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ABSTRACT
Consider the following process on a network: Each agent initially

holds either opinion blue or red; then, in each round, each agent

looks at two random neighbors and, if the two have the same opin-

ion, the agent adopts it. This process is known as the 2-Choices
dynamics and is arguably the most basic non-trivial opinion dy-
namics modeling voting behavior on social networks. Despite its

apparent simplicity, 2-Choices has been analytically characterized

only on networks with a strong expansion property – under as-

sumptions on the initial configuration that establish it as a fast

majority consensus protocol.
In this work, we aim at contributing to the understanding of

the 2-Choices dynamics by considering its behavior on a class of

networks with core-periphery structure, a well-known topological

assumption in social networks. In a nutshell, assume that a densely-

connected subset of agents, the core, holds a different opinion from

the rest of the network, the periphery. Then, depending on the

strength of the cut between the core and the periphery, a phase-

transition phenomenon occurs: Either the core’s opinion rapidly

spreads among the rest of the network, or a metastability phase

takes place, in which both opinions coexist in the network for super-

polynomial time. The interest of our result is twofold. On the one

hand, by looking at the 2-Choices dynamics as a simplistic model of

competition among opinions in social networks, our theorem sheds

light on the influence of the core on the rest of the network, as a

function of the core’s connectivity towards the latter. On the other

hand, to the best of our knowledge, we provide the first analytical

result which shows a heterogeneous behavior of a simple dynamics

as a function of structural parameters of the network. Finally, we

validate our theoretical predictions with extensive experiments on

real networks.
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1 INTRODUCTION
Opinion dynamics (for short, dynamics) are simplistic mathemat-

ical models for the competition of agents’ opinions on social net-

works [38]. In a nutshell, given a network where each agent initially

supports an opinion (from a finite set), a dynamics is a simple rule

which agents apply to update their opinion based on that of their

neighbors. Proving theoretical results on dynamics is a challenging

mathematical endeavor which may require the development of new

analytical techniques [4, 7].

As dynamics are aimed at modeling the spread of opinions, a

central issue is to understand under which conditions the network

reaches a consensus, i.e. a state where the whole network is taken

over by a single opinion [39]. In this respect, most efforts have

been directed toward obtaining topology-independent results, which
disregard the initial opinions’ placement on the network [5, 6, 17].

The trivial example of dynamics is the so-called Voter Model, in
which in each round each agent copies the opinion of a random

neighbor. This classical model arises in physics and computer sci-

ence and, despite its apparent simplicity, some properties have been

proven only recently [9, 29, 37]. The simplest non-trivial example

is then arguably the 2-Choices dynamics, in which agents choose

two random neighbors and switch to their opinion only if they

coincide [14] (see Definition 3.2). Still, the analysis of the 2-Choices

dynamics has been limited to networks with good expansion prop-

erties, and the theoretical guarantees provided so far are essentially

independent from the positioning of initial opinions [15].

In this work, we aim at contributing to the general understanding

of the evolution of simple opinion dynamics in richer classes of

network topologies by studying their behavior theoretically and

empirically on core-periphery networks. Core-periphery networks

are typical economic and social networks which exhibit a core-

periphery structure, a well-known concept in the analysis of social

networks in sociology and economics [11, 19], which defines a

bipartition of the agents into core and periphery, such that certain

key features are identified.

We consider an axiomatic framework that has been introduced

in previous work in computer science [3], which is based on two

parameters only, dominance and robustness. The ranges for these
parameters in the theorems we obtain include the values of the

parameters in the the experimental part of this work, in which our

results are validated on important datasets of real-world networks.

Intuitively, the core is a set of agents that dominates the rest of the
network. In order to do so, it maintains a large amount of external

influence on the periphery, higher than or at least comparable to

the internal influence that the periphery has on itself. Similarly, to

maintain its robustness, namely to hold its position and stick to its

opinions, the core must be able to resist the “outside” pressure in the
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form of external influence. To achieve that, the core must maintain

a higher (or at least not significantly lower) influence on itself than

the external influence exerted on it by the periphery. Both, high

dominance and high robustness, are essential for the core to be

able to maintain its dominating status in the network. Moreover, it

seems natural for the core size to be as small as possible. In social-

network terms this is motivated by the idea that if membership

in a social elite entails benefits, then keeping the elite as small as

possible increases the share for each of its members.

