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ABSTRACT

We study the problem of fairly allocating a set of indivisible goods

among agents with additive valuations. The extent of fairness of

an allocation is measured by its Nash social welfare, which is the

geometric mean of the valuations of the agents for their bundles.

While the problem of maximizing Nash social welfare is known

to be APX-hard in general, we study the effectiveness of simple,

greedy algorithms in solving this problem in two interesting special

cases.

First, we show that a simple, greedy algorithm provides a 1.061-

approximation guarantee when agents have identical valuations,

even though the problem of maximizing Nash social welfare re-

mains NP-hard for this setting. Second, we show that when agents

have binary valuations over the goods, an exact solution (i.e., a

Nash optimal allocation) can be found in polynomial time via a

greedy algorithm. Our results in the binary setting extend to pro-

vide novel, exact algorithms for optimizing Nash social welfare

under concave valuations. Notably, for the above mentioned sce-

narios, our techniques provide a simple alternative to several of

the existing, more sophisticated techniques for this problem such

as constructing equilibria of Fisher markets or using real stable

polynomials.
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1 INTRODUCTION

We study the problem of fairly allocating a set of indivisible goods

among agents with additive valuations for the goods. The fairness

of an allocation is quantified by its Nash social welfare [11, 16],

which is the geometric mean of the valuations of the agents under

that allocation. The notion of Nash social welfare has traditionally

been studied in the economics literature for divisible goods [15],

where it is known to possess strong fairness and efficiency properties

[20]. Besides, this notion is also attractive from a computational

standpoint: For divisible goods, the Nash optimal allocation can

be computed in polynomial time using the convex program of

Eisenberg and Gale [9].
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For indivisible goods, Nash social welfare once again provides

notable fairness and efficiency guarantees [5]. However, the com-

putational results in this setting are drastically different from its

divisible counterpart. Indeed, it is known that the problem of maxi-

mizing Nash social welfare for indivisible goods is APX-hard when

agents have additive valuations for the goods [12]. On the algorith-

mic side, the first constant-factor (specifically, 2.89) approximation

for this problem was provided by Cole and Gkatzelis [7]. This ap-

proximation factor was subsequently improved to e [2], 2 [6] and,
most recently, to 1.45 [3]. Similar approximation guarantees have

also been developed for more general market models such as piece-

wise linear concave utilities [1], budget additive valuations [10],

and multi-unit markets [4]. By and large, these approaches rely

on either constructing an appropriate fractional equilibrium of a

Fisher market and later rounding it to an integral allocation, or us-

ing real stable polynomials. Although these approaches offer strong

approximation guarantees in very general market models, they

are also (justifiably) more involved and often lack a combinatorial

interpretation. Our interest in this work, therefore, is to understand

the power of simple, combinatorial algorithms (in particular, greedy

techniques) in solving interesting special cases of this problem.

Our results and techniques. We consider the Nash social welfare

objective (NSW) as a measure of fairness in and of itself, and de-

velop greedy algorithms for maximizing NSW either exactly or

approximately. We focus on two special classes of additive valua-

tions, namely identical valuations (i.e., for any good j and any pair

of agents i,k , the value of the good j for i is equal to the value of the
good for k ; vi, j = vk, j ) and binary valuations (i.e., for every agent

i and good j , agent i’s value for j is either 0 or 1; vi, j ∈ {0, 1}). The
class of identical valuations is well-studied in the approximation

algorithms literature, and binary valuations capture the setting

where each agent finds a good either acceptable or not.

For identical valuations, we show that a simple greedy algorithm

provides a 1.061-approximation to the optimal Nash social welfare

(Theorem 3.1). Note that the problem ofmaximizing Nash social wel-

fare remains NP-hard even for identical valuations (via a reduction

from the Partition problem [19]). Our algorithm (Algorithm 1)

works by allocating the goods one by one in descending order of

value. At each step, a good is allocated to the agent with the least

valuation. This implicitly corresponds to greedily choosing an agent

that provides the maximum improvement in NSW. We show that

the allocation returned by our algorithm satisfies an approximate

version of envy-freeness property (Lemma 4.1), and that any alloca-

tion with this property gives the desired approximation guarantee

(Lemma 4.2). We remark that a polynomial time approximation

scheme (PTAS) is already known for this problem [17]. However,

this scheme uses Lenstra’s algorithm for integer programs [14] as

a subroutine, and hence is not combinatorial. Moreover, despite
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being polynomial time in principle, the actual running time of such

algorithms often scales rather poorly. By contrast, our algorithm

involves a single sorting step and at most one min(·) operation for

each good, thus it requires O(m logm +mn) time overall.

