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ABSTRACT
We consider a variant of the Multi-Agent Path-Finding problem

that seeks both task assignments and collision-free paths for a set

of agents navigating on a graph, while minimizing the sum of costs

of all agents. Our approach extends Conflict-Based Search (CBS),

a framework that has been previously used to find collision-free

paths for a given fixed task assignment. Our approach is based on

two key ideas: (i) we operate on a search forest rather than a search

tree; and (ii) we create the forest on demand, avoiding a factorial

explosion of all possible task assignments. We show that our new

algorithm, CBS-TA, is complete and optimal. The CBS framework

allows us to extend our method to ECBS-TA, a bounded suboptimal

version. We provide extensive empirical results comparing CBS-TA

to task assignment followed by CBS, Conflict-Based Min-Cost-Flow

(CBM), and an integer linear program (ILP) solution, demonstrating

the advantages of our algorithm. Our results highlight a significant

advantage in jointly optimizing the task assignment and path plan-

ning for very dense cases compared to the traditional method of

solving those two problems independently. For large environments

with many robots we show that the traditional approach is reason-

able, but that we can achieve similar results with the same runtime

but stronger suboptimality guarantees.
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1 INTRODUCTION
In the Multi-Agent Path-Finding (MAPF) problem, a set of agents is

tasked to move from their start locations to specified goal locations

in a known environment without collisions. The MAPF problem

and its variants have many applications, including warehouse au-

tomation, improving traffic at intersections, and search and rescue;

see [25] for detailed references.

In this paper we are motivated by warehouse automation, where

robots might be used to deliver shelves to pack stations [22]. In
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Figure 1: Example where task assignment and path plan-
ning cannot be decoupled for the optimal solution. Start po-
sitions are circles and goals are squares. Left: Robot 2 must
move into the alley temporarily, resulting in a total cost of 8.
Right: Both robots canmove along their direct path without
collision, resulting in a total cost of 6.

this domain, robots can initially choose which shelf to pick, but

then the shelf must be moved to a specified station. Thus, a robot’s

task is partially anonymous (any shelf can be picked) and partially

non-anonymous (the shelf needs to be delivered to a specified goal)

at the same time. The objective in this domain is to minimize the

idle time of human workers.

In this work, we extend Conflict-Based Search (CBS) [17] (and

some of its variants) to simultaneously assign tasks and find paths

for agents even for hybridMAPF problem instances. Another hybrid

solver is the Conflict-Based Min-Cost-Flow (CBM) algorithm [12]

that minimizes the makespan (time until the last agent reaches its

goal), which does not map well to minimizing idle time, where the

sum of all costs is a better metric. We provide representative exper-

imental results that demonstrate that our method, called CBS-TA,

outperforms the naive (yet frequently used) approach of solving

task assignment and path planning independently in dense environ-

ments. Finally, the CBS framework allows us to extend our approach

to ECBS, a bounded suboptimal MAPF solver. We introduce our

bounded suboptimal algorithm, ECBS-TA, and compare its solution

quality and runtime to existing solutions.

2 RELATEDWORK
MAPF is a well-studied problem in AI. Given an undirected graph

of the environment with uniform edge weights and start and goal

locations for the agents, we must construct a collision-free path for

each agent. Starting at their start location, agents must eventually

reach their goal location, and can, at each time step, either wait at

a vertex or traverse an edge.

There are two objective functions frequently used in the liter-

ature: (1) the sum of the path costs for all agents and (2) the time

elapsed until the last agent reaches its goal, i.e. themakespan. MAPF

has been shown to be NP-hard [14, 18]; however, in the special case

where the makespan is minimized and goals can freely be assigned
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to the agents, it can be reduced to a maximum-flow problem and

solved in polynomial time [23].

Most work on MAPF targets the labeled case, where the goal

for each agent is preassigned. Labeled MAPF can be solved op-

timally using, amongst others, CBS [17], M* [19], combinatorial

auctions [2], or by applying an ILP-solver [25]. Bounded subopti-

mal solvers include ECBS [3] and M* variants [20]. A complete but

unbounded suboptimal solver is Push-and-Rotate [6]. Furthermore,

it is possible to use a polynomial post-processing step to execute

plans on real robots [9]. We base our extension on CBS, because the

framework is easily extendable and it has been shown that some

variants can find solutions for problem instances with hundreds of

agents within a few minutes [5].

In the Target Assignment and Path Finding (TAPF) problem

agents are split into groups and a set of goals is given to each

group [12]. The Conflict-Based Min-Cost-Flow (CBM) algorithm

can be used to find makespan-optimal solutions to TAPF instances.

