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ABSTRACT
Stackelberg security games have received much attention in recent

years. While most existing work focuses on single-defender set-

tings, there are many real-world scenarios that involve multiple

defenders (e.g., multi-national anti-crime actions in international

waters, different security agencies patrolling the same area). In

this paper, we consider security games with uncoordinated defend-

ers who jointly protect a set of targets, but may have different

valuations for these targets; each defender schedules their own

resources and selfishly optimizes their own utility. We generalize

the standard (single-defender) model of Stackelberg security games

to this setting and formulate an equilibrium concept that captures

the nature of strategic interaction among the players. We argue

that an exact equilibrium may fail to exist, and, in fact, deciding

whether it exists is NP-hard. However, under mild assumptions,

every multi-defender security game admits an ϵ-equilibrium for

every ϵ > 0, and the limit points corresponding to ϵ → 0 can be

efficiently approximated.
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1 INTRODUCTION
Stackelberg security games (SSGs) offer a framework to optimize

allocation of defense resources against strategic adversaries. There

is a large body of research on this topic with many successful

applications [1, 25]. Much of the existing work focuses on single-

defender games, where a defender acts first, allocating resources

to protect a set of targets, and an attacker, after having observed

the allocation, responds optimally by attacking a most profitable

target. However, some real-world defense scenarios may involve

multiple defenders. For example, multiple countries may carry out

anti-crime actions in international waters at the same time: It was

reported that there had been actions against oil-siphoning in the

waters between Singapore, Indonesia andMalaysia [26], and against

illegal fishing in the Palk Strait between Sri Lanka and India [10]. As

another example, different security agencies may have overlapping

areas of responsibility and protect targets therein simultaneously:

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

The US Coast Guard and local police departments are known to

patrol independently at some major ports in the USA [8]. To model

such scenarios, we need to consider security games with multiple
defenders.

Sometimes the defenders can be assumed to have the same valua-

tion over the targets, and there are a few papers in the literature that

study this scenario [2, 8] (we survey the related work in Section 1.1).

Another special case considered in prior work is one where each

defender is associated with a disjoint subset of targets, and can

only protect targets in this subset [15, 16, 23]. In contrast, in our

work we consider the more general setting where defenders may

value the targets differently, yet each defender can allocate security

resources to any of the targets. We assume that all defenders choose

their strategies simultaneously, and the attacker responds optimally,

choosing a single target to attack. Thus, our primary focus is the

game among the defenders and the equilibria of this game; we refer

to our solution concept as the Nash-Stackelberg equilibrium (NSE).
Now, an important feature of SSGs, both with a single defender

and with multiple defenders, is that in an equilibrium, an attacker

usually finds several targets equally attractive: if, on the contrary,

there was a unique target t that he preferred to attack, the de-

fender(s) could then shift some resources towards t from other

targets, to make t less vulnerable to the attack while still ensuring

that it is the attacker’s preferred choice. As ties are ubiquitous, the

defenders’ beliefs about the attacker’s behavior in case of a tie play

a crucial role in the analysis. We argue that the standard optimistic
assumption that the attacker would break ties in favor of the de-

fender(s) is inappropriate in the case of a game with heterogeneous

defenders. Instead, we assume that defenders are pessimistic regard-
ing the attacker’s choices. Under this assumption, we are able to

obtain several results concerning the existence and computation

complexity of NSE.

Specifically, we establish that an exact equilibrium may not exist

due to discontinuity of the defenders’ utility functions, and it is

NP-hard even just to decide its existence. Nevertheless, the key

finding of our work is that every multi-defender game admits an

ϵ-equilibrium for every ϵ > 0, and the respective limit points can

be efficiently approximated. This suggests that NSE is a promising

solution concept for multi-defender security games, which deserves

further attention.

1.1 Related Work
There are several papers that consider security games with multiple

defenders; however, we believe that our model is richer and more

realistic than those considered in prior work. Chan et al. [3] con-

sider games in which multiple players decide the amount of security
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investment, but unlike in SSGs the attacker is assumed to act simul-

taneously with the defenders. Jiang et al. [8] and Basilico et al. [2]

study multi-defender games in the leader-follower framework, but

limit their consideration to defenders with identical interests. A se-

ries of papers [12, 15–17, 23] then consider a multi-defender model

where, like in our model, defenders may have different utility func-

tions. However, in this line of work it is assumed that each defender

only protects their own set of targets and these sets are pairwise

disjoint, which simplifies the problem considerably. In addition,

these papers further depart from the standard model of SSGs by

assuming that the attacker breaks ties uniformly at random. There

are also some research efforts toward multi-leader games beyond

the security domain, such as normal-form multi-leader Stackelberg

games [11, 14] and oligopoly models in which leaders choose the

level of investment or production to maximize profits [6, 21, 22].

However, these papers either employ a very different modeling

approach or fall short of offering any algorithmic analysis. We refer

the reader to a comprehensive survey by Lou et al. [15].

It is worth mentioning that, in contrast to multi-defender games,

games involving multiple attackers (or attacker types) have been

studies quite extensively in various settings. These include Bayesian

SSGs [5, 18–20, 27], coalitional SSGs with attacker networks [7, 28],

and, more recently, generic multi-follower Stackelberg games [4].

However, games with multiple leaders, which are the focus of our

work, appear to require fundamentally different techniques than

games with multiple followers.

2 A MULTI-DEFENDER MODEL
A multi-defender security game is played between n defenders

and an attacker. The defenders protect a set of m targets which

the attacker wants to attack. As in an SSG, the defenders act first,

simultaneously and independently; the attacker acts after having

observed the defenders’ strategies.

Specifically, each defender i has ki defense resources, which she

allocates to protect the targets. A target is said to be protected, or
covered, if at least one resource is allocated to it; and unprotected,
or uncovered, otherwise. In the pure strategy setting, an attack on

a protected target j is unsuccessful and results in the attacker re-

ceiving a penalty paj , and each defender i receiving a reward rdi j . An

attack on an unprotected target is successful: the attacker receives

a reward raj , and each defender receives a penalty pdi j .
1
We assume

that rdi j > pdi j and r
a

j > paj , i.e., each defender prefers an attack to be

unsuccessful, and the attacker prefers the opposite. Thus, although

defenders are heterogeneous, they all want all targets to be safe.

