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ABSTRACT
We consider the over-time version of the Max-Min Fair Alloca-
tion problem. Given a time horizon t = 1, 2, . . . ,T , with at each
time t a set of demands and a set of available resources that may
change over the time defining instance It , we seek a sequence of so-
lutions S1, S2, . . . , ST that (1) are near-optimal at each time t , and (2)
as stable as possible (inducing small modification costs). We focus
on the impact of the knowledge of the future on the quality and the
stability of the returned solutions by distinguishing three settings:
the off-line setting where the whole set of instances through the
time horizon is known in advance, the on-line setting where no
future instance is known, and the k-lookahead setting where at
time t , the instances at times t + 1, . . . , t + k are known. We first
consider the case without restrictions where the set of resources
and the set of agents are the same for all instances and where every
resource can be allocated to any agent. For the off-line setting, we
show that the over-time version of the problem is much harder
than the static one, since it becomes NP-hard even for families
of instances for which the static problem is trivial. Then, we pro-
vide a ρ

ρ+1 -approximation algorithm for the off-line setting using
as subroutine a ρ-approximation algorithm for the static version.
We also give a ρ

ρ+1 -competitive algorithm for the online setting
using also as subroutine a ρ-approximation algorithm for the static
version. Furthermore, for the case with restrictions, we show that
in the off-line setting it is possible to get a polynomial-time algo-
rithm with the same approximation ratio as in the case without
restrictions. For the online setting, we prove that it is not possible
to find an online algorithm with bounded competitive ratio. For
the 1-lookahead setting however, we give a ρ

2(2ρ+1) -approximation
algorithm using as subroutine a ρ-approximation algorithm for the
static version.
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1 INTRODUCTION
Resource allocation problems have been intensively studied in the
past [19]. In such a problem, the aim is to find an allocation of a
set of limited resources to a set of competing agents in a way to
optimize a given objective function subject to a set of constraints
(availability of resources, level of demands, compatibility between
agents and resources). The study of a large variety of combinatorial
optimization problems, including facility location, matching, sched-
uling problems etc..., has been motivated by applications in logistics,
computer and telecommunication networks, air trafficmanagement,
energy management etc... A special focus on resource allocation
problems has been given in multiagent settings, considering a fair-
ness criterion/objective in the allocation [6, 7, 14]. Typically, these
problems are studied in the case where the instance is static, while
in many applications the instance changes over time. Take for ex-
ample an energy company producing electricity on a set of reactors.
The electricity demands evolve over time, so the company has to
decide a production plan, all along a period of time, in order (1) to
satisfy the demand at every time, (2) to minimize the production
cost at each time, and (3) to minimize the cost of turning on/off
the reactors. The reader is refered to [16, 17] for other applications
in dynamic contexts. It is only recently that resource allocation
problems start to be studied in such a dynamic context [11, 15].

More formally, we are given a time horizon: t = 1, 2, . . . ,T where
at each time t we have a new instance It of the considered resource
allocation problem. It is tempting to try to solve the problem for
every new instance. However in most practical applications, there
is a non-negligible transition cost for adopting modifications of
the current allocation (solution). Hence, the goal is to determine a
sequence of solutions S1, S2, . . . , ST that both (1) are near-optimal
(quality), and (2) induce small modification costs (stability). An
important aspect in this dynamic setting is the impact of the knowl-
edge of either the whole set of instances (off-line case), or a limited
number of instances, say k , in the near future (k-lookahead case),
or no future instance at all (on-line case) on the quality and the
stability of the returned solutions.

In this paper, we focus on the over-time version of different
variants of a basic resource allocation problem, the Max-Min Fair
Allocation problem where the aim is to determine an allocation
of the resources to the agents in a fair way. An instance of the
Max-Min Fair Allocation problem is characterized by a set R of
n resources, a set P ofm agents and a set of nonnegative values
ℓ(j, i), for every j ∈ R and every i ∈ P. The value ℓ(j, i) corresponds
to the valuation of the agent i for the resource j. An allocation is a
partition R1, . . . ,Rm of the set of resources and the valuation of
agent i is equal to ℓ(Ri ) =

∑
j ∈Ri ℓ(j, i). The objective is to find an
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allocation with the best possible valuation for the worst-off agent,
i.e. an allocation maximizing mini ∈P

∑
j ∈Ri ℓ(j, i). Another name

used in the literature for this problem is the Santa Claus problem
where the resources correspond to gifts and the agents to children.
The objective is to find an allocation of gifts to the children so as
to maximize the happiness of the least happy child. In scheduling
terms, this problem corresponds to the problem of scheduling a set
of jobs on a set of unrelated machines so as to maximize the load of
the least loaded machine. Here the resources are the jobs and the
agents are the machines. Important subproblems of the Max-Min
Fair Allocation problem is the Restricted Max-Min Fair Al-
location problem in which ℓ(j, i) ∈ {0, ℓj } (each resource has a
fixed value, but only some agents are interested in it), the Homoge-
neous Max-Min Fair Allocation problem in which ℓ(j, i) = ℓj
(each resource has a fixed value) and the Uniform Max-Min Fair
Allocation problem in which ℓ(j, i) = ℓj

si (where si is the speed of
machine i in the scheduling context).