The above requirements are formalized in the following ax-

ioms [3]. Given a network G = (V ,E) and two subsets of agents

A,B ⊆ V , let c(A,B) = {(u,v) |u ∈ A,v ∈ B, (u,v) ∈ E} be the set
of cut edges between A and B. The density of a set X ⊆ V is defined

as δ (X ) = |c(X ,X )|/|X |. Let cd and cr be two positive constants

and let V = C Û∪ P, where C is the set of agents in the core and P

the set of agents in the periphery. Then, the axioms are as follows:

• Dominance: The core’s influence dominates the periphery,

i.e. |c(C,P)| ⩾ cd · |c(P,P)|.
• Robustness: The core can withstand outside influence from

the periphery, i.e. |c(C,C)| ⩾ cr · |c(P,C)|.
• Compactness: The core is a minimal set satisfying the above

dominance and robustness axioms.
1

• Density: The core is denser than the whole network, i.e.

δ (C) > δ (V ).

Our analytical and experimental results leverage on the dominance

and robustness axioms only (see Definition 3.1), showing how as-

sumptions on the values of cd and cr are sufficient to provide a

good characterization of the behavior of the dynamics.

We consider the 2-Choices dynamics in core-periphery networks

when starting from natural initial configurations in which the core

and the periphery have different opinions. Our experiments on real-

world networks show that the execution of the 2-Choices dynamics

tends to fall mainly within two opposite kinds of possible behavior:

Consensus: The opinion of the core spreads in the pe-

riphery and takes over the network in a

short time.

Metastability: The periphery resists and, although the opin-
ion of the core may continuously “infect”

agents in the periphery, most of them re-

tain the initial opinion.

By comprehending the underlying principles which govern the

aforementioned phenomena, we aim at a twofold contribution:

• We seek for the first results on basic non-trivial opinion

dynamics, such as 2-Choices, in order to characterize its

behavior (i) on new classes of topologies other than networks

with strong expansion and (ii) as a function of the process’

initial configuration.

• We look for a dynamic explanation for the axioms of core-

periphery networks: By investigating the interplay between

the core-periphery axioms and the evolution of simple opin-

ion dynamics, we want to get insights on dynamical proper-
ties which are implicitly responsible for causing social and

economic agents to form networks with a core-periphery

structure.

1
The core is a minimal set and not necessarily the minimum.

Original Contribution
In order to understand what network key properties are responsible

for the aforementioned dichotomy between a long metastable and
a fast consensus behavior, we theoretically investigate a class of

networks belonging to the core-periphery model.

To further simplify the theoretical analysis, in Theorem 3.4 we

initially consider the setting in which agents in the core are stubborn,
i.e. they don’t change their initial opinion.

2
We later show, in Corol-

lary 3.7, how to substitute this assumption with milder hypotheses

on the core’s structure.

The common difficulty in analyzing opinion dynamics is the lack

of general tools which allow to rigorously handle their intrinsic

nonlinearity and stochastic dependencies [6, 14, 17, 38, 39]. Hence,

the difficulty usually resides in identifying some crucial key quanti-

ties for which ad-hoc analytical bounds on the expected evolution

are derived. Our approach is yet another instance of such efforts: In

Section 3 we provide a careful bound on the expected change of the

number of agents supporting a given opinion. Together with the

use of Chernoff bounds, we obtain a concentration of probability

around the expected evolution. Rather surprisingly, our analysis

on the concentrated probabilistic behavior turns out to identify a

phase transition phenomenon (Corollaries 3.5 and 3.7):

There exists a universal constant c⋆ =
√

2−1

2
such

that, on any core-periphery network of n agents, if

the dominance parameter cd is greater than c⋆, an
almost-consensus is reached within O(logn) rounds,
with high probability;

3
otherwise, if cd is less than

c⋆, a metastable phase in which the periphery retains

its opinion takes place, namely, although the opinion

of the core may continuously “infect” agents in the

periphery, most of them will retain the initial opinion

for nω(1) rounds, with high probability.

We validate our theoretical predictions by extensive experiments

on real-world networks chosen from a variety of domains including

social networks, communication networks, road networks, and the

web. We thoroughly discuss our results in Section 4, however, we

briefly want to highlight the key results of our experiments in the

following. The experiments showed some weaknesses of the core

extraction heuristic used in [3]. To avoid those drawbacks, we de-

signed a new core extraction heuristic which repeatedly calculates

densest-subgraph approximations. Our experimental results on

real-world networks show a strong correlation with the theoretical

predictions made by our model. They further suggests an empirical

threshold larger than c⋆ for which the aforementioned correlation

is even stronger. We discuss which aspects of the current theoretical

model may be responsible for such discrepancy, and thus identify

possibilities for a model which is even more accurate.