In the mixed strategy setting, the strategy of a defender i is a
distribution over all feasible ways of allocating resources. Such a

strategy can be compactly represented by a vector xi = ⟨xi j ⟩j ∈[m]
∈

Xi ,
2
where xi j is the probability that target j is protected by de-

fender i , and Xi denotes the feasible strategy space which, un-

der the resource budget constraint, is Xi = {xi : 0 ≤ xi j ≤
1 for all j ∈ [m], and

∑
j xi j ≤ ki }. We do not consider other sched-

uling constraints in this paper. The joint strategy profile of all

defenders is written as X = ⟨xi j ⟩i ∈[n], j ∈[m]
. The players’ utilities

depend on the overall probability that the targets are protected,

1
Both penalties and rewards are values to be added to a player’s utility.

2
We write [z] = {1, . . . , z } for any integer z > 0.

which is referred to as the coverage. We denoted by c j the coverage
of target j , and by c = ⟨c j ⟩j ∈[m]

the coverage (vector) of all targets.

Since each defender acts independently, c is given by

c j = covj (X ) := 1 −
∏

i ∈[n]
(1 − xi j );

we write c = cov(X ). When the attacker chooses to attack target j,
the expected utilities of each defender i and the attacker are given

by, respectively:

U d

i (c, j ) = c j · r
d

i j + (1 − c j ) · p
d

i j ;

U a (c, j ) = (1 − c j ) · r
a

j + c j · p
a

j .

We do not consider mixed strategy responses of the attacker for

reasons that will be clear after we introduce our solution concept.

2.1 Nash–Stackelberg Equilibrium (NSE)
Our solution concept, NSE, captures both the leader-follower struc-

ture of the game and the simultaneous moves of the leaders. In

an NSE, no defender has the incentive to deviate, assuming that,

if she deviates, other defenders will stick to their strategies and

the attacker will respond optimally to the new profile. As argued

in Section 1, a tie-breaking rule is needed to specify which best

response the attacker will choose when more than one is avail-

able. In single-defender models, it is normally assumed that the

attacker always chooses the target that is optimal for the defender;

the respective equilibrium concept is called the strong Stackelberg
equilibrium (SSE) [13]. Though counter-intuitive, the SSE is justi-

fied by the fact that the defender can make the attacker strictly

prefer a specific target among the tied ones, by reducing protection

of this target by an infinitesimal amount. The resulting strategies,

as well as the players’ utilities, are arbitrarily close to those under

the SSE irrespective of the actual tie-breaking rule. This argument

extends to multi-defender games where defenders have identical
utility functions as in the work of Jiang et al. [8]. A natural counter-

part to the SSE is the weak Stackelberg equilibrium (WSE) in which

the defender pessimistically assumes that the attacker will always

choose the worst target. An SSE always exists in a single-defender

game, but a WSE may not [24].

Unfortunately, optimistic tie-breaking is inappropriate for our

setting because it may lead the defenders to hold inconsistent be-

liefs as to which target the attacker will choose. Indeed, if multiple

defenders simultaneously shift resources away from their least pre-

ferred targets, the resulting profile may be far from an equilibrium,

in the sense that some defenders can increase their payoff consid-

erably by deviating. That is, unlike in the case of a single defender,

if we compute the defenders’ strategies under the assumption that

they are optimistic, we cannot ensure that, no matter how the at-

tacker breaks ties, there is an ϵ-equilibrium in the neighborhood

of the strategy profile that we have computed. On the other hand,

a closer look reveals that, in the single-defender setting, while a

WSE may fail to exist, the infinitesimal deviation scheme actually

generates an approximate WSE, in which the incentive to devi-

ate is infinitesimal. In this sense, the pessimistic tie-breaking is

not inconsistent with the standard model. We therefore adopt this

form of tie-breaking rule in our work. As we will see later, in the

multi-defender setting, this approach results in a uniform belief

among the defenders about the attacker’s response. In addition, it
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guarantees a lower bound on the defenders’ utilities irrespective of

the tie-breaking rule.

We denote by BR(c) := arg maxj U
a (c, j ) the set of attacker’s

best (pure strategy) responses to a coverage c, and by bri (c) de-
fender i’s belief about the attacker’s response. In general, bri (c) is
a mixed strategy supported on pure strategies in BR(c). However,
a pessimistic defender may assume that bri (c) is a pure strategy,
because the worst-case defender utility can be achieved under a

pure strategy response. Thus, we have

bri (c) ∈ arg minj ∈BR(c) U
d

i (c, j ).

We define NSE in Definition 2.1. Note that, since the attacker’s

strategy is fully determined by the best response function, we can

treat our game as one among the defenders. Thus, we use the term

strategy profile to refer to the profile of the defenders’ strategies. We

also overload the notations and letBR(X ) := BR(cov(X )), bri (X ) :=

bri (cov(X )), andU d

i (X , j ) := U d

i (cov(X ), j ).

Definition 2.1 (NSE). A (defender) strategy profileX is an ϵ-NSE
if for all i ∈ [n] and all X ′ ∈

{
⟨x′i ,X−i ⟩ : x′i ∈ Xi

}
it holds that

U d

i (X , bri (X )) ≥ U d

i (X ′, bri (X
′)) − ϵ, (1)

where X−i denotes the strategy profile of defenders [n] \ {i}, and
⟨x′,X−i ⟩ denotesX with xi replaced by x′. An (exact) NSE is a 0-NSE.

We conclude this section with two negative results on NSE. First,

the fact that WSE may not exist in single-defender games implies

that in multi-defender games the existence of exact NSE cannot be

guaranteed. Second, the problem of deciding the existence of NSE

is NP-hard; see Theorem 2.2. These results motivate us to focus on

approximate equilibria in the remainder of the paper.

Theorem 2.2. Deciding whether there exists an NSE in a multi-
defender game is NP-hard.

Proof. We provide a reduction from the classic NP-complete

problem exact cover by 3-sets (X3C). Given a set S = {e1, . . . , e3k }

and a collection of subsets S = {Si }i ∈[ℓ]
of S , each of size 3, ℓ ≥ k ,

X3C asks if there is a cover of S consisting of k subsets.

For an instance of X3C, we construct a multi-defender game

with ℓ defenders, with one resource each, and a set of targetsT ∪T ′

with T = [3k] and T ′ = {3k + 1, . . . , 2k + ℓ}; note that |T ′ | = ℓ − k .
Let Ti = {j ∈ T : ej ∈ Si } and T−i = {j ∈ T : ej < Si }; the payoff
parameters are set as follows (the value in each entry applies to all

targets in the corresponding subset).

Ti T−i T ′

r di j 6 8 2

pdi j 0 7 1

T T ′

r aj 3 3

paj 0 2

We will now argue that S admits an exact cover if and only if the

above game admits an NSE.

