Rules 3.5–3.7 exhaustively, we obtain an

instance (G ′,kd ,kx ,T ), where the number of edges inG ′ is at most

T +kx (q+kx −1) = O (T +kx (
√
T +kx )) = O (k2x +T ). Since degree

of each vertex is at least 1, G ′ has O (k2x +T ) vertices.
Observe that the above reduction rules does not apply to the case

when kd = 0. Notice that, if kd = 0, DeStackIGL is equivalent to

the complement of MinIGL. It is known that MinIGL has a kernel

of size O (k2 +T ) [2], where k denotes the attacker’s budget. Thus,

DeStackIGL has a kernel of size O (k2x +T ). �

We now turn to structural parameters and �rst consider

tree-width, which is one of the most widely studied structural

parameters. We will show that DeStackIGL is W[1]-hard for

parameter tree-width even when kd = 0. We provide a

parameterized reduction from the Eqitable Coloring (EC)

problem. In EC, we are given a graph G and an integer r , and the

question is whether there exists a partitionV = (V1,V2, . . . ,Vr ) of
V (G ) such that each part is an independent set and the numbers of

vertices in any two parts Vi ,Vj di�er by at most one? EC is known

to be W[1]-hard for parameter tree-width and number of partitions

r combined [11].

Theorem 3.9. DeStackIGL is co-W[1]-hard for parameter tw (G )
even when kd = 0.

Proof. Let (G, r ) be an instance of EC where G has tree-width

tw . The parameter is r + tw . Assume without loss of generality

that l = n
r , where n = |V (G ) | and l is an integer. We construct an

instance (G ′,kd = 0,kx = n(r − 1),T ) of DeStackIGL where G ′ is
de�ned as follows;

• create a vertex set C = {c1, c2, . . . , cr } where each ci ∈ C
corresponds to a color class,

• corresponding to each vertex vi ∈ V (G ) create a set of r
vertices V ′i = {vi,1,vi,2, . . . ,vi,r } and denote V ′ = V ′

1
∪

V ′
2
∪ · · · ∪V ′n ,

• create a set of r graphs G = {G1,G2, . . . ,Gr } where each

Gi ∈ G is a copy of G,
• for each i , 1 ≤ i ≤ r , connect each v ∈ V (Gi ) by a path of

length L = 2(n(n4 + 1) + r (n + 1)) to ci ∈ C ,
• create a set of vertices Dv of size R = L for each vertex

v ∈ Gi ∈ G and make the vertices in Dv adjacent to v and

call v a heavy vertex (see Figure 1),

• connect each vi, j ∈ V
′
to the ith vertex v ∈ V (Gi ) in each

Gi ∈ G.

In order to de�ne value for T , we construct a graph Gt with

r connected components where each connected component is

constructed as follows; create a setHv of l heavy vertices, create a

vertex c and connect each li ∈ Hv to c by paths of length L; add
n − l paths of length L − 1 that have c as one endpoint; create r
vertices corresponding to each li ∈ Hv and make them adjacent

to li . We set T = IGL(Gt ) + ϵ for some ϵ with 0 ≤ ϵ ≤ 1

2
. This

completes our construction, see Figure 1 for a basic example of the

construction.
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Figure 1: Depiction of (a) input graph G (b) vertices with R leaves and paths of length L (c) graph G ′ obtained by transforming
G.

Let us �rst show that tw (G ′) ∈ O (r · tw ). Consider a tree

decomposition of G of minimum width. We take the same tree

decomposition for each copy Gi of G, 1 ≤ i ≤ r , and we

merge copies of the same bag. Each bag now has size at most

r · (tw + 1). For each vertex vj ∈ V (G ), we add the vertices

V ′j = {vj,1,vj,2, . . . ,vj,r } to all the bags containing copies of

vj . Since each bag contains copies of at most tw + 1 vertices in

V (G ), this adds at most r · (tw + 1) vertices to each bag. Next, add

C = {c1, c2, . . . , cr } to all the bags. Each bag now has width at most

r +2 ·r · (tw+1). For each path P connecting a vertexv ∈ V (G j ) to a
color vertex ci , select a bag containing v and append a path of bags,

one for each edge xy ∈ P , containing {x ,y, ci }. Finally, for each
heavy vertex v and each vertex u ∈ Dv , create a bag containing

{u,v} and make it adjacent to a bag containing v . This creates a
tree decomposition of G ′ of width O (r · tw ).