Our work provides a bounded suboptimal solver (with respect to

sum of path cost) for this and other hybrid MAPF problem instances.

Distributed approaches based on auctions [11] or tokens [13] can

find solutions in the MAPF domain, but, unlike our work, cannot

compute solutions within a user-specified suboptimality bound.

Our approach is conceptually similar to a method which com-

bines task reassignment and path planning in theM* framework [21].

However, our method works with an arbitrary assignment matrix

not requiring that the number of tasks and robots is identical, and

shows better scalability to large teams in particular when using our

bounded suboptimal solver ECBS-TA.

3 PROBLEM DEFINITION
Consider an undirected graph G = (V ,E), where v ∈ V cor-

respond to locations and e ∈ E are unit-weight edges connect-

ing two different vertices, indicating a direct passage between

those locations. There are N agents at different start locations

si ∈ V , i ∈ {1, 2, . . . ,N }. The set of M potential goal locations is

{д1, . . . ,дM }. The binary N × M matrix A indicates whether an

agent can be assigned to a specified goal: the entry ai j is 1 if agent

i is allowed to reach goal дj and 0 otherwise.

At each time step, an agent can either move to an adjacent vertex

(i.e., traverse an edge) or wait at its current vertex. We denote

the current vertex of agent i at time step t as vit . A path pi =

[vi
0
,vi

1
, . . . ,viT i ] for agent i is feasible if and only if the following

conditions hold:

(1) Agent i starts at its start vertex, i.e. vi
0
= si .

(2) Agent i ends at one of its potential goal vertices and remains

there, i.e. viT i = д
j
s.t. ai j = 1.

1

(3) Every action is either moving along an edge or waiting at a

vertex, i.e. ∀t ∈ {0, . . . ,T i − 1}: (vit ,v
i
t+1) ∈ E or vit = v

i
t+1.

A collision between agents i and i ′ can be either a vertex collision

(i.e. ∃t : vit = vi
′

t ) or an edge collision (i.e. ∃t : vit = vi
′

t+1 and

vit+1 = vi
′

t ). A solution consists of feasible paths for all N agents

such that no collision occurs. A solution is optimal if the sum

of individual path costs (SIC) is minimized. The CBS framework

1
If there is no assigned goal, we only require agent i to remain at some location

eventually.

requires that agents move in unit time steps. We want to optimize

the total time and therefore we minimize

∑N
i=1T

i
.

This problem definition is identical to the traditional MAPF prob-

lem with the exception that we introduce the potential assignment

matrix A. In case of N = M and A being a permutation matrix (i.e.,

A contains exactly one 1 in each row and column, and all other ele-

ments are 0), our problem is identical to non-anonymous or labeled

MAPF. In case of N = M and A = 1, the problem is identical to the

anonymous or unlabeled MAPF case. Our formulation also allows

cases where there are more goals than agents, more agents than

goals, or not all agents can reach all goals.

4 CBS-TA
A typical approach for task assignment and path planning is to

separate them into two stages. However, both problems are tightly

coupled, and certain task assignments may result in fewer colli-

sions during path planning (see Figure 1 for an example). To find

an optimal solution, a naive approach would be to generate all

possible assignments and solve the path planning for each of those

assignments. However, there are

(M
N

)
assignments for N robots and

M goals (assuming M ≥ N ), making this approach infeasible in

practice. Instead, we generate an additional assignment on demand

once we know that this assignment needs to be considered for the

optimal solution, similar to an approach discussed for M* [21].

4.1 Algorithm
We start by briefly describing Conflict-Based Search (CBS), which

we extend to incorporate task assignment. CBS is a two-level search.

The low-level constructs paths for each individual agent given

constraints provided by the high-level. The high-level finds conflicts

(in our case, collisions) and resolves them at their earliest start time.

Conflict resolution works by adding two successor nodes in the

high-level search tree and introducing an additional constraint for

each agent participating in the conflict at the lower level. CBS is

complete and optimal with respect to the sum of the cost of all

agents [17].

For CBS-TA we only need to change the high-level search; see

Algorithm 1. Lines that were changed compared to CBS (Algorithm

1 in [16]) are highlighted. In CBS-TA, each high-level node has

two additional fields: root describes if the current node is a root
node and assiдnment describes the current task assignment which

is used during the low-level search. CBS builds a search tree with

a single root node. In comparison, CBS-TA creates a search forest,

but expands new root nodes only on demand. CBS-TA starts with

a single root node which uses the best task assignment, while

ignoring possible conflicts between agents. Whenever a root node

is expanded during the search, we create another root node with

the next best assignment.