(i) Exact cover⇒ NSE. Let I ⊆ [ℓ] be an exact cover of S of size k ,
i.e., ∪i ∈ISi = S . One can verify that the following strategy profile

X forms an NSE. In X , each of the k defenders i ∈ I protects the
three targets in Ti , each with probability 1/3 (so that covj (X ) = 1

3

for all j ∈ T , as I is an exact cover), and each of the remaining ℓ − k
defenders protects a unique target in T ′ with probability 1 (so that

covj (X ) = 1 for all j ∈ T ′).

(ii) @ exact cover⇒ @ NSE. Consider an NSE X , First, in X , the
attacker finds all targets equally appealing to attack in terms of the

expected utilities: if some target is overly protected, defenders can

increase their utility by shifting some coverage from this target to

the ones that are more attractive to the attacker. Second, for each

defender i , xi j = 0 for all j ∈ T−i : otherwise i would be tempted

to reduce xi j in order to attract the attacker to attack j (even the

penalty on targets in T−i is higher than rewards on other targets).

Now suppose that S does not admit an exact cover. Then we need

more than k subsets to cover S , and correspondingly, more than k
defenders to protect T given our second observation. As a result,

defenders cannot fully cover all targets in T ′, and, for targets in T
and T ′ to be equally appealing for the attacker, we have to have

covj (X ) < 1/3 for all j ∈ T , which gives U d

i (X , j ) < U d

i (X , j
′) <

U d

i (X , j
′′) for all j ∈ Ti , j

′ ∈ T ′ and j ′′ ∈ T−i . By the pessimistic

tie-breaking, bri (X ) ∈ Ti . Thus, a defender i who protectsT
′
would

be better off reducing the protection to attract the attacker to attack

T ′, which contradicts the assumption that X is an NSE. �

3 APPROXIMATE EQUILIBRIUM
Clearly, every game admits an ϵ-NSE if ϵ is sufficiently large, so

we are interested in the smallest ϵ for which an ϵ-NSE exists. We

say that a multi-defender game is consistent if raj > paj and r
d

i j > pdi j
for all i ∈ [n], j ∈ [m]. Our key result is that for consistent games

ϵ-NSE exists for arbitrarily small values of ϵ .3 In the remainder of

this paper, we only consider consistent games. Theorem 3.2 (below)

presents a stronger result, which also establishes the existence of a

limit point of ϵ-NSE as ϵ → 0; we term such a limit point a 0
+
-NSE

(Definition 3.1). In this section, we first present sufficient conditions

for a strategy profile X to be a 0
+
-NSE. We use these conditions to

prove Theorem 3.2 for a special class of consistent games, which

we call basic games (Section 4); we extend the proof to all consistent

multi-defender games in Section 5.

Definition 3.1 (0
+
-NSE). A strategy profile X forms a 0

+-NSE
if there exists a sequence of strategy profiles ⟨X (ℓ)⟩∞

ℓ=1
and a se-

quence of real numbers ⟨ϵ (ℓ)⟩∞
ℓ=1

, such that everyX (ℓ) is an ϵ (ℓ)-NSE,
limℓ→∞ X (ℓ) = X , and limℓ→∞ ϵ (ℓ) = 0.

Theorem 3.2. Every consistent multi-defender security game ad-
mits a 0

+-NSE.

3.1 Sufficient Conditions for a 0
+-NSE

We start by introducing a useful notion: the level coverage. For the
ease of description, we adopt hereinafter the shorthand ǔ = maxj p

a

j
and û = maxj r

a

j .

Definition 3.3 (Height of a coverage). The height of a cover-
age c is the optimal attacker utility it induces. We write height(c) :=

maxj U
a (c, j ) and height(X ) := height(cov(X )).

Definition 3.4 (Level coverage / strategy profile). A cover-
age vector c is said to be level, or to be a level coverage if c j = 0 for
all j < BR(c). A strategy profile X is level if cov(X ) is level.

3
However, in the presence of malicious defenders, who prefer some target to be

attacked successfully, i.e., r di j < pdi j , a ϵ -NSE may not exist for every ϵ > 0. We

provide an example in the full version of the paper.
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Figure 1: Visualizing a level coverage.

Proposition 3.5. Let cov(u) be the coverage vector whose j-th
element is covj (u) := max

{
0, (raj − u)/(r

a

j − p
a

j )
}
. Then cov(u) is

level and it is the only level coverage whose height is u.

We omit the formal proof of Proposition 3.5 (all proofs can be

found in the full version of the paper). To gain some intuition about a

level coverage, consider the tank-fillingmodel illustrated in Figure 1.

We think of the defense resources (as probability mass under mixed

strategies, which is fractional) as water, and each target as a water

tank to be filled; the width of tank j is 1/(raj − p
a

j ), so that if water

is added to the tank, the height of the water surface, as indicated
on the axis on the left, is exactly the attacker’s utility of attacking j
when the coverage c j is equal to the volume of the water in the tank;

see Definition 3.3 (note that the height decreases when the water

surface in the visualization rises). The attacker’s best responses

then correspond to tanks with the lowest surface. If we connect

the tanks, gravity will balance the water surfaces so that a grand

level is maintained across the tanks; the respective lowest surface

is maximized and the corresponding coverage is exactly a level

coverage, by which no target is overly or insufficiently protected.

This also establishes a one-to-one correspondence between a level

coverage and its height (Proposition 3.5). Adding all resources into

the connected tanks naturally leads to an SSE in the single-defender

setting.
4

This intuition extends to multi-defender games: a 0
+
-NSE must

be a level strategy, as otherwise defenders would be better off

shifting resources from overly protected targets to targets that are

less protected. More precisely, Theorem 3.6 offers a set of conditions

sufficient for a strategy profile X to be a 0
+
-NSE.

Theorem 3.6. A strategy profile X forms a 0
+-NSE if it satisfies

all of the following conditions:
C1. X is level.
C2.
∑
j xi j = ki for all i , or height(X ) = ǔ.

C3. There exist i∗, j∗ such that xi∗ j∗ > 0, and for every deviation
x′i ∈ Xi and X ′ = ⟨x′i ,X−i ⟩ it holds that U

d

i (X , bri (X
′)) ≤

U d

i (X , j
∗) for all i ∈ [n].