2
We remark that the evolution of the 2-Choices dynamics, together with the latter

assumption on the stubbornness of the core, can be regarded as a SIS-like epidemic

model [23, 30]. In such a model, the network is the subgraph induced by the periphery

and the infection probability is given by the 2-Choices dynamics, which also determines

a certain probability of spontaneous infection (that in the original process corresponds to
the fact that agents in the periphery interact with agents in the core). This interpretation

of our results may be of independent interest.

3
We further emphasize that our analysis is not onlymean-field. In addition to describing
how the process evolves in expectation, we show that the process does not deviate

significantly from how it behaves in expectation with high probability (w.h.p.), i.e. with

probability at least 1 − O(n−c ) for some constant c > 0.
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We remark that our investigation represents an original contri-

bution with respect to the line of research on consensus discussed in
Section 2, as it shows a drastic change in behavior for the 2-Choices

dynamics on an arguably typical broad family of social networks

which is not directly characterized by expansion properties. In par-

ticular, the convergence to the core’s opinion in our theoretical and

experimental results is a highly nontrivial fact when compared to

previous analytical works (see Section 4 for more details).

Overall, our theoretical and experimental results highlight new

potential relations between the typical core-periphery structure

in social and economic networks and the behavior of simple opin-

ion dynamics – both, in terms of getting insights into the driving

forces that may determine certain structures to appear frequently

in real-world networks, as well as in terms of the possibility to

provide analytical predictions on the outcome of simplistic models

of interaction in networks of agents.

2 RELATEDWORK
Simple models of interaction between pairs of nodes in a network

are studied since the first half of the 20th century in statistical

mechanics where mathematical models of ferromagnetism led to

the study of Ising and Potts models [36]. A different perspective

later came from diverse sciences such as economics and sociology

where averaging-based opinion dynamics such as the DeGroot

model were investigated [20, 24, 27, 28, 32].

More recently, computer scientists have started to contribute to

the investigating of opinion dynamics for mainly two reasons. First,

with the advent of the Internet, huge amounts of of data from social

networks are now available. As the law of large numbers often

allows to assume crude simplifications on the agents’ behavior in

such networks [19], investigating opinion dynamics allows for a

more fine-grained understanding of the evolution of such systems.

Second and somehow complementary to the previous motivation,

technological systems of computationally simple agents, such as

mobile sensor networks, often require the design of computationally

primitive protocols. These protocols end up being surprisingly

similar, if not identical, to many opinion dynamics which emerge

from a simplistic mathematical modeling of agents’ behavior in

fields such as sociology, biology, and economy [4, 29, 39].

A substantial line of work has recently been devoted to investi-

gating the use of simple opinion dynamics for solving the plurality

consensus problem in distributed computing. The goal in this prob-

lem setting is for each node to be aware of themost frequent initially

supported opinion after a certain time [4–6, 8, 13, 16, 18, 21, 26].

The seminal work by Hassin and Peleg [29] introduced for the first

time the study of a synchronous-time version of the Voter Model

in statistical mechanics. In this model, in each discrete-time round,

each node looks at a random neighbor and copies her opinion. The

Voter Model is considered the trivial opinion dynamics, in the sense

that it is arguably the simplest conceivable rule by which nodes

may meaningfully update their opinion as a function of their neigh-

bors’ opinion. Many properties of this process are understood by

known mathematical techniques such as an elegant duality with

the coalescing random walk process [1]. In particular, it is known

that the Voter Model is not a fast dynamics as for the time it takes

before consensus on one opinion is reached in the network. For

that reason, the 2-Choices dynamics has been considered [14]. In

such dynamics, in each round, each node looks at the opinion of

two random neighbors and, if these two are the same, adopts it.

This process can arguably be considered the simplest non-trivial
type of opinion dynamics.

The authors of [14] consider any initial configuration in which

each node is supporting one out of two possible opinions. They

proved that in such a configuration, under the assumption that the

initial bias (i.e. advantage of an opinion) is greater than a function

of the network’s expansion (measured in terms of the second eigen-

value of the network) [31], the whole network will support the

initially most frequent opinion with high probability after a poly-

logarithmic number of rounds. The results of [14] on the 2-Choices

dynamics were later refined with milder assumptions on the initial

bias with respect to the network’s expansion [15] and generalized to

more opinions [17]. Until now, the 2-Choices dynamics constitutes

one of the few processes whose behavior has been characterized

on non-complete topologies – however, assuming good expansion

properties. Their techniques should be easily adaptable in order to

handle similar dynamics, such as the 3-Majority dynamics [5, 6, 25].