In the Over-Time Max-Min Fair Allocation problem, we are
given a sequence I1, . . . , IT of instances of the Max-Min Fair Al-
location problem, with T ≥ 2. For every instance It , we have
a set of mt agents Mt = {1, . . . ,mt }, a set of nt resources Nt =

{1, . . . ,nt } and a valuation of the agent i for the resource j , denoted
by ℓt (j, i) ∈ R for every j ∈ Nt and i ∈ Mt . We are also given a
reward equal to K ∈ R+ for every resource that is allocated to
the same agent in two consecutive solutions (this reward for our
maximization problem corresponds to the transition cost in [11, 15]
for minimization problems).

A solution sequence S = (O1, . . . ,OT ), where Ot is a solution of
It , defines

• a Santa Claus revenue, ℓ(S) =
∑T
t=1 ℓt (Ot ) such that ℓt (Ot ) =

mini ∈{1, ...,mt }

∑nt
j=1 lt (j, i) · xt, j,i , with xt, j,i = 1 if the re-

source j is allocated to the agent i inOt , and 0 otherwise. This
corresponds to the sum of the valuations of the worst-off
agents over all solutions Ot , for t = 1, 2, . . .T ,

• a transition revenue, D(S) =
∑T−1
t=1 Dt (S), where

Dt (S) = K×|resources remaining on a same agent inOt andOt+1 |.

Intuitively, the larger the transition revenue, the more stable
the sequence of the solutions.

Overall, we seek for a solution sequence that yields a good trade-off
between quality and stability, and in what follows our goal will be
the maximization of the sum of f (S) = ℓ(S) + D(S).

Example 1.1. Suppose that we have n = 4 resources andm = 2
agents, K = 1. We have 3 time steps. We are in the homogeneous
case, and here are the valuation of resources:

t = 1 t = 2 t = 3
Resource 1 3 6 2
Resource 2 2 4 1
Resource 3 1 8 2
Resource 4 2 1 3

Let us consider this first solution sequence S1 (for column t = 1
and line Agent 1, (2, 4) are the resources allocated to Agent 1 at
time 1):

t = 1 t = 2 t = 3
Agent 1 (2,4) (1,2) (2,4)
Agent 2 (1,3) (3,4) (1,3)

We have ℓ(S1) = 4 + 9 + 4 = 17 (these are actually the best
solutions at each time step). Since 2 resources remain allocated to
the same agent between times 1 and 2, and 2 as well between times
2 and 3, we have D(S1) = 2K + 2K = 4. Hence, f (S1) = 21.

One may consider S2 which is the same as S1 but resource 4 is
given to agent 1 in time step 2. Then ℓ(S2) = ℓ(S1) − 1 = 16, but
D(S2) = 3K + 3K = 6, so f (S2) = 22 > f (S1).

Recall that a ρ-approximation algorithm for an optimization prob-
lem is a polynomial-time algorithm returning a solution whose
value is within a factor of ρ of the value of an optimal solution for
all the instances of the problem [22]. ρ is called the approximation
ratio of the algorithm. For a maximization problem like the Max-
Min Fair Allocation problem studied in this paper, 0 ≤ ρ ≤ 1
(ρ = 1 corresponds to an exact algorithm). The definition of a c-
competitive algorithm is similar to the one of a ρ-approximation
algorithm where the on-line algorithm is compared with respect to
the optimal off-line algorithm that knows the entire sequence of
the input data.

Variants. Wedistinguish between two cases: the casewhere there
are restrictions on the set of agents on which a resource can be
allocated (Section 3.2) and the case where there are no restrictions
(Section 3.1).

2 PREVIOUS RESULTS
The (static) problem has been first studied in a game theoretic con-
text [18]. Bezáková and Dani have shown that it is NP-hard to ap-
proximate the Max-Min Fair Allocation problem to within a fac-
tor better than 1/2 and they provided the first non-trivial approxima-
tion algorithm [5]. Later, Bansal and Sviridenko [3] presented a con-
figuration linear program for the problem with an integrality gap
of Ω

(
1√
m

)
. Asadpour and Saberi [2] proposed an Ω

(
1√

m log3(m)

)
-

approximation algorithm. This result has been improved by Saha

and Srinivasan who gave an Ω

(
log logm
√
m logm

)
-approximation algo-

rithm [21]. The best result with respect to the number of resources
is an Ω

(
1
nϵ

)
-approximation algorithm running in O(n

1
ϵ ), for any

ϵ > 0 [4, 8].