By design, CBS-TA requires an efficient way of computing the

next-best assignment. It is possible to enumerate the K best solu-

tions in various domains, including task assignment [7].We base our

method on existing algorithms [4, 15] but compute new solutions

on demand, rather than a set of K solutions. Our notation is closely

based on [4]. We compute a lower bound of the cost for agent i to
reach goalдj (ifai j = 1) by computing the shortest path, ignoring all

other agents. A helper functionassiдnment (C ) computes an optimal
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Algorithm 1: high-level of CBS-TA
Input: Graph, start and goal locations, assignment matrix

Result: optimal path for each agent

1 R.constraints← ∅

2 R.assignment← firstAssignment()

3 R.root← True

4 R.solution← find individual paths using low-level()

5 R.cost← SIC(R.solution)

6 insert R to OPEN

7 while OPEN not empty do
8 P ← best node from OPEN // lowest solution cost
9 Validate the paths in P until a conflict occurs.

10 if P has no conflict then
11 return P.solution // P is goal

12 if P.root is True then
13 R ← new node

14 R.constraints← ∅

15 R.assignment← nextAssignment()

16 R.root← True

17 R.solution← find individual paths using low-level()

18 R.cost← SIC(R.solution)

19 insert R to OPEN

20 Conf lict ← (ai ,aj ,v, t ) first conflict in P

21 for agent ai in Conf lict do
22 Q← new node

23 Q.constraints← P.constraints + (ai , s, t )

24 Q.assignment← P.assignment

25 Q.root← False

26 Q.solution← P.solution

27 Update Q.solution by invoking low-level(ai )

28 Q.cost← SIC(Q.solution)

29 Insert Q to OPEN

assignment for a given cost matrixC ; this can be achieved, for exam-

ple, by the Hungarianmethod [10] or flow-based approaches [1].We

introduce a new function constrainedAssiдnment (I ,O,C ), where
I is the set of assignments that must be part of the solution, O is

the set of assignments that cannot be part of the solution, and C
is the cost matrix. This function can be implemented as follows.

First, we compute another cost matrix C ′ such that C ′ is identical
to C , except that we change the cost to 0 for each entry in I and
to infinity for each entry in O . Second, we execute any optimal

assignment algorithm (e.g., the Hungarian Method) using C ′. The
pseudo code of our next-best assignment functions are shown in

Algorithms 2 and 3.

The central idea of the algorithm is to partition the solution space

such that we forbid some assignments and forcefully include others.

It has been shown that such a partitioning covers the complete

solution space [15]. If the Hungarian Method is used and N = M ,

the complexity for finding the next solution is O (N 4).

Algorithm 2: firstAssignment

Input: cost matrix C
Result: best assignment, initial ASG_OPEN

1 R ← new node

2 R.O ← ∅

3 R.I ← ∅

4 R.solution = constrainedAssiдnment (R.I ,R.O,C )

5 Insert R to ASG_OPEN

6 return R.solution

Algorithm 3: nextAssignment

Input: cost matrix C , ASG_OPEN
Result: next best assignment, updated ASG_OPEN

1 P ← best node from ASG_OPEN // lowest solution cost
2 if P does not exist then
3 return No next assignment

4 for i ← 1 to N do
5 if i not part of P .I then
6 Q ← new node

7 Q .O = P .O ∪ {P .solution[i]}

8 Q .I = P .I ∪ {P .solution[j] : j < i}

9 Q .solution = constrainedAssiдnment (Q .I ,Q .O,C )

10 if Q .solution not empty then
11 Insert Q to ASG_OPEN

12 return solution of best node from ASG_OPEN

4.2 Properties of CBS-TA
In the following we show that CBS-TA, like CBS, is complete and

optimal with respect to sum-of-cost.

Theorem 4.1. CBS-TA is complete.

Proof. It has been shown that CBS will return an optimal so-

lution if one exists [17]. CBS-TA performs a CBS search on each

root node. Whenever a root node is expanded the next best possible

assignment is computed, until all possible assignments have been

enumerated. Thus, the search is exhaustive in both task assignment

and path planning. □

Theorem 4.2. CBS-TA computes a solution that minimizes the
sum of individual costs of all agents if one exists.