Now let us show that (G, r ) is a Yes-instance if and only if

(G ′,kd ,kx ,T ) is a No-instance. Suppose (G, r ) is a Yes-instance

and there exists an equitable coloring V = {V1,V2, . . . ,Vr } of G
with r colors where for each Vi ∈ V , |Vi | = l and for any pair

of parts Vi ,Vj ∈ V , Vi ∩ Vj = ∅. Let VC = {VC1
,VC2
, . . . ,VCr }

where each VCi = V (G ) −Vi is a vertex cover of size n − l . Since
r · (n − l ) = n(r − 1), we can obtain a graph isomorphic to Gt by

deleting the heavy vertices corresponding to each vertex cover VCi
from the corresponding graph copy Gi ∈ G. But IGL(Gt ) = T − ϵ .
Hence (G ′,kd ,kx ,T ) is a No-instance.

Conversely, suppose (G ′,kd ,kx ,T ) is a No-instance. We will

prove that there is a set Sx ⊆ V (G ′) with |Sx | = kx such that

IGL(G ′−Sx ) < T if and only ifG ′−Sx is isomorphic toGt . Without

loss of generality, assume that Sx has no vertex that has degree 1

in G ′, otherwise replace it by its neighbor. We will now show that

we may assume that Sx contains no vertex from V ′. If Sx contains

a vertex vi, j ∈ V
′
i , we consider several cases. If Sx also contains

all neighbors of vi, j , then IGL(G ′ − Sx ) = IGL(G ′ − (Sx \ {vi , j})).
If V ′i ⊆ Sx , then IGL(G ′ − Sx ) ≥ IGL(G ′ − ((Sx \Vi ) ∪ NG′ (Vi ))),
i.e., the attacker had better attack the r neighbors ofV ′i rather than

V ′i since the neighbors lie on all paths containing a vertex from V ′i .

If V ′i * Sx , then the deletion of vi, j only a�ects the IGL for pairs

of vertices that contain vi, j . But then, the IGL can be decreased

more by adding a neighbor of vi, j to Sx instead of vi, j since heavy
vertices have (more than) R vertices at distance 1. Therefore, assume

from now on that Sx contains no vertex from V ′.
We will now show that Sx ⊆

⋃
Gi ∈G V (Gi ) (i.e. Sx only contains

heavy vertices). If this is not the case then there is a vertex in V ′

that is adjacent to at least two heavy vertices in G ′ − Sx . Thus,
we have two heavy vertices that are at distance at most 2 in G ′ −
Sx . The paths from the degree-1 neighbors of one of them to the

degree-1 neighbors of the other one contribute at least
1

4
R2 to the

IGL. Deleting one of these two heavy vertices would decrease the

IGL by at least
1

4
R2 + R. We will compare this against the decrease

in IGL by the deletion of a vertex ci ∈ C (and note that the deletion

of a vertex on the path from ci to a vertex in Gi has lesser impact

on the IGL). To upper bound the impact on the IGL of the deletion

of ci , we consider pairs of vertices that have distance at most L
in G ′ and pairs that have distance more than L in G ′. For pairs
of vertices at distance at most L whose distance increases by the

deletion of ci , both vertices are on the paths from ci to V (Gi ). The

number of such pairs at distance ρ is n +
(n
2

)
(ρ − 1), and so these

pairs contribute at most

∑L
ρ=1

1

ρ

(
n +
(n
2

)
(ρ − 1)

)
≤ n2 · L to the

IGL. For the number of pairs at distance more than L, observe that
G ′ has r · n · (R + 2 + L) + r vertices. So, pairs at distance at least
L contribute at most

1

L r
2n2 · (R + 2 + L)2 to the IGL. Since L = R,

deleting ci decreases the IGL by at most n2 · R + r2n2 · (4R + 9).
Since R = 2(n(n4 + 1) + r (n + 1)), this is smaller than

1

4
R2 + R.

Now that we have established that x always prefers to delete

heavy vertices, it remains to show that Sx whereG −Sx = Gt is her

optimal choice. Notice that in order forG−Sx to be isomorphic toGt ,

Sx must contain a vertex cover for each copy of graphGi ∈ G, as no

two heavy vertices are connected through an edge in Gt . Similarly,

Sx must be picked such that no more than l heavy vertices reside

in the same connected component. We note that (G ′,kd ,kx ,T )
is a Yes-instance if either of the above two cases is not satis�ed.