A lot of progress has been done for the Restricted Max-Min
Fair Allocation problem. While the same inapproximability re-
sult holds in this case, Bansal and Sviridenko [3] proposed an
Ω
(
log log logm
log logm

)
-approximation algorithm. Haeupler et al. presented

a constant factor approximation algorithm, but the constant was
large and unspecified. Asadpour and Saberi [2] showed that the in-
tegrality gap of the configuration linear program is bounded by 1/4.
Annamalai, Kalaitzis and Svensson proposed recently a combina-
torial algorithm with approximation ratio 1

6+2
√
10+ϵ

which runs in

|I |
1
ϵ2 log( 1ϵ ), for any ϵ > 0 andwhere |I | is the size of the instance [1].
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For the Homogeneous Max-Min Fair Allocation problem,
Deuermeyer, Friesen and Langston [10] showed that the classical
LPT (Longest Processing Time) algorithm is a 3

4 -approximation al-
gorithm. Csirik, Kellerer and Woeginger [9] improved the analysis
showing that the approximation ratio of LPT is in fact 3m−1

4m−2 . Woeg-
inger [23] and also Ochel with Voecking [20] proposed a polynomial
time approximation scheme for the problem: for any ϵ > 0, there
exists a (polynomial time) (1−ϵ)-approximation algorithm. Epstein
and Sgall proposed a polynomial time approximation scheme for
the Uniform Max-Min Fair Allocation problem [12].

3 OUR RESULTS
Our goal is to measure to what extend the over-time setting is
harder to solve than the static one, with respect to the quality of
solutions an algorithm can compute in polynomial time. In par-
ticular, for cases where ℓ(j, i) = ℓ(j) (homogeneous case) or when
ℓ(j, i) ∈ {0, ℓ(j)}, the static problem has constant ratio approxi-
mation algorithms as mentioned above; is it still the case in the
over-time setting? We provide some answers which depend on
the assumptions made on the knowledge of the future (off-line/on-
line/k-lookahead), and on the possibility to have incompatibilities
between resources and agents (case with restriction) or not.

More precisely, in Section 3.1 we study the case without restric-
tions where the set of resources and the set of agents are the same
for all instances and where every resource can be allocated to any
agent. For the off-line setting, we first show that the over-time
version of the problem is much harder than the static one with
respect to the computational complexity. Then, we propose a ρ

ρ+1 -
approximation algorithm for the off-line setting using as subroutine
a ρ-approximation algorithm for the static version, thus getting a
constant ratio approximation algorithm for the over-time setting
whenever the static problem has one. We improve this approxima-
tion ratio when the number of steps T or the number of agentsm
is bounded. Then, we show that a similar result can be obtained in
the on-line setting, since we devise a ρ

ρ+1 -competitive algorithm
using also as subroutine a ρ-approximation algorithm for the static
version.

In Section 3.2, we study the case with restrictions. We show
that in the off-line setting it is possible to get a polynomial-time
algorithm with the same approximation ratio as in the case without
restrictions. For the on-line setting, we prove that it is not possi-
ble to find an on-line algorithm with bounded competitive ratio.
Interestingly, we show that knowing only one time step in advance
(1-lookahead setting) is sufficient to again obtain a constant approx-
imation algorithm whenever the static case has one; more precisely,
we give a ρ

4ρ+2 -approximation algorithm using as subroutine a
ρ-approximation algorithm for the static version.

3.1 The case Without-Restrictions
We consider the case where the set of resources and the set of agents
are the same for all the instances. Therefore, n1 = ... = nT = n and
m1 = ... =mT =m. In addition, every resource can be allocated to
any agent.

As a first result, we illustrate the fact that the over-time problem
is significantly harder than the static Max-Min Fair Allocation
problem, since it remains NP-hard even in a very restricted case.

Theorem 3.1. Max-Min Fair Allocation is NP-hard even in
an off-line setting with no restriction, with only 2 agents and in the
homogeneous case, with furthermore ℓt (j, i) = ℓt (j) ∈ {0, 1}.

Note that these instances are trivial in the static case.

Proof. We show this result using a reduction from the Maxi-
mum Cut problem. In this problem, known to be NP-hard [13],
we are given an undirected graph G = (V ,E) and an integer s . The
question is whether we can partition the set V of vertices into
(V1,V2) in such a way that at least s edges have one endpoint in V1
and one in V2.

Given G = (V ,E) and s with V = {v1, . . . ,v |V |} and E =
{e1, . . . , e |E |}, we build an instance of Max-Min Fair Allocation
with 2 agents, |V | resources (call them {v1, . . . ,v |V |}) and T = |E |
time steps. At time step i agents 1 and 2 give valuation 1 to the
two endpoints of edge ei , and 0 to all other resources. We set K
sufficiently large, say K = |E | + 1. We claim that there is a cut
with at least s edges in G if and only if there is a solution sequence
of value at leat K(T − 1)|V | + s in the instance of Max-Min Fair
Allocation.

If there is a cut (V1,V2) with at least s edges, then give vertices
of V1 to agent 1 and vertices of V2 to agent 2, at any time (no
modification of solution). Then the transition revenue isK(T −1)|V |.
If an edge ei is in the cut, then at time i one endpoint is given to
agent 1, the other 1 to agent 2, and the Santa Claus revenue at
time i is 1. Then we have a solution sequence of value at least
K(T − 1)|V | + s .