Proof. If the assignment is fixed, the cost of each root node

in the high-level search is a lower bound on the real cost (proof:

Lemma 1, [17]). CBS-TA expands assignments in increasing cost

order, therefore all expanded high-level nodes are a lower bound

on the optimal cost. During each high-level search node expansion,

the minimum cost either stays the same or increases because of

the best-first expansion order in the high-level search. A different

assignment can only be part of the optimal solution if its lower cost

bound is identical or smaller than the current minimum cost in the

high-level search. However, in this case this assignment was already

added as new root node, because a previous root node (as a lower

bound for its fixed assignment) must have been expanded. □
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Figure 2: Example execution of CBS-TA. The environment (a) can be represented as graph (b) with some vertices being start
and/or goal vertices. During the search, ASG_OPEN and OPEN are incrementally updated. The former can be visualized as a
tree (c), while the latter forms a forest (d). See section 4.3 for additional details.

4.3 Example
The algorithm proceeds as follows. Consider an environment with

N = 2 agents andM = 3 goals, see Figure 2a. The problem can be

formulated on a graph (see Figure 2b), with an assignment matrix

A =

c d e( )
1 0 1 1

2 1 0 1

.

Based onG andA, we can compute the cost matrixC by considering

the shortest path for each agent to the respective goal (ignoring all

other agents):

C =

c d e( )
1 ∞ 3 4

2 1 ∞ 3

.

We labeled the different steps in their respective orders in Figures 2c

and 2d. Using the cost matrixC , the first assignment commits agent

1 to goal d and agent 2 to goal c ([1 7→ d, 2 7→ c]) with cost 4. This

creates an entry in the Assignment Open List (ASG_OPEN) (step 1)

and a node in OPEN (step 2).

The path validation finds a conflict between the two agents

at time step 2 (line 9). When expanding a root node, we must

also compute the next best assignment and add a new root node

(lines 12 – 19). For the next best assignment, we compute two

possible successors in the assignment tree: the first one disallows

the assignments O = {1 7→ d } while the second one disallows

O = {2 7→ c} and enforces I = {1 7→ d } (lines 4 – 11 in Algorithm 3;

step 3). In general, there might be up to N successors. The function

nextAssignment returns the lowest cost option ([1 7→ e, 2 7→ c]).
We compute the shortest path for each agent individually based on

this assignment and add it to the OPEN list (step 4).

We now try to resolve the first conflict (1, 2, c, 2), by adding ad-

ditional nodes to the OPEN list (lines 21 – 29). Namely, we consider

the case where agent 1 is constrained to not be at node c at time

step 2 and the case where agent 2 cannot be at node c at time step

2 (step 5).

In the next iteration we pick the second root node from the

OPEN list (step 6).
2
We need to compute the next best assignment

([1 7→ d, 2 7→ e]) and add an additional root node because the node

being expanded is a root node (steps 7 and 8). The currently selected

node from OPEN has a conflict (node c at time step 2) and we need

to attempt to resolve it by adding two additional child nodes (step

9). Finally, we select the third root node from OPEN and return its

solution because it is conflict free (step 10).

5 EXTENSIONS
We now show how CBS-TA can be extended to solve problem

instances within a suboptimality bound and how it can be applied

to additional interesting MAPF variants.

5.1 ECBS-TA
Enhanced CBS (ECBS) is a bounded suboptimal solver for MAPF [3].

ECBS uses focal search in both low- and high-level search algo-

rithms. In focal search, a FOCAL list is maintained alongside the

OPEN list. The FOCAL list contains a subset of the entries in the

OPEN list, such that the cost of the entries in FOCAL are within a

constant factorw of the best cost in OPEN. The low-level search of

ECBS is changed in the following way compared to CBS: First, focal

search (rather than A*) is used with a second inadmissible heuristic

that estimates the number of conflicts. This is used to minimize

the number of expected conflicts. Second, the lowest f -value of the
low-level OPEN list is returned, in addition to the solution path. On

the high-level, a lower bound LB (n) is computed for each node n as

the sum of the minimum f -values (from the low-level search). The

high-level FOCAL list then only contains entries of the high-level

OPEN list whose cost is less than or equal to w minLB (n). As in
the lower-level search, an inadmissible heuristic that counts the

number of expected conflicts is used for expansion. Keeping track

of the lower bound through both search levels allows ECBS to use

a single suboptimality factorw .