On a different note, for the deterministic Majority dynamics

where in each round each node updates her opinion with the most

frequent one among her neighbors: Substantial effort has been

devoted to investigating how small the cardinality of amonopoly can
be, i.e. a set of nodes supporting a given opinion O such that, when

running the Majority dynamics, eventually the network reaches

consensus on O [40, 41]. The previous line of investigation has

focused on determining the existence of network classes on which

the monopoly has a size which is upper bounded by a small function.

This question has been settled by [10], who proved the existence of

a family of networks with constant-size monopoly. We emphasize

that this line of investigation is peculiar as it deals with existential

questions related to specific network classes, as opposed to the

typical research questions that we discussed so far, which ask for

general characterizations of the behavior of the considered process.

Recently, a more systematic and general study of opinion dynam-

ics has been carried out in [7, 38, 39]. It characterizes the evolution

and other mathematical aspects of dynamics – such as the Majority

dynamics, the Voter Model, the DeGroot model, and others – on dif-

ferent network classes, such as Erdős-Rényi random networks and

expander networks. We follow [39] in adopting the term “opinion

dynamics” to refer to the class of processes discussed above.

Finally, a similar perspective to ours has been adopted in [34],

where the authors show a phase-transition in a mean-field analy-

sis of the behavior of deterministic majority in an asynchronous-

update model, in which only few nodes update their opinion at

each round, on “coupled fully connected networks” composed of

overlapping complete graphs.

Core-Periphery model
It has long been observed in sociology that many economic and so-

cial networks exhibit a core-periphery structure [11, 42–44], namely,

it is generally possible to group nodes into two classes, a core and a
periphery, such that the former exhibits a dense internal topology

while the latter is sparse and loosely connected, with specific prop-

erties relating the two. Such architectural principle has been linked,
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for example, to the easiness with which individuals solve routing

problems in networks subject to the small-world phenomenon [19].

The qualitative notion of core-periphery structure was trans-

lated into quantitative relations in the axiomatic approach of [3],

which later also applied the algorithmic properties that follow from

the core-periphery structure to the design of efficient distributed

networks [2]. In some sense, our theoretical and empirical results

may be regarded as a functional justification for the presence of a

core-periphery structure in networks, as the latter turns out to play

a decisive role in determining a certain kind of evolution for basic

opinion dynamics such as the 2-Choices.

3 THEORETICAL ANALYSIS
We give a formal analysis of the 2-Choices dynamics on a specific

network topology, i.e. on Core-Periphery networks. We use col-

ors instead of opinions to facilitate intuitive understanding of the

analysis. Specifically, we consider the setting in which the agents

belonging to the core C initially support the color blue while the
remaining agents, from the periphery P, support the color red. We

show that, depending on the value of some parameters describing

the core-periphery structure of the network, either the opinion of

the core rapidly spreads among almost the whole network (Almost-
consensus: almost all the agents support the blue color after a few
rounds) or most of the periphery resists for a long time (Metastabil-
ity: most agents in P remain red).

First, we formally describe our characterization of Core-Periphery

networks and of the 2-Choices dynamics. Then, we prove two tech-

nical results which will be exploited in order to provide a rigorous

analysis of the 2-Choices dynamics on Core-Periphery networks.

Definition 3.1. For every n and ε, cr , cd ∈ R
+
, with 1/2 ⩽ ε ⩽ 1,

we define an (n, ε, cr , cd )-Core-Periphery network G = (C Û∪ P,E)
as a network with |C| = nε and |P | = n and such that: (i) for each

agent u ∈ C, it holds that |N (u) ∩ C| = cr · |N (u) ∩ P|; (ii) for each
agent v ∈ P, it holds that |N (v) ∩ C| = cd · |N (v) ∩ P|; N (v) is the
set of neighbors of agent v . We call C the core and P the periphery.

The definition we just provided matches the requirements of the

core-periphery structure as axiomatized by Avin et al. [3]. How-

ever, observe that it is more restrictive: the values cr and cd define

properties that hold for each agent of the network and not only

globally, i.e. for the partition induced by the core.

The 2-Choices dynamics can be formally described as follows.