Conversely, note that the Santa Claus revenue is at most 1 at any
time step, so at most |E | in total. So, if a solution sequence makes
at least one modification in the solutions, it will have value at most
K(T − 1)|V | − K + |E | < K(T − 1)|V |. Hence, a solution sequence
with value at least K(T − 1)|V | + s does not make any modification.
LetV1 be the set of resources given to agent 1, andV2 the ones given
to agent 2. The solution sequence has (at least) s time steps with
Santa Claus revenue 1. This means that there are at least s edges
with one endpoint in V1 and one in V2.

□

Now, we give some approximation algorithms for the problem,
first in an off-line setting and then in an on-line setting.

3.1.1 Off-line case. In order to find a good solution sequence
for the revenue, we use as a subroutine an algorithmA for the static
Max-Min Fair Allocation problem. Then Algorithm 1 works as
follows:

• Apply A on each instance It , denote by Õt the obtained
solution.

• Build a first solution sequence S0 = (Õ1, Õ2, . . . , ÕT ).
• For any t consider the solution sequence St = (Õt , Õt , . . . , Õt )

(no modification).
• Output the best of the T + 1 previous solutions.

The idea is that the first solution performs well with respect to
the Santa Claus revenue ℓ(S), while the others perform well with
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respect to the transition revenue D(S). More precisely, we have the
following result.

Theorem 3.2. If A is a (polytime) ρ-approximation algorithm for
the static case, then Algorithm 1 is a (polytime) T ρ

(T−1)ρ+T -approximation
algorithm for the over-time problem.

Note that this ratio decreases withT down to ρ
ρ+1 (T unbounded).

Proof. Let S∗ = (O∗
1 , ...,O

∗
T ) be an optimal solution sequence,

and denote by S the solution output by the algorithm. As A is a
ρ-approximation algorithm for the static case, we get ℓt (Õt ) ≥

ρℓt (O
∗
t ) for any t . Then:

f (S) ≥ ℓ(S0) ≥ ρ
T∑
i=1
ℓt (O

∗
t ) = ρℓ(S∗) (1)

Now, since in Si (i ≥ 1) no modification is made, then clearly Si
has maximum transition revenue, so:

f (S) ≥ f (Si ) ≥ ρℓi (O
∗
i ) + D(S

∗) (2)
Now, sum Equation (2) for i = 1, . . . ,T , multiply by ρ and add
(T − ρ) times Equation (1). This gives:

(Tρ +T − ρ)f (S) ≥ ρ(ρℓ(S∗) +TD(S∗)) + (T − ρ)ρℓ(S∗)

We derive (Tρ + T − ρ)f (S) ≥ Tρ f (S∗), which gives the claimed
ratio. □

Note that the analysis is tight when ρ = 1, for any T , even in
the homogeneous case. Consider the following instance, with T
agents and n = T 2 resources (i, t), i = 1, . . . ,T , t = 1, . . . ,T . The
value of resource (i, t) is KT at time t , 0 at time t ′ , t . Then at time
t exactly T resources ((i, t), i = 1, . . . ,T ) have non zero value KT .
So an optimal solution gives at time t (i, t) to agent i . The others
have value 0 so they can be placed anywhere. Then consider that
Algorithm 1 wrongly allocates these other resources, in such a way
that no resource is given to the same agent between time t and time
t + 1. Then solution S0 has valueTKT (KT at each time step), while
Si has value KT + (T − 1)KT = TKT .

Of course, an optimal solution sequence is to allocate (i, t) to i
at any time, with value TKT + (T − 1)TK = 2TKT − KT . The ratio
is 1

2−1/T , which is the claimed ratio for ρ = 1.

One might note that Algorithm 1 could easily perform better
on the previous instance, by optimizing the number of resources
that are not reallocated between the solutions computed at times
t and t + 1. As a matter of fact, we now show that the previous
result can be slightly improved in the homogeneous case when the
number of agents is bounded. Indeed, in this case a permutation on
the agents does not modify the Santa Claus revenue at a given time
step. Then we can improve solution S0 of algorithm 1 by trying to
find a permutation minimizing the number of re-allocations when
moving from solution Õt to Õt+1.

To do this, consider two allocations (Rt
1, . . . ,R

t
m ) and

(Rt+1
1 , . . . ,R

t+1
m ) of resources to agents at times t and t + 1. Build

the complete bipartite graph with 2m vertices at1, . . . , a
t
m and

at+11 , . . . ,a
t+1
m where the edge (atj ,a

t+1
j′ ) has weight |Rt

j ∩ Rt+1
j′ |.

Consider a perfect matching on this graph. The weight of this
matching is the total number of resources that remain to the same

agent if we permute the second allocation according to the match-
ing (if (atj ,a

t+1
j′ ) is in the matching the agent j receives resources

Rt
j at time t and Rt+1

j′ at time t + 1). Then computing a perfect
matching of maximum weight in this graph gives the permutation
which maximizes the number of resources that remain allocated to
the same agent. Consider now Algorithm 1′ which is the same as
Algorithm 1 up to the fact that, when computing S0, we sequentially
permute solutions Õt in order to get the maximum number of ‘non
modified’ resources from time t − 1 to time t .