2
We assume the FIFO principle as tie breaker in the OPEN list. An implementation

could pick any of the nodes with cost 5.
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Figure 3: Benchmark results comparing CBS-TA with task assignment followed by CBS (TA+CBS) and ILP. Top: Each data
point summarizes 100 randomly generated 8× 8 4-connected grids with random start and goal locations. CBS-TA has a higher
success rate, while achieving a lower average cost and runtime compared to TA+CBS. Bottom: Histograms comparing cost and
runtime savings (i.e., TA+CBS minus CBS-TA) for 5, 9, and 19 agents. For few agents, there is frequently no cost or runtime
difference between TA+CBS and CBS-TA, but a few outliers result in better average performance for CBS-TA. For many agents,
CBS-TA computes better results in most cases, with large runtime benefits in a few cases.

In order to jointly optimize for task assignment and path plan-

ning in the ECBS framework, we can use the same idea as for

CBS-TA and generate a search forest with the root nodes referring

to different assignments. However, the suboptimality boundw cre-

ates slack in the search, allowing us to be more flexible on when to

generate additional root nodes. We consider three variants:

MaxRoot Add as many root nodes as possibly useful for the

givenw . In particular, we keep track of the highest cost of

the already expanded root nodes. If that cost is smaller than

w minLB (n), we add all additional root nodes whose cost is

no larger thanw minLB (n).
CBS-TA-style Following the same logic as CBS-TA, we add

one additional root node each time a root node is expanded.

MinRoot Add as few root nodes as possible, without violating

the suboptimality guarantee. In particular, we initially set

r = w minLB (n). We only add an additional root node if the

lowest-cost entry in the high-level OPEN list has a cost larger

than r . In this case, we compute an additional assignment

and update r .

The first variant (MaxRoot) can potentially compute low-cost so-

lutions, even if high suboptimality bounds are used. However, the

approach is impractical for large M and N , because there are too

many potential assignments. Therefore this method is not imple-

mented. We empirically evaluate CBS-TA-style and MinRoot on

various instances, as described in Section 6.2.

5.2 Suboptimal TAPF
OurMAPF formulation permits agents to have a set of possible goals.

One example of such a problem is the TAPF problem, in which each

agent is part of a group and a set of goals is assigned to each group.

TAPF can be solved optimally with respect to the makespan using

the Conflict-Based Min-Cost-Flow (CBM) algorithm [12], which

uses a two-level search like CBS. Compared to CBS, CBM uses

a maximum flow algorithm per group to find paths on the low-

level rather than using A* per agent. We can model TAPF problem

instances by setting N = M and matrix A according to the group

assignment. CBS-TA can compute optimal solutions with respect

to the sum of costs, which can be more relevant in some scenarios

(e.g. minimizing the total energy usage of the team). It has been

shown that makespan and sum of cost cannot be simultaneously

optimized [24]. Therefore, we need to consider our optimization

objective directly. ECBS-TA can be used to find bounded suboptimal

solutions to such problem instances. We present empirical results

comparing CBM and ECBS-TA in Section 6.3.

6 EXPERIMENTS
We implement CBS-TA and ECBS-TA in C++ using the boost library

for fast heap data structures. We use a minimum-cost maximum-

flow formulation that is part of the boost graph library to solve

unconstrained assignment problems efficiently. All experiments

were executed on a laptop (i7-4600U 2.1GHz and 12GB RAM).

6.1 CBS-TA
We use a set benchmark instances to compare CBS-TA to other

existing methods. We randomly generated 8 × 8 4-connected grids

with 20% obstacles and with random start and goal locations, such

that it is guaranteed that there is at least one assignment where all

agents can reach their respective goals. We limit the computation
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ECBS ECBS-TA (CBS-TA style) ECBS-TA (MinRoot)

Grid Size w Agents Success Cost Runtime Success Cost Runtime Success Cost Runtime

8 × 8

1.0

5 1.00 18.7 0.00 1.00 18.2 0.00 1.00 18.2 0.00
9 0.96 24.3 0.01 1.00 22.2 0.01 1.00 22.2 0.01
19 0.56 34.3 1.30 0.98 27.2 0.31 0.98 27.2 0.32

1.1

5 1.00 18.7 0.00 1.00 18.3 0.00 1.00 18.4 0.00
9 0.97 24.5 0.17 1.00 22.7 0.00 1.00 22.9 0.01

19 0.56 34.6 0.93 0.99 28.9 0.10 0.99 29.3 0.11

1.3

5 1.00 18.8 0.00 1.00 18.7 0.00 1.00 18.9 0.00
9 1.00 25.6 0.01 1.00 24.5 0.00 1.00 25.4 0.01