For binary valuations, we show that an exact solution to the

problem (i.e., a Nash optimal allocation) can be found by a greedy

algorithm in polynomial time (Theorem 3.2). However, unlike the al-

gorithm for identical valuations which greedily picks an agent, our

algorithm for binary valuations makes a greedy decision with re-

spect to swaps (or chains of swaps) between a pair of agents. A swap

refers to taking a good away from one agent and giving it to another

agent. A chain of swaps refers to a sequence of agentsu1,u2, . . . ,uℓ
and goods j1, j2, . . . , jℓ−1 such that j1 is swapped from u1 to u2, j2
is swapped from u2 to u3, and so on. Given any suboptimal alloca-

tion, our algorithm (Algorithm 2) checks for every pair of agents

whether there exists a chain of swaps between them that improves

NSW. The pair that provides the greatest improvement is chosen,

and the corresponding swaps made. We show that the algorithm

makes substantial progress toward the Nash optimal after each such

reallocation (Lemma 5.1), which provides the desired running time

and optimality guarantees. An interesting feature of our algorithm

is that the guarantee for additive valuations extends to a more

general utility model where the valuation of each agent is a con-

cave function of its cardinality (i.e., the number of nonzero-valued

goods in its bundle).
1
Prior work [8] has shown that a Nash optimal

can be found efficiently under binary valuations (via reduction to

minimum-cost flow problem). However, these techniques crucially

rely on valuations depending linearly on cardinality, and it is un-

clear how to extend these to the aforementioned utility model. Our

results, therefore, provide novel, exact algorithms for maximizing

Nash social welfare under concave valuations.

2 PRELIMINARIES

Problem instance. An instance ⟨[n], [m],V⟩ of the fair division
problem is defined by (1) the set of n ∈ N agents [n] = {1, 2, . . . ,n},
(2) the set ofm ∈ N goods [m] = {1, 2, . . . ,m}, and (3) the valuation
profile V = {v1,v2, . . . ,vn } that specifies the preferences of each
agent i ∈ [n] over the set of goods [m] via a valuation function

vi : 2
[m] → Z+ ∪ {0}. Throughout, the valuations are assumed to

be additive, i.e., for any agent i ∈ [n] and any set of goods G ⊆ [m],
vi (G) B

∑
j ∈G vi ({j}), where vi ({∅}) = 0. We use the shorthand

vi, j instead of vi ({j}) for a singleton good j ∈ [m]. We will use Γi
to denote the set of goods that are positively valued by agent i , i.e.,
Γi B {j ∈ [m] : vi, j > 0}.

Binary valuations. We say that agents have binary valuations if

for each agent i ∈ [n] and each good j ∈ [m], vi, j ∈ {0, 1}.

Identical valuations. We say that agents have identical valuations

if for any good j ∈ [m] and any pair of agents i,k ∈ [n], we have
vi, j = vk, j . For identical valuations, we will assume, without loss

of generality, that the value of each good is nonzero. In addition,

we will drop the agent-specific subscripts, and simply write v({j})
to denote the value of good j.

1
Notice that for binary and additive utilities, the valuation of each agent is a linear

function of its cardinality.

Allocation. An allocation A ∈ {0, 1}n×m refers to an n-partition
(A1, . . . ,An ) of [m], where Ai ⊆ [m] is the bundle allocated to the

agent i . Let Πn ([m]) denote the set of all n partitions of [m]. Given
an allocation A, the valuation of an agent i ∈ [n] for the bundle Ai
is vi (Ai ) =

∑
j ∈Ai vi, j . An allocation is said to be non-wasteful if

no agent is assigned a good that it values at zero, i.e., for each agent

i and each good j ∈ Ai , we have vi, j > 0.

Nash social welfare. Given an instance I = ⟨[n], [m],V⟩ and an

allocation A, the Nash social welfare of A is given by NSW(A) B(∏
i ∈[n]vi (Ai )

)
1/n

. An allocation A∗ said to be Nash optimal if

A∗ ∈ argmaxA∈Πn ([m]) NSW(A). An allocation B is said to be a

β-approximation (where 0 ≤ β ≤ 1) for the instance I if NSW(B) ≥
β · NSW(A∗). For the approximation guarantees to be meaningful,

we will assume that the Nash optimal for any given instance has

nonzero Nash social welfare.

3 MAIN RESULTS

We provide two main results: a 1.061-approximation algorithm

for identical valuations (Theorem 3.1), and an exact algorithm for

binary valuations (Theorem 3.2). The proofs of these results are

presented in Sections 4 and 5 respectively.

Theorem 3.1 (Identical valuations). Given any fair divi-

sion instance with additive and identical valuations, there exists a

polynomial time 1.061-approximation algorithm for the Nash social

welfare maximization problem.

Theorem 3.2 (Binary valuations). Given any fair division in-

stance with additive and binary valuations, a Nash optimal allocation

can be computed in polynomial time.

4 IDENTICAL VALUATIONS: PROOF OF

THEOREM 3.1

This section provides the proof of Theorem 3.1.

Theorem 3.1 (Identical valuations). Given any fair divi-

sion instance with additive and identical valuations, there exists a

polynomial time 1.061-approximation algorithm for the Nash social

welfare maximization problem.