Proposition 3.3. IfA is a ρ-approximation algorithm, then in the
homogeneous case Algorithm 1′ is a T ρ−ρ/m

(T−1)ρ+T−T /m -approximation
algorithm.

Proof. Given two allocations at times t and t + 1, if we apply a
random permutation (all permutations being chosen with the same
probability) on the agents at time t+1, then a resource remains given
to the same agent between time t and t +1 with probability 1/m. So,
in average (among all permutations) a fraction 1/m of resources are
not re-allocated. A maximum weight perfect matching performs at
least as well as average (since it is optimal), so at least a fraction
1/m of resources are not re-allocated in the computed solution.
Then Equation (1) becomes:

f (S) ≥ ρℓ(S∗) +
1
m
D(S∗) (3)

Now, summing Equation (2) for i = 1, . . . ,T , multiplying by
mρ − 1 and adding (T − ρ)m times Equation (3) leads to the claimed
ratio. □

As pointed out in introduction, Max-Min Fair Allocation
has an approximation scheme in the homogeneous case, and a
r = 1

6+2
√
10+ϵ

-approximation algorithm in the case where ℓ(j, i) ∈
{ℓj , 0}. We get the following:

Corollary 3.4. For any ϵ > 0, Over-Time Max-Min Fair Al-
location is approximable within ratio:

• T−1m
2T−1−T /m − ϵ

T→∞
−−−−−→ 1

2−1/m − ϵ in the homogenenous case;

• T r
(T−1)r+T − ϵ

T→∞
−−−−−→ 1

7+2
√
10

− ϵ in the case where ℓt (j, i) ∈
{ℓt (j), 0}.

So in the homogeneous case the ratio is (1/2 − ϵ) if the number
of agents is unbounded. For 2 agents, the improvement with the
matching technique allows to increase the ratio up to (3/4 − ϵ).

Note that for the case where ℓt (j, i) ∈ {ℓt (j), 0}, the ratio is only
slightly decreasing from the static case to the over-time setting,
from (nearly) 1/12.3 to 1/13.3.

3.1.2 On-line case. In the on-line setting, we only know the
instance It at time t . We have to build the solution at time t without
knowledge on what will be the instances at times t ′ > t .

Algorithm 1 is of course no longer possible in the on-line setting.
We cannot build the solution sequences, neither compare them
at the beginning of the time period. We now devise an on-line
algorithm which gives the same approximation ratio as the off-line
one when the number of steps is unbounded. Algorithm 2 also
uses as subroutine an algorithm A for the static case, and works as
follows:
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• Apply A on instance I1, denote by Õ1 the obtained solution.
Set O1 = Õ1

• For t from 2 to T :
– Apply A on instance It .
– If the Santa Claus value of this solution is greater than Kn
then set Ot = Õt .

– Otherwise set Ot = Ot−1.
• Output S = (O1, . . . ,OT ).

Theorem 3.5. IfA is a ρ-approximation algorithm, then Algorithm
2 is a ρ

ρ+1 -approximation algorithm.

Proof. Let S∗ = (O∗
1 , ...,O

∗
T ) be an optimal solution sequence.

By construction we have:
• ℓ1(S) ≥ ρℓ1(O∗

1), and for any t = 2, . . . ,T , Dt−1(S)+ ℓt (S) is
at least ρℓt (O∗

t ); so D(S) + ℓ(S) ≥ ρℓ(S∗).
• For any t = 2, . . . ,T , Dt−1(S) + ℓt (S) ≥ Kn ≥ Dt−1(S∗), so
D(S) + ℓ(S) ≥ D(S∗).

A combination of these two inequalities with coefficients 1 and ρ
gives the claimed ratio. □

Note that the analysis is tight when ρ = 1, even with T = 2 and
in the homogeneous case. Consider this example withT = 2, K = 1,
with 2 agents and 2 resources. At time 1 resources have respective
valuations 0,2 while at time 2 they have valuations 2,2. Suppose that
the A gives resource 1 to agent 1 and resource 2 to agent 2 at time
1, and vice-versa at time 2. Then the on-line algorithm produces a
solution of value 2, while of course maintaining the same resource
to each agent gives value 4.

As in the offline case, this trivial example suggests the same im-
provement for the homogeneous case: when the algorithm applies
A on instance It , it performs the matching technique and permutes
the allocation in order to maximize the number of resources not
reallocated, leading to Algorithm 2′. Then at least a fraction of 1/m
of the resources are not reallocated, and we get the following result
(details omited).

Theorem 3.6. If A is a ρ-approximation algorithm, in the homo-
geneous case Algorithm 2′ is a ρ

ρ+1−1/m -approximation algorithm.