19 0.68 37.9 1.16 1.00 32.8 0.05 0.89 34.5 0.44

32 × 32

1.00

40 0.92 248 0.5 0.57 244 4.3 0.58 244 4.2

70 0.32 283 1.4 0.01 271 3.0 0.01 271 2.8

100 0.01 - - 0.00 - - 0.00 - -

1.05

40 0.95 264 0.4 0.99 262 0.5 0.95 263 0.7

70 0.45 352 1.7 0.52 350 5.5 0.40 351 1.6
100 0.04 359 2.5 0.03 359 16.8 0.04 359 1.6

1.10

40 0.99 268 0.2 1.00 267 0.3 0.99 269 0.1
70 0.84 371 0.6 0.82 369 2.6 0.80 371 0.5
100 0.33 417 2.6 0.27 417 15.3 0.29 418 2.3

Table 1: Benchmark results comparing task assignment followed by ECBS with ECBS-TA for different suboptimality bounds
w . Each data point averages 100 randomly generated 4-connected grids with random start and goal locations.

time to 30 s and mark a trial as a failure if no solution was found

within the time limit. We vary the number of agents and report the

success rate, average cost, and average runtime over 100 randomly

created examples per number of agents. For CBS-TA, we use the

shortest distance as heuristic in the low-level search.

6.1.1 TA+CBS versus CBS-TA. We compare CBS-TA to task as-

signment followed by CBS (TA+CBS). To ensure fair runtime com-

parison, we implement TA+CBS by executing the same CBS-TA

implementation with an artificial limit of a single root-node expan-

sion. Our results (see Figure 3) show that the success rate of CBS-TA

is higher compared to TA+CBS. For examples that were successful

with both algorithms, we compute the average cost and average

runtime. CBS-TA achieves a lower average cost in a shorter average

time compared to TA+CBS. We analyze the relative frequency of

this effect by looking at individual histograms of the cost savings

(that is cost(TA+CBS) - cost(CBS-TA)) and runtime savings, compar-

ing only examples that were successful with both algorithms. With

only 5 agents, over 80% of the test cases show no cost difference

and the runtime is identical in nearly all cases. With 19 agents,

however, the cost improvement peaks at an improvement of 7 (over

20% of the examples), while the runtime is identical in over 75% of

the cases. This shows, that CBS-TA is in particular beneficial for

dense cases, where the task assignment and path planning are more

tightly coupled. Additionally, CBS-TA does not seem to require

additional runtime, even for sparser examples.

6.1.2 CBS-TA versus ILP. Integer Linear Program (ILP) formu-

lations have been used for the non-anonymous MAPF problem

minimizing different objectives including makespan and sum-of-

cost [25]. The idea behind such formulations is to construct a time-

expanded flow graph and formulate a multi-commodity flow prob-

lem. We implement an ILP based on this idea assuming M = N

and a fully anonymous assignment. This is challenging for CBS-TA

(because N ! possible assignments have to be considered), but easier

for the ILP formulation because it can be framed as a single com-

modity flow. Such instances can be solved in polynomial time when

optimizing for makespan [14]. In order to be able to minimize for

the sum-of-cost instead, we use the following steps. First, we gen-

erate the time-expanded flow graph and formulate an ILP, similar

to [25], but using a single commodity for all agents, rather than one

commodity per agent. Second, we add one additional auxiliary inte-

ger variable for each goal capturing the time until an agent reaches

and stays at that goal. Third, we set our optimization objective to

minimize the sum of all such auxiliary variables [14].

We use Gurobi 7.5 as ILP solver [8]. In order to solve an instance,

we need an upper bound of the makespan of the optimal solution.

We find an upper bound dynamically, by doubling the makespan on

each attempt. Only if the cost between two successive attempts did

not change do we report a solution. This avoids solutions where

the makespan but not sum-of-cost is minimal.

The ILP solver computes results with the same minimum cost in

all solved cases, as expected. However, the runtime is significantly

higher compared to CBS-TA. For example, the average runtime for

10 agents is 21 s. This also affects the success rate (see Figure 3),

which is significantly lower compared to CBS-TA for larger numbers

of agents.

6.2 ECBS-TA
We use benchmarks to compare the two ECBS-TA variants to opti-

mal task assignment followed by ECBS using different environment

sizes and suboptimality bounds. Note that even though we use the

same suboptimality bound for ECBS-TA and ECBS, they have dif-

ferent semantics. In the ECBS-case we guarantee that the returned

result is within a factor ofw given that the task assignment is fixed.
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Figure 4: Benchmark results comparing CBM with ECBS-TA for 8 × 8 4-connected grid environments. ECBS-TA achieves a
higher success rate at comparable runtime with w = 2. For all used suboptimality bounds the achieved sum of costs is lower
when using ECBS-TA when compared to CBM. However, because CBM optimizes makespan, it outperforms ECBS-TA with
respect to makespan.