Our proof of Theorem 3.1 relies on two intermediate results:

First, we will show in Lemma 4.1 that the allocation computed

by the greedy algorithm (called Alg-Identical, given in Algo-

rithm 1) satisfies an approximate envy-freeness property called

EFx, defined below. We will then show in Lemma 4.2 that any allo-

cation with this property—in particular, the allocation computed

by Alg-Identical—provides a 1.061 approximation guarantee. We

will start by describing the notion of envy-freeness and some of its

variants.

Envy-freeness and its variants. Given an instance ⟨[n], [m],V⟩
and an allocation A, we say that an agent i ∈ [n] envies another
agent k ∈ [n] if i prefers the bundle of k over its own bundle, i.e.,

vi (Ak ) > vi (Ai ). An allocation A is said to be envy-free (EF) if each

agent prefers its own bundle over that of any other agent, i.e., for

every pair of agents i,k ∈ [n], we have vi (Ai ) ≥ vi (Ak ). Likewise,
an allocation A is said to be envy-free up to the least positively
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Algorithm 1: Greedy Algorithm for Identical Valuations

(Alg-Identical)

Input: An instance ⟨[n], [m],V⟩ with identical, additive

valuations.

Output: An allocation A.

1 Order the goods in descending order of value, i.e.,

v(j1) ≥ v(j2) ≥ . . .v(jm ) > 0.

2 Set A← (∅, ∅, . . . , ∅).

3 for ℓ = 1 tom do

4 Set i ← argmink ∈[n]v(Ak ) // ties are broken

lexicographically

5 Ai ← Ai ∪ {jℓ} // Allocate the good jℓ to the

agent with the least valuation

6 end

7 return A

valued good (EFx) if for every pair of agents i,k ∈ [n], we have

vi (Ai ) ≥ vi (Ak \ {j}) for every j ∈ Ak such that vi, j > 0. The

notion of EFx first appeared in the work of Caragiannis et al. [5].

Plaut and Roughgarden [18] study the existence of EFx allocations

for special cases of the fair division problem.

We will now describe our algorithm called Alg-Identical.

Greedy algorithm for identical valuations. As mentioned earlier

in Section 1, our algorithm Alg-Identical (Algorithm 1) allocates

the goods one by one in descending order of their value. In each

iteration, a good is assigned to the agent with the least valuation.

Assigning goods in this manner ensures that at each step, the algo-

rithm picks the agent providing the greatest improvement in NSW.

It is easy to see that Alg-Identical runs in polynomial time. Our

next result (Lemma 4.1) shows that Alg-Identical always outputs

an EFx allocation.

Lemma 4.1. The allocation A returned by Alg-Identical is EFx.

Proof. Let Aℓ
be the allocation maintained by Alg-Identical

at the end of the ℓth iteration. It suffices to show that for each

ℓ ∈ [m], if Aℓ−1
is EFx, then so is Aℓ

.

Recall that Alg-Identical assigns the good jℓ to the agent i in

the ℓth iteration, i.e., thus Aℓ
i = Aℓ−1

i ∪ {jℓ}. Thus, only agent i’s
valuation is affected by the assignment of jℓ , while the allocation
any other agent k ∈ [n] \ {i} is unchanged. Therefore, in order to

establish that Aℓ
is EFx, we only need to consider agent i and show

that v(Aℓ
i \ {j}) ≤ v(Aℓ

k ) for all k ∈ [n] and each j ∈ Aℓ
i . Since

Alg-Identical processes the goods in decreasing order of value,

the good jℓ is the least valued good in Aℓ
i . Thus, for any j ∈ Aℓ

i ,

we have that v(Aℓ
i \ {j}) ≤ v(A

ℓ
i \ {jℓ}) = v(A

ℓ−1
i ) ≤ v(A

ℓ
k ) for all

k ∈ [n]; here, the last inequality follows from the agent selection

rule of Alg-Identical, i.e., the fact that i ∈ argmink ∈[n]v(A
ℓ−1
k ).

This shows that Aℓ
must be EFx. �

Our final result in this section shows that any EFx allocation

provides a 1.061 approximation to Nash social welfare when the

valuations are additive and identical. Our analysis in Lemma 4.2 is

similar to that of Barman et al. [3, Lemma 14], who, under the same

set of assumptions, showed that an EF1 allocation
2
provides an e

1

e -

approximation to the Nash social welfare maximization problem.

Lemma 4.2. Let I = ⟨[n], [m],V⟩ be an instance with additive

and identical valuations, and let A be an EFx allocation for I. Then,

NSW(A) ≥ 1

1.061NSW(A
∗), where A∗ is the Nash optimal allocation

for I.

Proof. For notational convenience, we will reindex the bundles

in the allocationA such thatv(A1) ≥ v(A2) ≥ · · · ≥ v(An ), wherev
denotes the (additive and identical) valuation function for all agents.