Ifm is unbounded, then we get ratio ρ
ρ+1 . Note that this is tight

for ρ = 1 even in the homogeneous case, even with T = 2: take
n =m2 resources, and K = 1. At time 1, the firstm resources have
valuation 1, while the others have 0. Suppose that the algorithm
chooses to give all the lastm2 −m resources to agent 1. At time 2,
all the resources have valuationm. If the algorithm chooses to keep
the same solution it gets transition revenue Km2, and Santa Claus
revenue 1+m, so the value is Km2+m+1 =m2+m+1. An optimal
solution at time 2 givesm resources to each agent, with Santa Claus
revenuem2. At best the transition revenue if the algorithm chooses
such an optimal solution isK(2m−1) = 2m−1. So in all the solution
computed by the algorithm has value at mostm2 + 2m. An optimal
solution sequence consists of giving the samem resources at time
1 and 2 for each agent, with a valuem +m2 +m2. The ratio goes to
1/2 whenm goes to infinity.

For the on-line case, we get:

Corollary 3.7. For any ϵ > 0, Over-Time Max-Min Fair Al-
location in the on-line setting is approximable within ratio:

• 1
2−1/m − ϵ in the homogenenous case;

• 1
7+2

√
10

− ϵ in the case where ℓt (j, i) ∈ {ℓt (j), 0}.

3.2 The case With Restrictions
We consider the variant where some resources cannot be allocated
to some agents at some point of the time. In that case, for every
i ∈ M , j ∈ N , we have lt (j, i) = −∞ if the agent i cannot receive
the resource j at time t .

3.2.1 Off-line case. As in the casewithout restrictions, wewould
like to build a first solution S0 with good Santa Claus revenue ℓ(S0),
and another solution S1 with good transition revenue D(S1). How-
ever, due to the restrictions, the maximal transition revenue be-
tween two consecutive instances is not always nK as it was in the
case without restrictions. A first question is then to devise, if possi-
ble, a procedure which computes a solution sequence maximizing
the transition revenue.

To do this, let us consider Algorithm 3 which greedily affects
each resource to the agent where it can stay for the longest period
of time. More precisely, let Q(j, i, t) be the number of (consecutive)
time steps during which resource j can be allocated to agent i
starting at time t (Q(j, i, t) = 0 if j cannot be given to i at time t ).
Then Algorithm 3 initially allocates resource j to the agent i on
which it can stay the longer (argmaxi Q(j, i, 1)), and keep it as long
as possible (i.e. t = Q(j, i, 1) steps). Then at time t + 1, j has to
change, and Algorithm 3 allocates it to argmaxi Q(j, i, t + 1), and
keeps it as long as possible (i.e. Q(j, i, t + 1) steps), and so on.

We have the following property.

Lemma 3.8. Algorithm 3 outputs a solution sequence with maxi-
mum transition revenue.

Proof. We prove that this is true for each resource. Let S be the
solution returned by Algorithm 3. Let Dt (S, j) be the contribution
of the resource j to the transition revenue of S up to time t , and
Dt (S

′, j) the contribution for another solution sequence S ′.
• At t = 1, Dt (S, j) = 0 = Dt (S

′, j).
• Suppose that Dp (S, j) ≥ Dp (S

′, j) for p = 1, . . . , t , and con-
sider time t + 1. If j remains to the same agent i in S between
time t and t + 1, or if j moves in S ′ between t and t + 1,
then clearly Dt+1(S, j) ≥ Dt+1(S ′, j). Otherwise, let k be
the last time at which j moves in S ′ (between solution at
time k − 1 and k). Since j can stay in S ′ at time t + 1 and
not in S , by principle of the algorithm, j has been given to
the same agent i in S before time k , it was already given
to i at time k − 1. Since Dk−1(S, j) ≥ Dk−1(S

′, j), and be-
tween k − 1 and k , j moves in S ′ but not in S , we have
Dk (S, j) ≥ Dk (S

′, j) + K . Then the next modification is
between t and t + 1, so Dt (S, j) ≥ Dt (S

′, j) + K and then
Dt+1(S, j) ≥ Dt+1(S ′, j).

This is true for each resource, so the result follows. □

Then, consider Algorithm 3′ which computes two solutions S1
and S2, and outputs the best one. S1 is the solution given by Algo-
rithm 3, and S2 = (Õ1, ..., ÕT ), where Õt is obtained by applying
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a subroutine algorithm A for the static case of the Max-Min Fair
Allocation problem on instance It .

Theorem 3.9. If A is a (polytime) ρ-approximation algorithm for
the static case, then Algorithm 3′ is a ρ

ρ+1 -approximation for the
off-line problem with restrictions.

Proof. Let S∗ = (O∗
1 , . . . ,O

∗
T ) be an optimal solution sequence.

By Lemma 3.8, D(S1) is maximum so D(S1) ≥ D(S∗). Consequently,
f (S1) ≥ D(S∗). We also have ℓt (Õt ) ≥ ρ · ℓt (O

∗
t ) for every t ∈

{1, ...,T }, so ℓ(S2) =
∑T
t=1 ℓt (Õt ) ≥ ρ ·

∑T
t=1 ℓt (O

∗
t ) = ρ · ℓ(S∗),

and this gives f (S2) ≥ ρ · ℓ(S∗). This implies ρ · f (S1) + f (S2) ≥
ρ · (ℓ(S∗) + D(S∗)) ≥ ρ · f (S∗). Then, (ρ + 1) · f (S) ≥ ρ · f (S∗).