ECBS-TA, on the other hand, guarantees to return a solution that is

within a factor ofw for the optimal valid task assignment. Thus, the

guarantee given by ECBS-TA is stronger. In all cases we numerically

verified that the suboptimality bounds are fulfilled.

6.2.1 Small Environments. In the first set of tests, we use the

same 8 × 8 4-connected grids with 20% obstacles as for the CBS-TA

analysis in the previous section. We vary the number of agents and

report the success rate, average cost, and average runtime over 100

examples per numbers of agents. A subset of our results is shown in

Table 1. Both ECBS-TA variants achieve higher success rates, lower

or comparable costs, and lower runtime compared to ECBS when

used with the same suboptimality bound. When comparing the

two different ECBS-TA versions, we notice that the CBS-TA style

root-node expansion results in lower costs at higher suboptimality

bounds. In case (w = 1.3), this version also provides a higher success

rate at a lower runtime, compared to the MinRoot expansion policy.

6.2.2 Large Environments. In another set of tests (see Table 1) we
used 32× 32 4-connected grids, again with 20% obstacles. Instead of

up to 20 robots we test with up to 100 robots. This results in longer

required paths for each robot, but has a lower robot-to-free-space

density of 12% compared to the 38% of the smaller maps.

When computing the optimal solution (w = 1), the success rate

of ECBS-TA (both variants) is now significantly lower than ECBS.

For instances that could be solved by all variants, the solution

found by ECBS-TA has a lower cost, but not significantly (less

than 5% on average). Higher suboptimality bounds (w = 1.05 and

w = 1.1) improve the success rate of ECBS-TA to a comparable

level and the solution quality is nearly identical for ECBS and

ECBS-TA. However, the runtime of ECBS-TA using the CBS-TA

style expansion is significantly higher and grows quickly with the

number of agents. Our MinRoot expansion on the other hand has

the same (and sometimes better) runtime than ECBS.

This effect can be explained as follows. The number of possible

task assignments grows factorially in the number of robots. Thus,

instances with many robots have many possible assignments with

identical cost (we noticed several hundred possible assignments

with optimal cost for some of our examples). Adding another root

node in the ECBS forest is time-consuming, because another as-

signment needs to be computed and low-level search for each robot

for this assignment needs to be executed. Therefore, our CBS-TA

style expansion will create many additional root nodes, but those

root nodes do not help significantly to find lower cost solutions.

The MinRoot expansion delays creating additional root-nodes as

long as possible for the givenw . High suboptimality bounds might

not trigger the creation of any additional root node.

Consequently, instances with many robots should use ECBS-TA

with the MinRoot expansion. This provides stronger suboptimality

guarantees compared to ECBS and better results with low subop-

timality bounds. At the same time ECBS-TA achieves the same

results in terms of runtime and cost as ECBS for high suboptimality

bounds.

6.3 TAPF
Thus far our experiments have only considered the unlabeled case.

We now evaluate cases where the target assignment is more con-

strained. To be able to compare to a baseline we set N = M and

arrange agents into groups, such that agents within the same group

are interchangeable. We solve the same problem instance using the

Conflict-Based Min-Cost-Flow (CBM) algorithm [12], and compare

it with ECBS-TA (MinRoot expansion) with varying suboptimal-

ity bounds. Both algorithm use different objective functions: CBM

finds solutions with minimal makespan, while ECBS-TA minimizes

the sum of cost up to a given suboptimality factor. The CBM imple-

mentation is written in C++ and uses boost graph as well.

6.3.1 Small Environments. In the first set of tests we run both

algorithms on the same 8 × 8 maps with varying number of agents,

but fixed group size of 5 agents per group.
3
We report the success

rate, average cost, runtime, and makespan for CBM and ECBS-

TA with different suboptimality bounds (w = 1.0, 1.3, 2.0), see

Figure 4. We notice that the achieved average cost (that is, the

sum of the individual agent costs) is smaller for ECBS-TA in all

cases, while the makespan (as the metric being optimized in CBM)

is lowest for CBM. When we choose w = 2.0, ECBS-TA achieves

a higher success rate at comparable runtimes compared to CBM.