Let ℓ B mink v(Ak ) denote the valuation of the least valued bundle

under A (thus v(An ) = ℓ).
For any agent k ∈ [n − 1] with two or more goods in Ak , EFx

property implies that

v(Ak ) ≤ 2ℓ. (1)

In particular, Equation (1) implies that if v(Ak ) > 2ℓ for some

k ∈ [n − 1], then Ak consists of exactly one good. Let S B {k ∈
[n] : v(Ak ) > 2ℓ} denote the set of agents with such singleton

bundles. Write s = |S | and let AS B {j1, j2, . . . , js } denote the set
of goods owned by the agents in S .

For analysis, we will now consider a set of allocations where

only the goods inAS are required to be allocated integrally, and any

other good can be allocated fractionally among the agents. Formally,

we define a partially-fractional allocation B ∈ [0, 1]n×m as follows:

For every good j ∈ AS , Bi, j ∈ {0, 1} for any agent i ∈ [n] subject to∑
i Bi, j = 1, and for any other good j ∈ [m] \ AS , Bi, j ∈ [0, 1] for

any agent i ∈ [n] subject to
∑
i Bi, j = 1. We let F denote the set

of all such partially-fractional allocations, and let AF denote the

Nash optimal allocation in F .3 Since all integral allocations belong

to F , we have NSW(AF) ≥ NSW(A∗). Therefore, in order to prove

the lemma, it suffices to show that NSW(A) ≥ 1

1.061NSW(A
F).

Define α B mink ∈[n]v(A
F
k )/ℓ. Observe that the goods in AS ,

namely j1, j2, . . . , js , must be allocated to s different agents under

AF . This is because the combined value of all goods in [m] \AS is

strictly less than 2ℓ(n − s). Therefore, if two or more goods in AS
are allocated to the same agent (say agent a), then there must be

another agent (agent b) with value strictly less than 2ℓ. In that case,

we can obtain another partially-fractional allocation A′ ∈ F with

NSW(A′) > NSW(AF) by swapping the allocation of agent b under

AF with one of the goods (of value more than 2ℓ) allocated to agent

a. This results in a contradiction, since, by assumption, AF is Nash

optimal. Therefore, without loss of generality, no two goods in AS
are allocated to the same agent under AF . This observation allows

us to reindex the agents so that ji ∈ A
F
i for all i ∈ S .

It is easy to see that α ≥ 1.
4
In addition, we can show that α < 2.

Indeed, as argued above,

∑
i>s v(A

F
i ) < 2ℓ(n − s). This implies that

αℓ = mini v(A
F
i ) < 2ℓ, i.e., α < 2. Using this bound we can estab-

lish a useful structural property of AF : For all i ∈ S , the bundles

2
An allocation A is said to be envy-free up to one good (EF1) if for every pair of agents

i, k ∈ [n], there exists a good j ∈ Ak such that vi (Ai ) ≥ vi (Ak \ {j }).
3
The valuation of an agent under a fractional allocation B is given by v(Bi ) =∑
j v(j)Bi, j .

4
If α < 1, then it must be thatv(AFn ) < ℓ, i.e., a nonzero amount of fractional good is

taken away from the bundle An . In that case, one can reassign (part of) this fractional

good—currently assigned to one of the agents in [n − 1]— to AFn and strictly improve

the Nash social welfare, contradicting the assumption that AF is Nash optimal in F.

Session 1: Social Choice Theory 1 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

9



AFi are singletons (i.e., AFi = {ji } for all i ∈ S) and, for all k < S ,

we have v(AFk ) = αℓ. This follows from the observation that any

bundle AFk in AF which has a fractionally allocatable good (say,

good j) is of value equal to αℓ = mina v(A
F
a ); otherwise, we can

“redistribute” j between AFk and argmink v(A
F
k ) to obtain another

fractional allocation with strictly greater NSW. Moreover, since for

any i ∈ S , ji ∈ AFi and v(ji ) > αℓ, the bundle AFi does not con-

tain a fractionally allocatable good. This, in particular, implies that

∪i ∈SA
F
i = AS . All the remaining goods in [m] \AS are fractionally

allocatable, and hence the bundles AFk for all k < S are of value

equal to αℓ. This structural property gives us the following bound

for NSW(AF):

NSW(AF) =
©­«
∏
i ∈S

v(AFi ) ·
∏

i ∈[n]\S

v(AFi )
ª®¬
1/n

=

(∏
i ∈S

v(Ai ) · (αℓ)
(n−s)

)
1/n

. (2)

We will now provide a lower bound for NSW(A) that will allow
us to prove the desired approximation guarantee. This is done by

constructing an allocation A′ ∈ F such that NSW(A′) ≤ NSW(A).
Along with Equation (2), this provides an analysis-friendly lower

bound for the quantity NSW(A′)/NSW(AF).
We will start with the initialization A′ ← A. Next, while there

exist two agents i,k ∈ [n] such that ℓ < v(A′i ) < v(A′k ) < 2ℓ, we

transfer goods of value ∆ = min{v(A′i ) − ℓ, 2ℓ − v(A
′
k )} from A′i

(the lesser valued bundle) to A′k (the larger valued bundle). Such a

transfer is possible because the goods in the bundles with value less

than 2ℓ are allowed to be allocated fractionally. Notice that the Nash

social welfare does not increase as a result of this transfer. Also, it

is easy to see that this process terminates, since after each iteration

of the while loop, either v(A′i ) = ℓ or v(A
′
k ) = 2ℓ or both, and

hence some agent can take no further part in any future iterations.