For the �rst case, if Sx ∩ V (Gi ) is not a vertex cover of Gi , then

the paths between the degree-1 neighbors of two adjacent heavy
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vertices contribute an additional
1

3
R2 to the IGL. For the second case,

observe that the IGL is minimized if the connected components of

G ′ − Sx are of the same size. If there exists such a set Sx of n(r − 1)
vertices then the heavy vertices in each connected component

of Gt form an independent set of size l . Also, no two connected

components contain a heavy vertex that correspond to the same

vertex inG otherwise they would have been connected through the

copy of the vertex inV ′. Thus the heavy vertices in each connected

component of Gt corresponds to a vertices of a color class in G.
Hence, (G, r ) is a Yes-instance. �

Note that the above proof constructs an instance of DeStackIGL

by setting kd = 0. This implies that we obtain an instance of a

problem that is the complement of MinIGL. Thus, the above result

also applies to MinIGL.

Corollary 3.10. MinIGL is W[1]-hard for parameter tree-width.

An Integer �adratic Program (IQP) is an optimization

problem whose input is an ξ × ξ integer matrix Q , µ × ξ integer

matrices A and C and µ-dimensional integer vectors b and d . The
task is to solve the following optimization problem:

minimize ytrQy

subject to Ay ≤ b

Cy = d

y ∈ Zξ .

Let α be the maximum absolute value in A and Q . We then have

the following useful proposition from [24].

Proposition 3.1. There exists an algorithm that given an instance
I of IQP, runs in time f (ξ ,α ) · |I |O (1) and outputs a vector y ∈ Z ξ .
If the input IQP has a feasible solution then y is feasible, and if the
input IQP is not unbounded, then y is an optimal solution.

Theorem 3.11. RMinIGL is FPT for parameter vertex cover

number.

Proof. Let (G,k, Sd ,T ) be an instance of RMinIGL with G =
(V ,E), and let ν be the smallest size of a vertex cover in G . We will

construct an FPT algorithm with respect to ν .
The algorithm �rst computes a smallest vertex coverW ⊆ V in

time O (1.2738ν + νn) using an algorithm from [6].

We now need to consider which k vertices we would like to

delete from G. Consider the set of possibly deleted vertices from

the vertex cover by enumerating all U ⊆W such that |U | ≤ k . Set
W :=W \U , G := G −U , and k := k − |U |.

SinceW is a vertex cover, we have that V \W is an independent

set. Next, we de�ne equivalence classes on the vertices of V \W by

having two vertices u,v ∈ V \W in the same equivalence class if

N (u) = N (v ) in G. We thus have a function which maps vertices

to equivalence classes P : V \W → [ϕ], where ϕ ≤ 2
ν
is the

number of equivalence classes in V \W and we use the shorthand

[ϕ] = {1, 2, ...,ϕ}. The function P is computable in polynomial time.

For simplicity, we will refer to an equivalence class i by Pi for
i ∈ [ϕ].

In order to get a handle on the connectivity in G, our algorithm
will branch on which equivalence classes will have all their vertices

deleted; we say that these equivalence classes vanish. For this, we

consider the set of functions of the form f : [ϕ] → {0, 1} where
if f (i ) = 0 then partition Pi vanishes and it is a requirement that

we delete all vertices from the equivalence class Pi , i.e. Pi ⊆ X . If
f (i ) = 1 then the equivalence class Pi does not vanish and so at least
one vertex from Pi is not deleted. The algorithm will construct and

enumerate all such functions f that do not vanish any equivalence

class containing a vertex from Sd , of which there are at most 2
2
ν

as ϕ ≤ 2
ν
.