Intuitively, for any X that satisfies C1-C3, if xi∗ j∗ is reduced
by an infinitesimal amount δ , then the attacker will strictly pre-

fer attacking j∗ since X is level by C1. By C2, no defender can

redirect the attacker to other targets simply by adding resources,

4
The visualization is inspired by the classic algorithm ORIGAMI [9], though, as the

reader will see later, the algorithm we develop based on these ideas is very different

from ORIGAMI, even in the degenerate single-defender case.

so any meaningful deviation will result in coverage decrease on

some target, in particular, targets in the attacker’s best response set

(formally, Lemma 3.7). However, by C3, no attacker best response

provides a higher defender utility than j∗ does even when their

coverage stays unchanged. Thus, no deviation offers a utility im-

provement greater than δ up to a constant multiplier, and hence X
is a 0

+
-NSE. We present a formal proof after Lemma 3.7.

Lemma 3.7. Suppose a strategy profileX satisfiesC1 andC2. Then,
for all i and all X ′ ∈ {⟨x′i ,X−i ⟩ : x′i ∈ Xi } it holds that

U a (X ′, bri (X
′)) ≥ U a (X , bri (X

′)) = U a (X , bri (X )). (2)

Proof. Since U a (X , bri (X
′)) ≤ U a (X , bri (X )) holds automat-

ically as bri (X ) is the best response, we only need to show that

U a (X ′, bri (X
′)) ≥ U a (X , bri (X

′)) ≥ U a (X , bri (X )). Suppose for a
contradiction that at least one of the following inequalities holds:

(a) U a (X ′, bri (X
′)) < U a (X , bri (X

′));
(b) U a (X , bri (X

′)) < U a (X , bri (X )).

We claim that either will lead to the following for all j ∈ BR(X ):

U a (X ′, j ) ≤† U a (X ′, bri (X
′))

≤‡ U a (X , bri (X
′)) ≤§ U a (X , j ) .

Specifically, ≤† holds because bri (X
′) is the best response to X ′;

≤‡ holds directly with assumption (a), while with assumption (b),

it holds because (b) implies bri (X
′) < BR(X ), so cov

bri (X ′) (X ) = 0

as X is level; finally, ≤§ holds because j ∈ BR(X ) is a best response

to X . In particular, ≤‡ and ≤§ are strictly satisfied by (a) and (b),

respectively, so the above inequalities eventually give

U a (X ′, j ) < U a (X , j ) for all j ∈ BR(X ). (3)

We show that this contradicts both conditions in C2.
(i) Suppose

∑
j ∈[m]

xi j = ki for all i . SinceU
a (X , j ) is monotone

decreasing w.r.t. xi j , Eq. (3) implies that x ′i j > xi j for all j ∈ BR(X ).

Furthermore, by the definition of level coverage, for those j <
BR(X ), we have covj (X ) = 0 and naturally xi j = 0 ≤ x ′i j . It follows

that

∑
j x
′
i j >
∑
j xi j = ki for all i , which violates the constraint on

the number of available resources.

(ii) Suppose cov(X ) = cov(ǔ). We haveU a (X , bri (X )) = ǔ, so by
Eq. (3)U a (X ′, j ) < U a (X , j ) = U a (bri (X ),X ) = ǔ for all j ∈ BR(X ).
In particular, if we take j = bri (X ), this becomesU a (X ′, bri (X )) <
ǔ = maxj p

a

j , which is a contradiction. �

Proof of Theorem 3.6. We construct an ϵ-NSE X̃ by letting de-

fender i∗ reduce xi∗ j∗ by a small amount δ > 0, and show that X̃
forms a λ·δ -NSE for some constant λ, so when δ → 0, we have

λ·δ → 0 and X̃ → X , which implies that X is a 0
+
-NSE.

Consider an arbitrary deviation x′i ∈ Xi . Let X̃
′ = ⟨x′i , X̃ ⟩ and

X ′ = ⟨x′i ,X−i ⟩. X̃
′
can be viewed as X ′ with x ′i∗ j∗ reduced by at

most δ (exactly δ when i , i∗, and 0 otherwise). Thus, we have

covj∗ (X
′) − δ ≤ covj∗ (X̃

′) ≤ covj∗ (X
′); (4)

and for all other j , j∗,

covj (X
′) = covj (X̃

′). (5)
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Since xi∗ j∗ > 0 by C3, we have covj∗ (X ) > 0 and, thus, j∗ ∈ BR(X )
by the definition of level coverage. Let j ′ = bri (X

′). By Lemma 3.7,

U a (X ′, j ′) ≥ U a (X , j ′) = U a (X , j∗), (6)

from which we also know that covj′ (X
′) ≤ covj′ (X ) as U a (c, j )

decreases with c j , so asU d

i (c, j ) increases with c j ,

U d

i (X
′, j ′) ≤ U d

i (X , j
′). (7)

Consider the following two cases:

(i) If bri (X̃
′) = bri (X

′), we have

U d

i (X̃
′, bri (X̃

′)) = U d

i (X̃
′, j ′) ≤† U d

i (X
′, j ′) ≤‡ U d

i (X , j
′)

≤§ U d

i (X , j
∗) = U d

i (X̃ , j
∗) + δ · (rdi j∗ − p

d

i j∗ )

=¶ U d

i (X̃ , bri (X̃ )) + δ · (rdi j∗ − p
d

i j∗ ), (8)

where ≤† holds by Eq. (4); ≤‡ holds by Eq. (7); ≤§ holds by C3;
and =¶ holds because bri (X̃ ) = j∗ as j∗ is strictly preferred by the

attacker after the deviation.

(ii) If bri (X̃
′) , bri (X

′), we must have bri (X̃
′) = j∗ , bri (X

′)
by Eqs. (4) and (5). It follows that

U a (X̃ ′, j∗) ≥† U a (X̃ ′, j ′) =‡ U a (X ′, j ′)

≥§ U a (X , j∗) ≥ ¶ U a (X̃ , j∗) − δ · (raj∗ − p
a

j∗ ),

where ≥† holds because j∗ = bri (X̃
′); =‡ holds by Eq. (5); ≥§ holds

by Eq. (6); and ≥ ¶ holds as, by definition, X̃ is obtained from X by

reducing xi∗ j∗ by δ . This implies covj∗ (X̃
′) ≤ covj∗ (X̃ ) + δ , and

finallyU d

i (X̃
′, j∗) ≤ U d

i (X̃ , j
∗) + δ · (rdi j∗ − p

d

i j∗ ), or

U d

i (X̃
′, bri (X̃

′)) ≤ U d

i (X̃ , bri (X̃ )) + δ · (rdi j∗ − p
d

i j∗ ). (9)

As Eqs. (8) and (9) imply, in both cases X̃ forms a λ·δ -NSE with

λ = maxi (r
d

i j∗−p
d

i j∗ ) being a constant. This concludes the proof. �

4 0
+-NSE IN BASIC GAMES

In this section, we prove Theorem 3.2 for basic games. These are
games where the defenders’ payoff parameters are such that their

preferences concerning the attacker’s response are independent of

the strategy profile being played.