Upon termination of the above procedure, there can be at most one

agent (say agent r ) such that v(A′r ) ∈ (ℓ, 2ℓ); for every other agent

k ∈ [n] \ S , we have v(A′k ) ∈ {ℓ, 2ℓ}.

Let T = {k ∈ [n] : v(A′k ) ≥ 2ℓ} and let t = |T |. Notice that by

construction of A′, S ⊆ T ; hence, s ≤ t . We then have the following

bound on the Nash social welfare of the allocation A′:

NSW(A′) =
©­«
∏
i ∈S

v(A′i ) ·
∏

i ∈T \S

v(A′i ) ·
∏

i ∈[n]\T

v(A′i )
ª®¬
1/n

≥

(∏
i ∈S

v(Ai ) · (2ℓ)
(t−s) · ℓ(n−t )

)
1/n

. (3)

Let ϕ =
∑
k ∈[n]\S v(Ak ) denote the combined value of all goods

except for those in AS . We will now use the allocations AF and A′

to obtain upper and lower bounds for ϕ, which in turn will help us

achieve the desired approximation ratio for the allocation A.
First, recall that the goods in the set AS = {j1, j2, . . . , js } are

allocated as singletons in AF to the bundles i ∈ S . Along with the

fact that v(AFk ) = αℓ for all k ∈ [n] \ S , this gives

ϕ =
∑

k ∈[n]\S

v(AFk ) = (n − s) · αℓ. (4)

Next, in the allocation A′, each bundle corresponding to agents

in T \ S is valued at exactly 2ℓ, and that for each agent in [n] \T
(except for the agent r ) is valued at exactly ℓ. By overestimating

v(A′r ) to be 2ℓ, we get

ϕ ≤ 2ℓ(t + 1 − s) + ℓ(n − t − 1). (5)

Equations (4) and (5) together imply that

t − s

n − s
≥ α − 1 −

1

n − s
. (6)

We can lower bound the quantity of interest
NSW(A)
NSW(AF )

, as below:

NSW(A)

NSW(AF)
≥

NSW(A′)

NSW(AF)

≥

(∏
i ∈S v(Ai ) · (2ℓ)

(t−s) · ℓ(n−t )
)
1/n

(∏
i ∈S v(Ai ) · (αℓ)

(n−s)
)
1/n

(from Equations (2) and (3))

=

(
2
t−s

αn−s

)
1/n

≥

(
2
t−s

αn−s

)
1/(n−s)

(
since

(
2
t−s

αn−s

)
1/n
≤

NSW(A)

NSW(AF)
≤ 1 =⇒

2
t−s

αn−s
≤ 1

)
≥

2
α−1− 1

n−s

α
(from Equation (6)). (7)

The
1

n−s term in the exponent in Equation (7) can be neglected

via a scaling argument as follows: Imagine constructing a scaled-up

instance I ′ consisting of c ≥ 1 copies of the instance I. Each

agent’s valuation for (a copy of) a good in the instance I ′ is

exactly as in the original instance I; thus, I ′ has identical val-

uations. For any allocation A that is EFx for I, the allocation

B = (A,A, . . . ,A) is EFx for I ′. Let n′, s ′,α ′, ℓ′,A′F denote the

analogues of n, s,α , ℓ,AF in I ′. Also, let Ã denote the fractional

allocation (AF ,AF , . . . ,AF) in I ′. It is easy to see that n′ = cn,
s ′ = cs , α ′ = α , and ℓ′ = ℓ. Moreover,

NSW(A)

NSW(AF)
=

NSW(B)

NSW(Ã)
≥

NSW(B)

NSW(A′F)
≥

2
α−1− 1

c (n−s )

α
,

where the first term is for the instance I, and the remaining terms

are for the instance I ′. In addition, the relation NSW(A′F) ≥
NSW(Ã) follows from the optimality of A′F for I ′. Notice that

the agent with the least valuation in I (under the allocation A)
values its bundle at strictly below 2ℓ, and thus s < n. Therefore,
the quantity n′ − s ′ = c(n − s) can be made arbitrarily large for

an appropriate choice of c , allowing us to ignore the 1

n−s term in

Equation (7).

We therefore have that
NSW(A)
NSW(AF )

≥ 2
α−1

α . The function
2
α−1

α
for α ≥ 0 is minimized at α = 1/ln 2 ≈ 1.44, and the minimum

Session 1: Social Choice Theory 1 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

10



value is
1

2
e ln 2 ≈ 1

1.061 . This gives the desired approximation ratio,

completing the proof of Lemma 4.2. �

Example 4.3 shows that the approximation guarantee of Lemma 4.2

is almost tight.