So, S is a ρ
ρ+1 -approximate solution sequence.

□

Let us consider an instance with T = 2 time steps, three agents
and three resources. There is no restriction at time 1, but at time 2
resource i cannot be given to agent i . Their respective valuations
are 0,0,0 at time 1, and 3,3,3 at time 2. K = 1. Then Algorithm 3′
may choose a solution S1 where resources 1 and 3 are given to agent
2 and resource 2 to agent 1, both at time 1 and 2. It has transition
revenue 3, but ℓ(S1) = 0. S2 may give resource i to agent i at time 1,
and then at time 2 a solution of value 3 (one resource per agent) but
with no transition revenue (because of the constraints). An optimal
solution would be to give resource 1 to agent 2, 2 to 3 and 3 to 1
both at time 1 and 2, with value 3 + 3 = 6. The ratio is 1/2 (with
ρ = 1).

3.2.2 On-line case. Now, we consider the on-line case where at
time t we have not any knowledge on what will be happen at time
t ′ > t . Interestingly, while in the unrestricted case we can devise
an on-line algorithm with (nearly) the same ratio as in the off-line
case, we show that in the case with restrictions being blind makes it
impossible to get any algorithm with guaranteed competitive ratio.

Proposition 3.10. There is no on-line algorithm with bounded
competitive ratio even for the homogeneous case with restrictions.

Proof. Consider two agents, one single resource, and K the
transition reward. Let us also consider two time-steps, T = 2. At
time t = 1, the valuation of the resource is 0 for both agents. The
resource could be allocated to any agent. Suppose w.l.o.g. that it
is allocated to the first agent by an on-line algorithm. At t = 2,
the resource is allowed to be allocated only to the second agent,
and has valuation 0 for this agent. Hence, the on-line algorithm is
forced to allocate the resource to agent two. In this way, it gets a
revenue of 0, while the optimum would be to allocate the resource
to the second agent in both timesteps resulting to a total revenue
of K . □

3.2.3 1-lookahead case. Asmentioned in the introduction, in the
setting of over-time optimization it seems reasonable to consider
limited lookahead: we may have rather good information on what
will happen tomorrow or in a few days (time steps) from today,
while we may have no clue on what will be the situation one month
from now. Motivated by the dramatic difference on what can be
obtained in the off-line case (ratio ρ/(ρ+1), Theorem 3.9) and in the
on-line case (no competitive ratio), we consider now the situation

where we have lookahead 1: at time t when we have to decide the
allocation of the resources for instance It , we know also It+1. We
show in the following that this is sufficient to get a good (constant)
approximation ratio.

We use the same idea as previously, namely at each time we
try to maximize either the Santa Claus revenue, or the transition
revenue. However, because of the restrictions, we introduce a third
option: choose an allocation maximizing the transition revenue
between the current instance and the instance that will follow. We
choose the third option when the potential transition revenue is at
least two times larger than the revenue of the two other options.

Let us now present Algorithm 4, where A is, as previously, an
algorithm for the static problem. Also, for every t ∈ {1, . . . ,T −

1}, P1t and P2t denote two allocations for It and It+1 respectively,
such that Dt (P

1
t , P

2
t ) is maximum (simply affect a resource to the

same agent at time t and t + 1 if possible). We denote by Dmax
t =

Dt (P
1
t , P

2
t ). The solution S = (O1, . . . ,OT ) is built in the following

way:
• At t = 1: compute Õ1 = A(I1) and two allocations P11 on
I1 and P21 on I2. We compute max

(
l1(Õ1),

Dmax
1
2

)
and we

choose for O1 between Õ1 and P11 accordingly (O1 = Õ1 if
l1(Õ1) ≥

Dmax
1
2 , otherwise O1 = P11 ).

• At time t = 2, . . . ,T − 1: Similarly, compute Õt = A(It ) and
two allocations P1t on It and P2t on I2. We distinguish two
cases:
– If at time t − 1 we have selected Ot−1 = P1t−1, then, at t ,
we compute max

(
Dmax
t−1 , ℓt (Õt ),

Dmax
t
2

)
and we choose for

Ot between P2t−1, Õt and P1t accordingly.
– If not, thenwe computemax

(
lt (Õt ),

Dmax
t
2

)
andwe choose

for Ot between Õt and P1t accordingly.
• At time T , we do the same up to the fact that there is no
Dmax
T (no P1T , P

2
T ).

Theorem 3.11. If A is a (polytime) ρ-approximation algorithm
for the static case, then Algorithm 4 has an approximation ratio of

ρ
4ρ+2− 2ρ+1

2T−1

T→∞
−−−−−→

ρ
4ρ+2 .

Proof. Let V be the set of time-steps where we selected Ot =

P2t−1 or Ot = Õt (but not Ot = P1t ). Note that T ∈ V . In the proof
we partition the time period into |V | periods which end at some
time t ∈ V . Intuitively, we prove the claimed ratio in each of these
sub-periods.