Definition 4.1 (Basic game). A consistent multi-defender game
is called a basic game if for every defender i ∈ [n] and every pair of
distinct targets j, j ′ ∈ [m], one of the following conditions holds:

(i) rdi j < pdi j′ , in which case we write j ≻i j ′ (in the sense that

U d

i (X , j ) ≤ U d

i (X , j
′) holds for any X , i.e., an attack on j is always

more detrimental to i than an attack on j ′, and protecting j is a higher
priority).

(ii) rdi j′ < pdi j , in which case we write j ≺i j ′.

We also write j ≽i j ′ if j ≻i j ′ or j = j ′; and j ≼i j
′ if j ≺i j ′ or

j = j ′.

In a basic game, the defenders’ utility functions can be repre-

sented concisely by a preference profile, i.e., a list of the defenders’
preference orders over the targets. We denote by jiℓ the ℓ-th most

important target for defender i (so that ji1 ≻i ji2 ≻i . . . jim ), and

by J = ⟨jiℓ⟩i ∈[n], ℓ∈[m]
the preference profile. A basic game is then

a tuple ⟨J , ra, pa, k⟩. For basic games, condition C3 in Theorem 3.6

can be restated as follows.

C3′. There exist i∗, j∗ such that xi∗ j∗ > 0, and for every deviation

x′i ∈ Xi and X
′ = ⟨x′i ,X−i ⟩ it holds that bri (X

′) ≽i j
∗
.

4.1 A Proof by Construction
We construct an X that satisfies C1–C3 (C3′). Since cov(X ) must

be level by C1 and there is a one-to-one correspondence between

a level coverage and its height, our approach is to scan through

the range [ǔ, û] to find a u such that cov(u) can be implemented

by some X satisfying C2 and C3. Implementability is tested by

Procedure 1. Though the approach adopted by Procedure 1 is not
the only way to implement cov(u), we simply discard candidates

that do not pass the test; this suffices for the purpose of our proof.

Procedure 1: Check the implementability of cov(u)

1 for all i, j do xi j ← 0;

2 for i = 1, . . . , n do
3 for j = ji1, ji2, . . . , jim do
4 Increase xi j until covj (X ) reaches covj (u ) or

∑
j′ xi j′ reaches ki ;

5 if xi j > 0 then i∗ ← i , and j∗ ← j ;

6 Check if cov(X ) = cov(u ) and
∑
j xi j = ki for all i .

Procedure 1 allocates resources according to the importance of

the targets; those with higher importance receive resources first.

Every time i allocates a positive amount of resource, j∗ is updated
to the current target j, so that it holds that xi j = 0 for all j ≺i j

∗

throughout the procedure. Now, suppose that in the end cov(X ) =
cov(u) and

∑
j xi j = ki for all i . Then X satisfies C1 and C2. It

also satisfies C3, for the following reason: now that

∑
j xi j = ki ,

the defenders have no resources left, so they have to reduce the

coverage of some target if they deviate, but this will only redirect

the attacker to a target j ≽i j
∗
as xi j = 0 for all j ≺i j

∗
. Thus, X is

a 0
+
-NSE by Theorem 3.6. Otherwise, there can be two cases:

(i) Deficit:

∑
j xi j = ki for all i , but covj (X ) < covj (u) for some

j , in which case resources are used up but cov(u) is not yet reached,
so there is a deficit as more resources are needed.

(ii) Surplus: cov(X ) = cov(u), but
∑
j xi j < ki for some i , in

which case cov(u) is reached, but some defenders have spare re-

sources, so there is a resource surplus.

In case of a deficit, we increase u (i.e., lower the goal line in the

tank-filling model) to reduce the demand, and in case of a surplus,

we do the opposite. The aim is to find a zero point, i.e., a point

with neither a deficit nor a surplus. Observe that there is always

a surplus at u = û, as no resource is needed when the goal line is

set at the bottom. Further, the demand changes continuously with

the goal line u (Lemma 4.2). Therefore, if there is a deficit at u = ǔ,
there must be a zero point in [ǔ, û]. However, if there is a surplus

at u = ǔ, we cannot further reduce u while maintaining the level.

To deal with this special case, we introduce a stronger procedure

called Alloc (Procedure 2).

A Two-phase Allocation Alloc has two phases. In the first

phase each defender i only allocates resources to targets j ≻i
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Procedure 2: Alloc
input :a basic game ⟨J , ra, pa, k⟩; u ∈ [ǔ, û].

output : (1) X = ⟨xi j ⟩; (2) i∗, j∗; (3) surp.

1 Initialize xi j ← 0, ∆j ← covj (u ), and c j ← 0, for all i, j ;

/* --------------------- Phase 1 --------------------- */

2 for i = 1, . . . , n do
3 for j = ji1, . . . , jim such that j ≻i bri (1m ) do
4 xi j ← min

{
∆j , ki −

∑
j′≻i j xi j′

}
;

5 c j ← 1 − (1 − c j ) (1 − xi j );

6 ∆j ←



0, if c j = 1

covj (u )−cj
1−cj

, otherwise

;

7 if xi j > 0 then i∗ ← i and j∗ ← j ;

/* --------------------- Phase 2 --------------------- */

8 Repeat Lines 2–7 with j = bri (1m ), . . . , jim in Line 3;

9 surp←
∑
i
(
ki −

∑
j xi j
)
−
∑
j ∆j .

bri (1m ),5 and in the second phase each defender i allocates the
remaining resources to targets j ≼i bri (1m ). Here bri (1m ) is the
attacker’s best response to coverage 1m , which is also the best re-

sponse to any coverage c > cov(ǔ), coordinate-wise (if one keeps
adding water after the level has reached ǔ, the tanks with the lowest
surface will stay the same). Lines 4–6 detail Line 4 of Procedure 1,

where c j is the current coverage of target j , and ∆j is the amount of

resources still needed in order for the coverage to reach covj (u). In
the end, as part of the output, surp records the amount of resource

surplus (which represents a deficit if negative).

Lemma 4.2. Fix all other input parameters and let surp(u) be the
output surp of Alloc on input u. surp(u) is continuous and strictly
monotone increasing in [ǔ, û].