We can now proceed to the construction of an integer quadratic

program (IQP) for computing the minimum IGL of a graph G with

vertex coverW , a computed partition function P and a vanishing

function f . Let variable xi represent the number of vertices that

remain in part Pi after deleting the vertices in X , in other words

xi = |Pi\X |. Consider the following integer quadratic program.

minimize OB J

subject to
ϕ∑
i=1

xi ≥ |V \W | − k

1 ≤ xi ∀ 1 ≤ i ≤ ϕ with f (i ) = 1

xi = 0 ∀ 1 ≤ i ≤ ϕ with f (i ) = 0

|Sd ∩ Pi | ≤ xi ∀ 1 ≤ i ≤ ϕ

xi ≤ |Pi | ∀ 1 ≤ i ≤ ϕ

xi ∈ Z
ϕ ∀ 1 ≤ i ≤ ϕ,

whereOB J is a function, de�ned below, which represents the IGL of
G after deleting vertices inX as de�ned by the variables xi . As a �rst
step, let us upper bound the diameter of the connected components

of the graph, that is, the maximum �nite distance of two vertices

in the graph.

Claim 3.12. In a graph with vertex cover number ν , each
connected component has diameter at most 2ν .

Proof. Let graph G = (V ,E) have a vertex cover W of size

|W | = ν . Let P = v1,v2, ...,vl be a path of length l passing through
distinct vertices vi ∈ V for i ∈ [l]. As V \W is an independent set,

any path which passes through a vertex vj ∈ V \W must either

end at vj , begin at vj or have path vertices vj−1,vj+1 ∈W . In the

worst case, P contains all ν vertices inW in its path, and at most

ν + 1 vertices inV \W , giving a path with 2ν + 1 vertices on it, and

hence a path length of at most 2ν . �

Since the function f determines which equivalence classes

vanish, we can compute the distances between every pair of

non-vanishing equivalence classes and vertex cover vertices. This

is exactly the distance in the graph obtained from G by deleting

all vanishing equivalence classes and merging each remaining

equivalence class into a single vertex. We denote by δ (x ,y) the
distance between x and y in this graph, where x and y are vertices

fromW or equivalence classes from P . We have that δ (Pi , Pi ) = 2

if the vertices in Pi have a neighbor and δ (Pi , Pi ) = ∞ if not. We

take the convention that any number divided by∞ equals 0.
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We now de�neOB J ′, which is the inverse geodesic length of the

graph obtained after deleting X :

OB J ′ :=
∑
u ∈W

∑
v ∈W \{u }

1

δ (u,v )
+
∑
u ∈W

∑
i∈[ϕ]
f (i )=1

xi
δ (u, Pi )

+
∑
i∈[ϕ]
f (i )=1

xi · (xi − 1)

2 · δ (Pi , Pi )
+
∑
i∈[ϕ]
f (i )=1

∑
j∈[ϕ]\{i }
f (j )=1

xi · x j

δ (Pi , Pj )

Since the coe�cients of OB J need to be integers, we de�ned OB J
by multiplying OB J ′ by the least common multiple of the integers

1 to 2ν . We observe that all coe�cients that multiply the variables

xi are bounded as a function of ν . �

Theorem 3.13. RMinIGL is FPT for parameter neighborhood

diversity.

Proof. The proof is similar to the proof of Theorem 3.11. Let

(G,k, Sd ,T ) be an instance of RMinIGL with G = (V ,E) and let η
be its neighborhood diversity. We construct a function P : V → [η]
where Pi is an equivalence class de�ned by the rule that if u,v ∈ Pi
then N (u) \ {v} = N (v ) \ {u}, and there are η such equivalence

classes, as de�ned by the de�nition of neighborhood diversity. We

note that any partition is either an independent set or a clique.

We once again consider the set of vanishing functions f : [η]→
{0, 1}, where f (i ) = 1 requires all vertices of Pi to be deleted and

f (j ) = 1 requires that not all vertices of Pi are deleted.
Let variable xi represent the number of vertices that remain in

equivalence class Pi after deleting the vertices in X , in other words

xi = |Pi\X |. Consider the following integer quadratic program.

minimize OB J

subject to
η∑
i=1

xi ≥ |V | − k

1 ≤ xi ∀ 1 ≤ i ≤ η with f (i ) = 1

xi = 0 ∀ 1 ≤ i ≤ η with f (i ) = 0

|Sd ∩ Pi | ≤ xi ∀ 1 ≤ i ≤ η

xi ≤ |Pi | ∀ 1 ≤ i ≤ η

xi ∈ Z
η ∀ 1 ≤ i ≤ η.