Example 4.3. Consider an instance withm goods (m is even) and

n = 2 agents, where the (additive and identical) valuations are given

byv(j1) = v(j2) =m− 2, andv(jℓ) = 1 for ℓ ∈ {3, 4, . . . ,m}. Notice
that the allocation A = {(j1, j2), (j3, . . . , jm )} is EFx. Additionally,

NSW(A) = ((2m − 4) · (m − 2))1/2. It is also clear that NSW(A∗) =
3

2
(m − 2). The approximation ratio of A is given by

NSW(A)

NSW(A∗)
=

(
(2(m − 2)) · (m − 2)

(3(m − 2)/2) · (3(m − 2)/2)

)
1/2

≈
1

1.0607
,

which closely matches the approximation guarantee of Lemma 4.2.

5 BINARY VALUATIONS: PROOF OF

THEOREM 3.2

This section provides the proof of Theorem 3.2.

Theorem 3.2 (Binary valuations). Given any fair division in-

stance with additive and binary valuations, a Nash optimal allocation

can be computed in polynomial time.

Our proof of Theorem 3.2 relies on a greedy algorithm (Algo-

rithm 2, hereafter referred to as Alg-Binary). Starting from any sub-

optimal allocation, Alg-Binary identifies a pair of agents such that

a chain of swaps between them provides the greatest improvement

in Nash social welfare (from among all pairs of agents). Lemma 5.1

quantifies the progress toward the Nash optimal allocation made by

Alg-Binary in each step. As it turns out, the algorithm is required

to run for at most 2m(n + 1) ln(nm) iterations. Overall, this pro-
vides a polynomial time algorithm for computing a Nash optimal

allocation for binary valuations.

Greedy algorithm for binary valuations. The input to Alg-Binary

is an instance with additive and binary valuations along with a sub-

optimal allocation, and output is a Nash optimal allocation. At each

step, the algorithm performs a greedy local update over the current

allocation. Specifically, given an allocation A = (A1,A2, . . . ,An ),
Alg-Binary constructs a directed graph G(A) as follows: There is
a vertex for each agent (hence n vertices overall), and between any

pair of vertices u and v , there are |Γv ∩Au | parallel edges directed
fromu tov .5 A directed edge (u,v) exists if and only if there exists a
good that is valued byv and is currently assigned tou. Observe that
a directed simple path P = (u1,u2, . . . ,uk ) in G(A) corresponds to
a sequence of reallocations. For each directed edge (ui ,ui+1), there
exists a good j ∈ Aui that can be reassigned to ui+1 via the updates
Aui ← Aui \ {j} and Aui+1 ← Aui+1 ∪ {j}.

Let A(P) denote the allocation obtained by reallocating goods

along the path P = (u1,u2, . . . ,uk ). Such a reallocation increases

(respectively, decreases) the valuation of uk (respectively, u1) by
one, while the valuations of all intermediate agentsu2, . . . ,uk−1 are
unchanged. The algorithm Alg-Binary greedily selects a specific

path P in G(A), and reallocates the goods along P to obtain the

allocation A′ B A(P). Lemma 5.1 below describes the progress

toward the optimal solution made by such a reallocation.

5
Recall that Γi B {j ∈ [m] : vi, j > 0}.

Algorithm 2: Greedy Algorithm for Binary Valuations

(Alg-Binary)

Input: An instance ⟨[n], [m],V⟩ with binary, additive

valuations, and an allocation A.
Output: An allocation A′.

1 Set A0 ← A.

2 for i = 1 to 2m(n + 1) ln(nm) do
3 Construct the graph G(Ai−1) for the current allocation

Ai−1.

4 R ← {(u,v) : v is reachable from u in G(Ai−1)}.

5 for each (u,v) ∈ R do

6 Ai−1(u,v) ← The allocation obtained by

reallocating along some path from u to v .

7 endfor

8 if max(u,v)∈R NSW(Ai−1(u,v)) > NSW(Ai−1) then
9 Update Ai ← arg max

Ai−1(u,v) : (u,v)∈R
NSW(Ai−1(u,v)).

10 else

11 return Ai−1

12 end

13 end

Lemma 5.1. Given a suboptimal allocation A, there exist agents u
and v such that v is reachable from u inG(A), and reallocating along
any directed path P from u to v leads to an allocation A′ B A(P)
that satisfies (here A∗ denotes the Nash optimal allocation)

ln NSW(A∗) − ln NSW(A′) ≤(
1 −

1

m

) (
ln NSW(A∗) − ln NSW(A)

)
.

Remark 1. Note that there can be multiple paths P from u to v in

G(A), and more than one good can be reallocated along a fixed edge

of P , which might lead to different allocations A(P). However, the
Nash social welfare of any resulting allocation is the same, since

the valuation of u (respectively, v) goes down (respectively, up) by

one and that of every other agent remains the same. Hence, the

choice of path between a fixed pair of vertices is inconsequential.