We are ready to prove Theorem 3.2 for basic games, restated as

Theorem 4.3 below.

Theorem 4.3 (Theorem 3.2 restricted to basic games). Every
basic game admits a 0

+-NSE.

Proof. surp(u) is continuous by Lemma 4.2, and surp(û) =∑
i ki > 0, as no resource is demanded when the goal line is set

to û. Thus, if surp(ǔ) ≤ 0, there must be a zero point u∗ at which
surp(u∗) = 0; the output X satisfies C1–C3 and hence forms a

0
+
-NSE.

On the other hand, if surp(ǔ) > 0, the output X with u = ǔ
satisfies C1 and C2. To see that it also satisfies C3 (C3′), consider
the following cases:

(i) If a defender i has no spare resource, she needs to reduce the

coverage of a target in order to redirect the attacker to that target.

This, however, can only be done on targets that are worse for i
since xi j = 0 for all j ≺i j

∗
. Therefore, bri (X

′) ≽i j
∗
.

(ii) If i has spare resources, coverage can be increased. We make

two observations. First, the coverage of all j ≻i bri (1m ) must have

reached the goal line in Phase 1. Second, those in BR(1m ) are all
skipped in Phase 1, so they must be filled in Phase 2; as a result, j∗

51m denotes an all-1 vector of lengthm.

will be updated to bri (1m ) or even beyond that in i’s preference
order, so j∗ ≼i bri (1m ). Note that defender i cannot remove bri (1m )
from the best response set by adding more resources on top of X
as bri (1m ) is already fully covered. Therefore, by the pessimistic

tie-breaking rule i cannot redirect the attacker to any j ≺i bri (1m ),
nor to any j ≺i j

∗
, since j∗ ≼i bri (1m ) by our second observation.

Therefore, bri (X
′) ≽i j

∗
.

C3′ is satisfied in both cases, so by Theorem 3.6 X is a 0
+
-NSE.

This completes the proof. �

5 0
+-NSE IN GENERAL CONSISTENT GAMES

Unlike in basic games, in the general case the defenders’ prefer-

ences over targets depend on the actual coverage vector. Thus, if

we take a preference profile J and attempt to construct a 0
+
-NSE X

using our previous approach (assuming that defenders’ preferences

are specified by J as in a basic game), the defenders’ preferences

at X may end up being different from J and hence X may fail to

be a 0
+
-NSE of the original game. Therefore, we want to find a

“stationary point” where the preference profile J used to construct

X coincides with the profile induced byX . We define induced prefer-
ence profiles formally in Definition 5.1. In contrast with basic games,

we allow players to be indifferent among different targets in an

induced preference profile.

Definition 5.1 (Induced preference profile). A preference
profile J induced by a coverage c is a list of binary relations ⟨≽ Ji ⟩i ∈[n]

such that j1 ≽
J
i j2 iff U d

i (c, j1) ≤ U d

i (c, j2). A preference profile
induced by a strategy profile X is the preference profile induced by
cov(X ).

With the above definition in hand, C3 can be restated as follows:

C3′′. There exist i∗, j∗ such that xi∗ j∗ > 0 and for every deviation

x′i ∈ Xi andX
′ = ⟨x′i ,X−i ⟩ it holds that bri (X

′) ≽ Ji j∗,where
J is induced by X .

5.1 Existence of a Stationary Point
If a strategy profile X is a 0

+
-NSE, by C1 it must be level. Thus, we

limit our attention to level strategy profiles, and hence to prefer-

ences induced by level strategy profiles. Consider moving u from

ǔ to û. The corresponding level coverage changes from cov(ǔ) to
cov(û), and in the meantime the preference profile induced by

cov(u) changes when some defender’s utility functions on different

targets intersect, i.e., whenU d

i (cov(u), j ) = U
d

i (cov(u), j
′) for some

j , j ′. Observe thatU d

i (cov(·), j ) is continuous in [ǔ, û] for all i and
j. Let

U =
{
u∈[ǔ, û] : U d

i (cov(u), j ) = U
d

i (cov(u), j
′), i∈[n], j,j ′

}
(10)

be the values of u at the intersections.
6
Let u (ℓ) be the ℓ-th smallest

element inU ∪ {ǔ, û}. For each ℓ, all cov(u) with u ∈ (u (ℓ) ,u (ℓ+1) )
thus induce the same preference profile; denote it by J (ℓ) . Further,

we map each J (ℓ) to a 0
+
-NSEX (ℓ)

of a basic game with preferences

J (ℓ) (let indifference between targets be resolved by target indices):

6
If two utility functions are the same in an interval, there can be infinitely many

intersection points. In this case, we only include the endpoints of that interval in U .

This suffices, because our goal is to identify distinct preference profiles induced by the

utility functions, and the defender’s preferences do not change in the interval.

Session 17: Game Theory 2 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

708



fix the preferences to J (ℓ) , find the zero point (or ǔ if there is no

zero point) of surp in the procedure Alloc, and take the strategy

profile at this zero point. Let h(ℓ) = height(X (ℓ) ).

Now each interval (u (ℓ) ,u (ℓ+1) ) is associated with a value h(ℓ) .
Intuitively, if some h(ℓ) happens to fall back in (u (ℓ) ,u (ℓ+1) ), then

h(ℓ) is a stationary point, as desired. The following lemma estab-

lishes the existence of two types of stationary points. We use it

to prove Theorem 3.2 below by showing the existence of an X
satisfying C1–C3 (C3′′).

Lemma 5.2. Let u (1) , . . . ,u (L) and h(1) , . . . ,h(L−1) be sequences
of real numbers, such that u (1) < u (2) < · · · < u (L) and u (1) ≤

h(ℓ) ≤ u (L) for all ℓ. Then there exists either h(ℓ) ∈ [u (ℓ) ,u (ℓ+1)
] or

u (ℓ) ∈ Lh(ℓ−1) ,h(ℓ)M, where La,bM := {x : a < x < b ∨ b < x < a}
denotes the open interval between points a,b ∈ R.

Proof. Suppose for the sake of contradiction that neither h(ℓ)

nor u (ℓ) exists. Then for all ℓ it holds that (i) h(ℓ) < [u (ℓ) ,u (ℓ+1)
]

and (ii) u (ℓ) < Lh(ℓ−1) ,h(ℓ)M. In particular, h(1) < [u (1) ,u (2)]; since

u (1) ≤ h(ℓ) ≤ u (L) for all ℓ, this implies h(1) > u (2) . Now, suppose

that h(t ) > u (t+1)
for all t < ℓ. If h(ℓ+1) ≤ u (ℓ+2)

then either

u (ℓ+1) ≤ h(ℓ+1) ≤ u (ℓ+2)
, which contradicts (i), or h(ℓ+1) < u (ℓ+1)

,

which implies h(ℓ+1) < u (ℓ+1) < h(ℓ) and contradicts (ii). Thus, we

have h(ℓ+1) > u (ℓ+2)
, and, by induction, h(ℓ) > u (ℓ+1)

for all ℓ ≤ L.