Given f , we can again determine the distances between equivalence

classes inG−X . Denote by δ (Pi , Pj ) the distance between a vertex in
Pi and a vertex in Pj inG −X . We use the convention that δ (Pi , Pi )
is 1 if Pi is a clique, 2 if Pi is an independent set with at least one

neighbor inG −X , and∞ if Pi consists of isolated vertices inG −X .

We observe that the diameter of each connected component of the

graph is at most η.
We de�ne the inverse geodesic length of G − X as

OB J ′ :=
∑
i∈[η]
f (i )=1

xi
δ (Pi , Pi )

+
∑
i∈[η]
f (i )=1

∑
j∈[η]\{i }
f (j )=1

xi · x j

δ (Pi , Pj )

Since the coe�cients ofOB J need to be integers, we de�nedOB J by
multiplyingOB J ′ by the least common multiple of the integers 1 to

η. We observe that all coe�cients that multiply the variables xi are
bounded as a function ofη. There are at most 2

η
vanishing functions,

and the resulting IQPs have a number of variables bounded by the

neighborhood diversity numberη, and amaximum coe�cient upper

bounded by a function of η. By Proposition 3.1, solving the IQP is

FPT for η, hence RMinIGL is FPT for parameter η. �

Theorem 3.14. DeStackIGL is FPT for parameter vertex cover

number and defender budget kd combined.

Proof. Let (G = (V ,E),kd ,kx ,T ) be an instance of

DeStackIGL with ν being the size of a minimum vertex cover in G .
LetW be a vertex cover of size ν computed in timeO (1.2738ν +νn)
[6].

This algorithm will compute a solution to DeStackIGL by �rst

considering all valid defender strategies as subsets using the vertex

coverW , and then calling RMinIGL as a subroutine in order to

compute the minimum IGL that an attacker could compute given a

valid defender subset.

We �rst enumerate subsets of the vertex coverW with at most

sizekd in time 2
ν
. LetW ′ ⊆W be such a set. Thenwe take the graph

V \W which we know to be an independent set and computeϕ ≤ 2
ν

equivalence classes onV \W , where two verticesu,v ∈ V are in the

same independence class if and only if N (u)\{v} = N (v )\{u}. We

then do an ϕ way branching, picking an equivalence class, and then

any vertex inside the equivalence class, kd − |W | times which in the

worst case takes ϕkd time. It su�ces to consider branching only on

equivalence classes as all vertices in a particular class contribute

the same amount to reducing the IGL.

We then let Sd be the selected vertices from both a computed

subset ofW and the ϕ way branching, and create a (G,kx , Sd ,T )
instance for Theorem 3.11.

As the running time of Sd selection is upper bounded by 2
ν ·

(2ν )kd and the IQP create from Theorem 3.11 is FPT for parameter

ν then it follows thatDeStackIGL is FPT for parameter vertex cover

and defender budget kd . �

Theorem 3.15. DeStackIGL is FPT for parameter neighborhood

diversity and defender budget kd combined.

Proof. Let (G,kd ,kx ,T ) be an instance of DeStackIGL with

G = (V ,E) with η being the neighborhood diversity number in G.
We will compute P : V → [η] the partition function for equivalence

classes based on neighbors, and for simplicity denote the set {v :

v ∈ V , P (v ) = i} = Pi .
As the removal of any vertex in some partition Pi contributes to

the same reduction in IGL, then we proceed to perform an η way

branching, picking a partition each time, and a single vertex from

the partition, to a depth of kd for a total of kd vertices.

We then let Sd be the selected vertices from this procedure,

and create a (G,kx , Sd ,T ) instance for Theorem 3.13. A solution

to DeStackIGL will be the Sd that returns the largest value form

RMinIGL

As the running time of Sd selection is upper bounded by ηkd

and the IQP created from Theorem 3.13 is FPT for parameter η then

it follows that DeStackIGL is FPT for parameter neighborhood

diversity and defender budget kd . �

4 EXPERIMENTAL RESULTS
Empirical results were obtained for RMinIGL and DeStackIGL

on real-world datasets [37] with running times shown in Tables

1 and 2. For comparison, a brute force algorithm for RMinIGL
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was implemented enumerating all

(n
k

)
possible vertex subsets to

remove of an input graphG and looked for the smallest IGL among

them. For the experiments in Table 1, we have set Sd = ∅. A brute

force implementation of DeStackIGL was implemented by also

enumerating

( n
kd

)
possible protected subsets, before running the

brute force RMinIGL algorithm described above with k = kx , for a

total running time within a polynomial factor of

( n
kd

)
·
( n
kx

)
.