Wewill now show that Lemma 5.1 can used to prove Theorem 3.2,

followed by a proof of Lemma 5.1.

Proof of Theorem 3.2. Lemma 5.1 ensures that if there does

not exist an improving reallocation, then the current allocation

Ai−1 is optimal. Hence, for the rest of the proof, we will focus on

the case wherein the for-loop executes for all 2m(n+1) ln(nm) steps.
The update rule followed byAlg-Binary and Lemma 5.1 together

guarantee that at the end of iteration i , we have

lnNSW(A∗) − ln NSW(Ai ) ≤(
1 −

1

m

)
(ln NSW(A∗) − ln NSW(Ai−1)).

Repeated use of the above bound gives

lnNSW(A∗) − ln NSW(Ai ) ≤
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(
1 −

1

m

)i
(ln NSW(A∗) − ln NSW(A0)).

Since Alg-Binary executes for 2m(n + 1) ln(mn) iterations, the
difference between the optimal allocation A∗ and the allocation A′

returned by the algorithm is given by

lnNSW(A∗) − ln NSW(A′)

≤

(
1 −

1

m

)
2m(n+1) ln(nm)

(ln NSW(A∗) − ln NSW(A0))

≤
1

e2(n+1) ln(nm)
(ln NSW(A∗) − ln NSW(A0))

≤
1

(nm)2(n+1)
ln NSW(A∗)

≤
lnm

(nm)2(n+1)

(since NSW(A∗) ≤ m for binary valuations)

≤
1

nm2n (since lnm ≤ m, and n,m ≥ 2)

<
1

n
ln

(
1 +

1

mn

)
(since ln(1 + x) > x2 for x ∈ (0, 0.5)).

Thus,

∏
i ∈[n]vi (A

∗
i ) <

∏
i ∈[n]vi (A

′
i )

(
1 + 1

mn

)
. We already know

that

∏
i ∈[n]vi (A

′
i ) ≤

∏
i ∈[n]vi (A

∗
i ). Since the valuations are as-

sumed to be integral, and

∏
i ∈[n]vi (A

′
i ) ≤ m

n
, we have that NSW(A∗) =

NSW(A′). Hence, A′ is Nash optimal. �

We will now provide a proof of Lemma 5.1.

Proof of Lemma 5.1. Our proof of existence of the desired path

P in the graph G(A) is made convenient by the formulation of

another graph G∗(A). This graph is utilized only in the analysis of

the algorithm and never explicitly constructed.

Recall that A∗ refers to a Nash optimal allocation. Consider the

directed graph G∗(A) consisting of n vertices, one for each agent,

and a directed edge (u,v) for each good j ∈ Au ∩ A∗v . The edge
(u,v) indicates that the good j must be transferred from u to v to

reach the optimal allocationA∗. Note that the total number of edges

in G∗(A) is at mostm.

Besides defining the graphG∗(A), we will also classify the agents
depending on their valuation relative to A∗. In particular, let E

and D denote the set of agents with excess and deficit valuations

respectively, i.e., E B {u ∈ [n] : |Au | > |A
∗
u |} andD B {v ∈ [n] :

|Av | < |A
∗
v |}.

6
Any agent t ∈ [n] \ (E ∪ D) satisfies |At | = |A

∗
t |.

The remainder of the proof consists of two parts: First, we will

show that the edge set of G∗(A) can be partitioned into simple

directed paths P = {P1, P2, . . . , Pk } and cycles C = {C1,C2, . . .}

such that each path Pi ∈ P starts at a vertex in E and ends at a

vertex in D. Second, we will use this decomposition to argue that

one of the paths Pi ∈ P leads to an allocation A′ B A(Pi ) that
satisfies the bound in Lemma 5.1. The lemma will then follow by

observing that the edges of Pi are also contained in the graphG(A)
constructed by Alg-Binary. Note that the existence of Pi shows
that the end vertex of Pi (say, v) is reachable from the start vertex

6
For binary valuations and a non-wasteful allocationA, we havevi (A) = |A | for each
agent i ∈ [n].

of Pi (say, u) in G(A). As noted earlier in Remark 1, reallocating

along any path between u and v leads to the stated improvement

in Nash social welfare.

We will start by proving the claim about decomposition of the

edge set of G∗(A). Consider a graph H∗ where for each vertex u
of G∗(A), we include max(indegree(u), outdegree(u)) vertices, say
{u1,u2, . . .}. Suppose the vertex u has ℓ incoming edges and ℓ′

outgoing edges in G∗(A). To construct H∗, first we pick an ar-

bitrary one-to-one assignment between the incoming edges and

{u1,u2, . . . ,uℓ}. Similarly, each outgoing edge gets uniquely as-

signed to one of the vertices in {u1,u2, . . . ,uℓ
′

}. With these as-

signments in hand, for every directed edge e = (u,v) in G∗(A), we
include a directed edge (ui ,v j ) in H∗ if and only if e is assigned to

ui and v j . It is easy to see that each edge in H∗ corresponds to an

edge in G∗(A) and vice versa.