However, this contradicts the assumption that h(L−1) ≤ u (L) . �

Theorem 3.2 (restated). Every consistent multi-defender secu-
rity game admits a 0

+-NSE.

Proof. By Lemma 5.2, there exists either (i) h(ℓ) ∈ [u (ℓ) ,u (ℓ+1)
],

or (ii) u (ℓ) ∈ Lh(ℓ−1) ,h(ℓ)M. W.l.o.g. we assume h(ℓ−1) < u (ℓ) < h(ℓ)

for Case (ii). In Case (i), the argument in the proof of Theorem 4.3

shows thatX (ℓ)
satisfiesC1–C3 (C3′′). In Case (ii),X (ℓ−1)

andX (ℓ)

satisfyC1 andC2, but neither of them satisfiesC3. We show that we

can “merge” them into a profileX ∗ that satisfies all three conditions
C1–C3 (C3′′). Procedure Alloc# (Procedure 3), developed on the

basis of Alloc, accomplishes the task.

Alloc
#
is again a two-phase procedure that calls Alloc twice on

two preference profiles J (ℓ−1)
and J (ℓ) : Phase 1 is exactly the same

asAlloc, with the preferences set to J (ℓ−1)
and amount of resources

set to θ ·ki for each i; Phase 2 changes the preferences to J (ℓ) and
allocates the remaining amount of resources, i.e., (1−θ )·ki , on top of
the allocation of Phase 1. Slightly differently from Alloc, in Line 5,

the amount of resources demanded is set to ∆j ·(1 − xi j ) to account

for resources already allocated (to target j by defender i) in Phase

1: one can verify that, if i adds ∆j ·(1 − xi j ) resources to the current
allocation X = ⟨xi j ⟩, resulting in X ′, then covj (X

′) = covj (u).
Having all the other parameters fixed, we view the outputs as

functions of θ . We find that, first, surp
# (θ ) is continuous w.r.t. θ ,

by showing inductively that all variables can be expressed as con-

tinuous functions in the closed form. Second, when θ = 1, Phase 2

is actually skipped and Alloc
#
degenerates to Alloc with prefer-

ences J (ℓ−1)
; whereas when θ = 0, Phase 1 is skipped and Alloc

#

degenerates to Alloc with preferences J (ℓ) . Formally,

surp
# (1) = surp(J (ℓ−1) ,u (ℓ) ) > surp(J (ℓ−1) ,h(ℓ−1) ) = 0, and

surp
# (0) = surp( J (ℓ) , u (ℓ) ) < surp( J (ℓ) , h(ℓ) ) = 0,

Procedure 3: Alloc#

input : J (ℓ−1)
, J (ℓ) ; ra, pa, k; u (ℓ)

; θ ∈ [0, 1].

output : (1) X = ⟨xi j ⟩; (2) i∗, j∗; (3) surp#.

1 Initialize xi j ← 0, ∆j ← covj (u (ℓ) ), and c j ← 0, for all i, j ;

/* ----------- Phase 1: allocation by J (ℓ−1) ---------- */

2 Set J ← J (ℓ−1)
, and

˜ki ← θ · ki for all i ;

3 for i = 1, . . . , n do
4 for j = ji1, . . . , jim such that j ≻Ji br

J
i (1

m ) do

5 xi j ← xi j +min

{
∆j ·(1 − xi j ), ˜ki −

∑
j′≻Ji j

xi j′
}
;

6 c j ← cov(X );

7 ∆j ←
covj (u∗ )−cj

1−cj
;
7

8 if xi j > 0 then j∗ ← j , i∗ ← i ;

9 Repeat Lines 3–8 with j = br
J
i (1

m ), . . . , jim in Line 4;

/* ------------- Phase 2: allocation by J (ℓ) ---------- */

10 Reset J ← J (ℓ) , and ˜ki ← (1 − θ ) · ki for all i ;

11 Repeat Lines 3–9;

12 surp
# ←
∑
i
(
ki −

∑
j xi j
)
−
∑
j ∆j .

where surp(J ,u) denotes the output surp of Alloc, as a function of

u and the preference profile J . Thus, there exists a zero point θ∗ ∈
(0, 1) such that surp

# (θ∗) = 0. Let X ∗ = X (θ∗). From surp
# (θ∗) = 0

we know that covj (u
(ℓ) )−covj (X

∗) = 0 for all j and ki −
∑
j x
∗
i j = 0

for all i , so C1 and C2 are satisfied by X ∗.

To see that C3′′ is satisfied, we show that bri (X
′) ≽ Ji j∗ for

the preference profile J induced by X ∗ (equivalently, J is induced

by cov(u (ℓ) )). Observe that j ≽ J
(ℓ−1)

i j∗ for each target j that re-
ceives a positive amount of resources from some defender i in

Phase 1, and j ≽ J
(ℓ)

i j∗ for each target j that receives a positive

amount of resources from some defender i in Phase 2. These are

all the targets defender i can redirect the attacker to through strat-

egy deviation. Thus, for any X ′ as the result of a deviation of

defender i , either bri (X
′) ≽ J

(ℓ−1)

i j∗ or bri (X
′) ≽ J

(ℓ)

i j∗. Suppose

that bri (X
′) ≽ J

(ℓ−1)

i j∗. (The same argument applies in the other

case.) Since cov(u) induces J (ℓ−1)
for all u ∈ (u (ℓ−1) ,u (ℓ) ), by Def-

inition 5.1, the inequality bri (X
′) ≽ J

(ℓ−1)

i j∗ then implies, for all

u ∈ (u (ℓ−1) ,u (ℓ) ),

U d

i (cov(u), bri (X
′)) −U d

i (cov(u), j
∗) ≤ 0,

which also holds for u = u (ℓ) because U d

i (cov(·), j ) is continuous.

Thus,U d

i (cov(u
(ℓ) ), bri (X

′)) −U d

i (cov(u
(ℓ) ), j∗) ≤ 0, and again by

Definition 5.1, this implies bri (X
′) ≽ Ji j∗ for J induced by u (ℓ) .