We see that in comparison to the brute force implementations,

the FPT implementations are e�cient. Especially, when the values

of the parameters namely vertex cover number ν , neighborhood
diversity η and defender budget are small compared to the number

of vertices. The outlier is the ‘Rhodes’ network for which our

methods do not give an improvement (except in one case). But this

is not surprising given that our methods are tailored to instances

with small parameter values whereas both the vertex cover number

and neighborhood diversity of the ‘Rhodes’ network are quite large

compared to the number of vertices.

Our implementations were tested on aMacbook Pro (A1707) with

Intel 2.6 GHz Core i7 (I7-6700HQ) CPU . The implementations were

written in Python, with extensive use of the scienti�c programming

package NumPy and outsourcing the majority of the IQP problem

to Gurobi. Wemake note that while Gurobi is e�cient, it is a general

purpose solver and does not implement Lokshtanov’s FPT algorithm

[24]. Nevertheless, for Integer Linear Programming, it has been

established in some domains (see, e.g., [4]) that o�-the-shelf solvers

also perform well for problems that are FPT. It is possible though,

that solvers exploiting a small number of variables and coe�cients

might have a large advantage over Gurobi.

5 CONCLUSIONS
We have analyzed the parameterized complexity of DeStackIGL for

several parameters. We were mainly concerned about the border

between tractability and intractability. Our results suggest that

for the problem to become FPT, it is more important to bound

the attacker budget than the defender budget, unless one can

identify some nice structure in the input instances, such as bounded

neighborhood diversity or vertex cover number.

There are several questions that we leave open. It might be

possible to strengthen some of our hardness results. In particular,

we conjecture that DeStackIGL is ΣP
2
-complete. The class of trees

remains of interest for this problem, and it remains open from [2]

whether MinIGL is polynomial-time solvable on trees.

Finally, in situations where the attacker cannot wait to see which

vertices the defender protects, it might make sense to consider

mixed strategies. Repeated games would also be an interesting

direction for future research.
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Table 1: Running time (seconds) for RMinIGL

Data n ν η k

Algorithms

FPT

ν
FPT

η
Brute

Force

Greece 18 6 11

3 1.58 2.81 4.30

4 3.56 9.48 17.96

Cielnet 25 7 17

3 11.40 20.23 42.50

4 43.85 73.23 212.62

Acero 25 7 18

3 14.23 27.04 44.07

4 38.95 76.39 206.62

Cocaine 28 6 16

3 20.77 29.39 85.39

4 45.28 68.70 464.00

Jake 38 8 19

3 36.17 65.35 534.30

4 88.15 139.10 3372.96

Mambo 31 12 22

3 69.93 63.35 158.98

4 223.46 234.97 714.41

Gangs 35 12 29

3 144.41 226.15 234.79

4 847.99 1329.08 1788.30

Rhodes 22 13 18

3 19.91 15.17 13.18

4 86.08 54.10 53.66

Siren 44 18 21

3 15.17 129.98 991.66

4 54.10 505.42 9648.39

Togo 33 10 20

3 50.14 28.23 164.03

4 223.74 96.57 1142.38

Table 2: Running time (seconds) for DeStackIGL

Data n ν η kd ,kx

Algorithms
FPT

ν + kd
FPT

η + kd
Brute

Force

Greece 18 6 11

2, 2 20 32 101

3, 3 155 164 1919

Cielnet 25 7 17

2, 2 79 521 1159

3, 3 635 6942 49582

Acero 25 7 18

2, 2 343 485 1409

3, 3 5975 8614 47544

Cocaine 28 6 16 2, 2 289 478 2520

Jake 38 8 19 2, 2 893 1642 26616

Mambo 31 12 22 2, 2 1946 2141 7381

Gangs 35 12 29 2, 2 6884 10418 13055

Rhodes 22 13 18 2, 2 548 460 543

Siren 44 18 21 2, 2 17085 4709 75918

Togo 33 10 20 2, 2 2387 1113 11659
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