Notice that each vertex in H∗ has at most one incoming and

at most one outgoing edge. Furthermore, if ui is a source in H∗,
then u ∈ E. Similarly, if v j is a sink in H∗, then v ∈ D. These

properties together imply that the edges in H∗ can be partitioned

into paths and cycles such that each path starts at a vertex ui with
u ∈ E and ends at a vertex v j with v ∈ D. The correspondence be-

tween the edges of H∗ and G∗(A) gives us the desired collection of

paths P = {P1, P2, . . . , Pk } and cycles C in G∗(A).7 The aforemen-

tioned properties also imply that the paths in H∗ are edge-disjoint,
therefore k ≤ m.

We will now show that for one of the paths Pi ∈ P in G∗(A)
(and therefore, also in G(A)), the allocation A′ B A(Pi ) achieves
the bound in Lemma 5.1. First, observe that reallocating along a

cycle in G∗(A) does not change the Nash social welfare. Hence, in

order to reach a Nash optimal allocation starting from A, it suf-
fices to reallocate goods along the paths P1, P2, . . . , Pk . Moreover,

since the paths in P are edge disjoint in the graph H∗, they cor-

respond to reallocation of disjoint sets of goods. This means that

the reallocations corresponding to a path Pi ∈ P can be performed

independently of those corresponding to another path Pj ∈ P.

Next, consider the sequence of allocations B1,B2, . . . ,Bk , ob-
tained by successively reallocating along the paths P1, P2, . . . , Pk .
That is, B1 = A(P1), B

2 = B1(P2), and so on. Thus, the alloca-

tion Bk must be Nash optimal, i.e., NSW(A∗) = NSW(Bk ). Con-
sider the telescoping sum given by lnNSW(A∗) − ln NSW(A) =∑k−1
i=1 ln NSW(Bi ) − ln NSW(Bi−1), where B0 = A. Since k ≤ m,

there must exist i ∈ [k] such that

lnNSW(Bi ) − ln NSW(Bi−1) ≥

1

m

(
ln NSW(A∗) − ln NSW(A)

)
. (8)

We will now show that the allocation A′ B A(Pi ) satisfies

lnNSW(A′) − ln NSW(A) ≥ ln NSW(Bi ) − ln NSW(Bi−1). (9)

Indeed, recall that each path in P starts at a vertex in E and ends

at a vertex in D. Hence, as we proceed through reallocations corre-

sponding to P1, . . . , Pk , the cardinality of the set of goods assigned

to any agent u ′ ∈ E is non-increasing and that of v ′ ∈ D is non-

decreasing. Therefore, if u (respectively, v) is the start (respectively,
end) vertex of Pi , then ku ≥ k ′u and kv ≤ k ′v , where ku , kv , k

′
u

7
We can ensure that the paths in P are simple by removing cycles from each Pi and
placing such cycles in C.
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and k ′v are the number of goods assigned to u and v in alloca-

tions A and Bi−1 respectively. Since lnNSW(Bi ) − ln NSW(Bi−1) =
ln(k ′u−1)+ln(k

′
v+1)−(lnk

′
u+lnk

′
v ) and lnNSW(A

′)−ln NSW(A) =
ln(ku −1)+ ln(kv +1)−(lnku + lnkv ), the concavity of ln(·) implies

Equation (9). Finally, Equations (8) and (9) give

lnNSW(A∗) − ln NSW(A′) ≤

(
1 −

1

m

)
(ln NSW(A∗) − ln NSW(A)),

as desired. �

Notice that the proof of Lemma 5.1 works exactly the same

way when for each agent i , vi (Ai ) = fi (|Ai |) for some concave

function fi . That is, the valuation of an agent can be an (agent-

specific) concave function of the cardinality (i.e., the number of

nonzero valued goods owned by the agent). Thus, Alg-Binary

can find a Nash optimal allocation in polynomial time even when

the valuation functions of agents are concave in cardinality. This

observation is formalized in Corollary 5.2.

Corollary 5.2. Given any fair division instance with concave

and binary valuations, a Nash optimal allocation can be computed in

polynomial time.

Remark 2. A well-studied class of valuation functions captured

by Corollary 5.2 is that of budget-additive valuations [13]. Under

this class, the valuation of an agent i ∈ [n] for a set of goods

G ⊆ [m] is given by vi (G) B min{ci ,
∑
j ∈G vi, j }, where ci > 0 is

an (agent-specific) constant, known as the utility cap.

Garg et al. [10] recently gave a (2.404 + ε)-approximation algo-

rithm for maximizing Nash social welfare under budget-additive

valuations (for any ε > 0). For binary valuations, a budget-additive

valuation function turns out to be a special case of the concave-in-

cardinality functions mentioned above. Hence, by Corollary 5.2, a

Nash optimal allocation can be found in polynomial time when the

valuations are binary and budget-additive. It is unclear whether

the existing techniques for finding a Nash optimal allocation under

binary and additive valuations [8] admit a similar generalization.
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