To summarize, in Case (i),X (ℓ)
satisfies C1–C3 (C3′′) and forms

a 0
+
-NSE; in Case (ii), we merge X (ℓ−1)

and X (ℓ)
into X ∗, which

achieves the same. Therefor, a 0
+
-NSE always exists. �

7
Unlike in Alloc, it always holds that c j < 1 because u (ℓ) > h (ℓ−1) ≥ ǔ .
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6 COMPUTING A 0
+-NSE

Now that we have shown the existence of a 0
+
-NSE, the proof also

yields a method to compute a 0
+
-NSE. Since a 0

+
-NSE may involve

irrational numbers,
8
we are interested in approximate solutions

with given precision. Specifically, for a δ > 0, we say that a 0
+
-NSE

X is approximated to precision δ if we obtain an X ′ such that |xi j −
x ′i j | ≤ δ for all i, j. Below, Theorem 6.3 shows that such a solution

can be computed in polynomial time. The proof relies on Lemmas 6.1

and 6.2. Without loss of generality, all results in this section assume

that all payoff parameters are positive integers encoded in binary.

Lemma 6.1. Let u∗ be the zero point of surp(u) as in Alloc (or
u∗ = ǔ if no zero point exists). For any given δ > 0, X (u∗) can be
approximated to precision δ in time polynomial in the size of the
input parameters and log

1

δ .

Proof Sketch. Since Alloc runs in polynomial time, we can

run binary search on the input u to approximate ũ∗, and then take

X (ũ∗) as an approximation ofX (ℓ)
. For this approach to be valid, we

need to show that the outputs of Alloc do not change too quickly

with the input, so that it only takes polynomial time for the binary

search to find a ũ∗ that is sufficiently close to u∗ for X (ũ∗) to be

within a distance of δ to X (u∗). This is not a trivial task, as ∆j

changes very quickly with c j when c j is close to 1 (i.e.,

∂∆j
∂c j
→ ∞

when c j → 1). We observe that, since the input parameters are

integers, the problem we deal with is essentially discrete, and the

gap between c j and 1 can be lower-bounded by an exponentially

small term. Given this, the outputs can be proven to change at an

exponential rate only, so binary search is able to find a solution in

polynomial time. �

Lemma 6.2. Let θ∗ be such that surp# (θ∗) = 0, and X ∗ = X (θ∗).
For any given δ > 0, X ∗ can be approximated to precision δ in time
polynomial in the size of the input of Alloc# and log

1

δ .

Proof Sketch. The proof is similar to the proof of Lemma 6.1:

in polynomial time, binary search can find a
˜θ∗ sufficiently close to

θ∗ such that X ( ˜θ∗) approximates X ∗ to precision δ . �

Theorem 6.3. For any δ > 0, a 0
+-NSE can be approximated to

precision δ in time polynomial in the size of the parameters of the
game and log

1

δ .

Proof. The following algorithm finds a 0
+
-NSE with precision

δ and runs in polynomial time.

Step 1. Compute all intersection points U as defined in Eq. (10).
This can be done in time poly(n,m, logM ) by enumerating all the

triples (i, j, j ′), whereM is the bound of the payoff parameters. We

assume an arithmetic operation on two rational numbers to take

time polynomial in the size of their binary representation.

Step 2. Approximate X (ℓ) and h(ℓ) . First, compute the preference

profiles J (ℓ) . Since all points in the same interval (u (ℓ) ,u (ℓ+1) ) in-

duce the same preference, we take an arbitrary v ∈ (u (ℓ) ,u (ℓ+1) )

and compute J (ℓ) by sortingU d

i (cov(v ), 1), . . . ,U
d

i (cov(v ),m). Then

fix the preferences to J (ℓ) and compute the zero point of surp, with

which X (ℓ)
and h(ℓ) can be obtained using Alloc. In particular, we

8
We provide an example in the full version of the paper.

u (ℓ−1) u (ℓ) u (ℓ+1)

h′(ℓ−1)

h(ℓ−1) h′(ℓ)

h(ℓ)

Figure 2: The solid arrows point to the exact values and the dashed arrows

to the approximated ones. u (ℓ)
is falsely detected as a fixed point as u (ℓ) <

[h (ℓ−1), h (ℓ)
] but u (ℓ) ∈ [h′(ℓ−1), h′(ℓ)].

use binary search to approximate the zero point, and hence obtain

approximations of X (ℓ)
and h(ℓ) . By Lemma 6.1, this can be done

in time polynomial in the size of the input parameters and log
1

δ
for any desired precision δ .

Step 3. Find out the stationary point.We enumerate all ℓ to find

either an h(ℓ) ∈ [u (ℓ) ,u (ℓ+1)
] or a u (ℓ) ∈ Lh(ℓ−1) ,h(ℓ)M. If we find

an h(ℓ) ∈ [u (ℓ) ,u (ℓ+1)
], we are done, as X (ℓ)

is within a distance

of δ from a 0
+
-NSE. Otherwise, we need an additional step to find

a value θ∗ ∈ [0, 1] such that surp
# (θ∗) = 0 in order to generate a

strategy profile with height u (ℓ) . Again, we use binary search to

approximate θ , which, for any desired precision δ > 0, takes time

polynomial in the input size and log
1

δ according to Lemma 6.2.

Note that there might be an issue of false detection due to the

approximation error, if the actual value ofh(ℓ) and the approximated

one fall into different intervals (Figure 2). To avoid this, for each

J (ℓ) , we can first fix the interval ℓ such that surp(u (ℓ) ) ≥ 0 and

surp(u (ℓ+1) ) ≤ 0, and search within this interval only. This ensures

that the approximated value is always in the correct interval. �

7 CONCLUSION
This work can be seen as a starting point of an ambitious research

agenda aimed at understanding security games with heterogeneous

defenders. We list a few research directions below, which in our

opinion should be pursued in the immediate future; however, essen-

tially all research questions that have been considered in the context

of single-defender security games have a natural counterpart in the

context of multi-defender games.

Perhaps the most immediate question is to analyze the ‘price

of anarchy’ in multi-defender games, i.e., to understand the loss

in protection caused by the heterogeneity of defenders’ interests.

Further, it would be interesting to consider settings where groups

of defenders can cooperate by coordinating their actions, and study

the benefits of such cooperation and ways to promote it. Another

possibility is to allow for other forms of utility definitions, e.g.,

where defenders divide rewards or penalties. We would also like to

extend our analysis to schedule-based games, and to more realistic

attacker behavior models (e.g., quantal response).
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