Formally, let u,u + 1, ...,v − 1,v be consecutive time-steps such
that u,u + 1, ...,v − 1 < V , and v ∈ V . Suppose first that u ≤ v − 1
(meaning v − 1 < V ). For every t ∈ {u, ...,v − 1}, we have selected
Ot = P1t . This means that:

•
Dmax
t
2 ≥ Dmax

t−1 , implying:

Dmax
v−1 ≥ 2Dmax

v−2 ≥ 22Dmax
v−3 ≥ ... ≥ 2v−u−1Dmax

u (4)

• Dmax
t ≥ 2ℓt (Õt ). Since from the previous item Dmax

v−1 ≥

2v−t−1Dmax
t , we have :

Dmax
v−1 ≥ 2v−t ℓt (Õt ) (5)
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Summing Equation (4) for t from u to v − 1 we get:

v−1∑
t=u

Dmax
t ≤ Dmax

v−1

v−1∑
t=u

1
2v−t−1

= Dmax
v−1

(
2 − 1

2v−u−1

)
(6)

Doing the same with Equation (5) we get:

v−1∑
t=u
ℓt (Õt ) ≤ Dmax

v−1

v−1∑
t=u

1
2v−t = Dmax

v−1

(
1 − 1

2v−u

)
(7)

At time v , the algorithm chooses either P2v−1 or Õv , with a re-
ward rv at least max

(
Dmax
v−1 , ℓv (Õv ),

Dmax
v
2

)
. This reward rv veri-

fies thanks to Equation (6) (and using v − u ≤ T − 1)

v∑
t=u

Dmax
t ≤ Dmax

v−1

(
2 − 1

2v−u−1

)
+ Dmax

v ≤ rv

(
4 − 1

2T−2

)
(8)

Thanks to Equation (7) we have also

v∑
t=u
ℓt (Õt ) ≤ Dmax

v−1

(
1 − 1

2v−u

)
+ ℓv (Õv ) ≤ rv

(
2 − 1

2T−1

)
(9)

Let S∗ = (O∗
1 , ...,O

∗
T ) be an optimal solution. Let us denote

fu,v (S) =
∑v
t=u (Dt (S

∗)+ ℓt (O
∗
t )) (with by convention DT (S∗) = 0).

Since Dt (S
∗) ≤ Dmax

t and ℓt (O∗
t ) ≤

ℓt (Õt )
ρ , we have:

fu,v (S
∗) ≤

v∑
t=u

(
Dmax
t +

ℓt (Õt )

ρ

)
≤ rv

(
4 + 2

ρ
−
2 + 1/ρ
2T−1

)
(10)

Note that this is also trivially true if u = v .1 Hence, in each
of our sub-periods, we get a reward which is a fraction of at least

1
4+ 2

ρ −
2+1/ρ
2T−1

of the reward of the optimal solution on the same period.

The result follows. □

Consider an examplewithT time steps, such that for t ∈ {1, ...,T−
1}, ℓmax

t =
Dmax
t
2 = 2t , ℓmax

T = 2T + 1, and Dmax
T = 0. We have then

Dmax
t
2 ≥ ℓmax

t and Dmax
t
2 ≥ Dmax

t−1 for t ∈ {1, ...,T − 1} and also
ℓmax
T > Dmax

T−1 and ℓ
max
T > Dmax

T . Using an exact algorithm A, the
solution obtained by the algorithm would be S = (P11 , ..., P

1
T−1, ÕT ).

This would give 1 = u, ...,T − 1 < V and T = v ∈ V . The approxi-
mation ratio of S in this case tends to 1

6 when T → ∞, indicating
that the previous analysis is tight.

From Theorem 3.11 we get:

Corollary 3.12. For any ϵ > 0, Over-Time Max-Min Fair
Allocation with restriction and lookahead 1 is approximable within
(constant) ratio:

• 1
6 − ϵ in the homogenenous case;

• 1
16+4

√
10

− ϵ in the case where ℓt (j, i) ∈ {ℓt (j), 0}.

1we get rv ≥ max
(
lv (Õv ),

Dmax
v
2

)
, so fv,v (S∗) ≤ (2 + 1

ρ )rv .

4 CONCLUSION
We have provided several constant ratio approximation algorithms
for an over-time version of the Max-Min Fair Allocation, based
on a recently introduced [15] model which combines quality and
stability of allocations over time. One striking point of this work
is the introduction in this setting of the notion of k-lookahead,
which allows tradeoffs between on-line and off-line settings. We
show an application of this concept for the problem we consider,
since 1-lookahead is sufficient to reach constant approximation
algorithm for the problem with restriction, while no ratio can be
guaranteed in the on-line case. We do believe that this notion is
worth being studied for other multiagent optimization problems
over time. Another direction that might be studied deals with the
agregation function: in this work we made a sum of the value of
solutions at each time step, and of the transition revenues. There
are many other ways to combine two objectives (bounding the
number of modifications, finding Pareto-efficient solutions,. . . ) that
could be investigated. Finally, dealing with allocation of resources,
other criteria or properties (fairness in average and not step by step,
envy-freeness, non manipulability,. . . ) could be also considered.
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