3
The last group may have less than 5 agents.
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Figure 5: Benchmark results comparing CBMwith ECBS-TA
for 32×32 4-connected grid environments. ECBS-TA achieves
lower cost and runtime compared to CBM.

Using lower suboptimality bounds results in lower cost solutions,

but finding solutions is significantly less successful and requires

longer runtimes compared to CBM.

6.3.2 Large Environments. We use the same fixed group size of

5 agents per group on the larger 32×32 maps that were also used in

the ECBS-TA experiments. Using ECBS-TA to compute cost-optimal

solutions (w = 1.0) leads to a low success rate (no instance with

100 agents can be solved within the timeout), while bounds with

w ≥ 1.3 can solve all instances. In comparison, CBM solved 995 out

of the 1000 test instances in the given time limit. For brevity, we

report the results for w = 1.3 in Figure 5 on instances that were

solved by both algorithms. The achieved cost of CBM is more than

twice as high compared to ECBS-TA in the 100 agent case. It is

surprising that the difference is that large considering the relatively

high suboptimality bound used for ECBS-TA. Not surprisingly, CBM

achieves a lower makespan (the metric it is minimizing): in the 100

agent case CBM has an average makespan of 33 while ECBS-TA

achieves an average makespan of 47. The runtime of ECBS-TA is

significantly better compared to CBM, especially when more agents

are considered.

6.3.3 Varying Group Size. To evaluate the influence of the group
size, we use the 32 × 32 maps with 100 agents while varying the

group size. The results (usingw = 1.3 for ECBS-TA) are shown in

Figure 6. As before, we limit the computation time to 30 s. ECBS-TA

was able to compute solutions for all cases within the given time

limit. If using 100 groups (group size of 1), CBM was not able to

compute a single solution, but it was successful for all other group

sizes and instances. If the group size is 1, we get the labeled case

where each agent has an assigned goal. The other extreme is the

unlabeled case, which we achieve with a group size of 100. CBM

uses a maximum flow algorithm in the low-level search that is

executed per robot group. Thus, it performs best if there is just

a single group (of size 100) and worst if there are 100 groups (of

size 1). ECBS-TA, on the other hand, considers a single possible

assignment if there are 100 groups, and 100! assignments if there is

a single group. The runtime results reflect this behavior: ECBS-TA

can find solutions much faster for small group sizes compared to

CBM. The runtime requirements slowly increase for larger group

sizes. The runtime of CBM decreases with the group size. As in the

previous results, the cost of the solution is lower for ECBS-TA in
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Figure 6: Benchmark results comparing CBM with ECBS-
TA for varying group sizes. The runtime of ECBS-TA slowly
grows, while the runtime of CBM rapidly decays with the
group size. The average cost of the solution is always smaller
when using ECBS-TA, independent of the group size.

all cases. Similarly, as expected, the makespan of CBM solutions is

always better than for ECBS-TA solutions.

7 CONCLUSION
In this work, we extended Conflict-Based Search to simultaneously

assign tasks and plan paths for multiple agents. The key insight is

the extension of the high-level search to operate on a search forest

rather than a search tree, where each root node represents a fixed

assignment. The forest can be efficiently constructed on demand,

avoiding the need to consider all irrelevant possible task assign-

ments. The use of the CBS framework provides two significant

advantages. First, other extensions of CBS, such as the bounded

suboptimal ECBS, are directly applicable. Second, we can optimize

for the sum of individual costs, which is more appropriate in some

domains than makespan.

We evaluated our algorithm extensively, with the following im-

portant results:

(1) We can compute solutions significantly faster than an ILP-

based solver while providing the same optimality guarantees.

(2) The traditional method of independently assigning tasks

followed by path planning can be improved in terms of so-

lution quality and runtime by using (E)CBS-TA in dense

environments with few agents. However, larger environ-

ments with many agents do not benefit significantly from

a joint optimization. Nevertheless, ECBS-TA (MinRoot ex-

pansion) provides stronger suboptimality guarantees than

before with negligible additional runtime overhead.

(3) ECBS-TA produces lower cost solutions than CBM (which

optimizes for a different objective) even when high subop-

timality bounds are used. For small group sizes, ECBS-TA

can produce such a solution in significantly shorter time

compared to CBM.

We believe that (E)CBS-TA can be used in all cases where task

assignment and path planning might be optimized jointly with

respect to the sum of costs of the individual agents’ plans.

In future work, we would like to apply (E)CBS-TA on more

realistic scenarios, such as planning for robots in warehouses.
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