Definition 3.2 (2-Choices dynamics). Given a network G = (V ,E)
with an initial binary coloring of the agents c : V 7→ {red,blue}, the
2-Choices dynamics proceeds in synchronous rounds: in each round,

each agent u chooses two neighborsv,w uniformly at random with

replacement; if c(v) = c(w), then u updates its own color to c(v),
otherwise u keeps its color.

In order to analyze the 2-Choices dynamics on Core-Periphery

networks, we present a more general technical result that will be

exploited later. In fact, both in the analysis of the almost-consensus
and of the metastability, we can focus on the worst-case scenario

for the core and for the periphery: Each time an agent in one of the

two sets picks a neighbor in the other set, that neighbor has the

initial color of the set it belongs to. Alternatively, such a scenario

can be seen as the following variant of the 2-Choices dynamics.

Definition 3.3 (Biased-2-Choices(p, σ ) dynamics). Let p ∈ [0, 1]
be a constant and let σ ∈ {red,blue} be a color. We define the

Biased-2-Choices(p, σ ) dynamics as a variation of the 2-Choices

dynamics: Every time an agent picks a neighbor, with probability p
that neighbor supports color σ regardless of its actual color.

The technical result we present considers a network of agents

running the Biased-2-Choices(p, σ ) dynamics, all having the same

initial color different from σ . Informally, it shows that there ex-

ists a value p⋆ such that if the agents are running the Biased-2-

Choices(p, σ ) dynamics with p > p⋆, then the color σ rapidly

spreads among almost the whole network, while if p < p⋆, then
most of the network does not support the color σ for a superpoly-

nomial number of rounds.

For a set of agents A, let the volume of A be defined as vol(A) =∑
v ∈A dv , where dv is the degree of v .

Theorem 3.4. Let G = (V ,E) be a network of n agents such that
each agent v has a color σv and dv = ω(logn) neighbors. Let p ∈
[0, 1] be a constant. Then, starting from a configuration where all
agents initially support the red color and letting the agents run Biased-
2-Choices(p, blue), it holds that:

• Almost-consensus: If p > 3 − 2

√
2, then the agents reach a

configuration such that the volume of agents supporting the
blue color is (1 − o(1))vol(V ) within O(logn) rounds, w.h.p.
• Metastability: If p < 3 − 2

√
2, then the volume of the blue

agents never exceeds 1−3p
4(1−p)vol(V ) for any poly(n) number of

rounds, w.h.p.

Proof. Let B(t ) be the set of blue agents andR(t ) = V \B(t ) be the
set of red agents at time t . For any agent v , let NR (v) = N (v) ∩R(t )

be the set of red neighbors and NB (v) = N (v) ∩ B(t ) the set of blue
neighbors ofv . Furthermore, let r

(t )
v be the number of red neighbors

of v at time t , i.e. r
(t )
v = |NR (v)|. Let ϕ

(t )
v = r (t )v /dv be the fraction

of red agents in the neighborhood of v; let ϕ
(t )
min
= minv ∈V ϕ

(t )
v

and ϕ(t )
max

= maxv ∈V ϕ
(t )
v be, respectively, the minimum and maxi-

mum fractions of red neighbors among all agents in V . Let c(t ) ∈
{red,blue}n be the configuration of the colors of the agents at time

t . In the following, for the sake of readability, whenever we omit

the time index, we refer to the value at time t , e.g. ϕv stands for ϕ
(t )
v .

Similarly, we concisely denote with PR (v) = P(v ∈ R(t+1) | c(t ))
the probability that agent v will be supporting the red color in the

next round of the Biased-2-Choices(p, blue), i.e.

PR (v) =
{

1 −
(
p + (1 − p)(1 − ϕv )

)
2

if v ∈ R,
(1 − p)2ϕ2

v if v ∈ B.

Furthermore, notice that:

min

w ∈R
PR (w) = 1 −

(
p + (1 − p)(1 − ϕmin)

)
2

,

min

w ∈B
PR (w) = (1 − p)2ϕ2

min
.

Given a configuration c(t ), we can give a lower bound for the

expected fraction of red neighbors of any agent v as follows:

E
[
ϕ
(t+1)
v

��� c(t )] = 1

dv

©­«
∑

w ∈NR (v)

PR (w) +
∑

w ∈NB (v)

PR (w)
ª®¬
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⩾
1

dv

(
|NR (v)| min

w ∈R
PR (w) + |NB (v)| min

w ∈B
PR (w)

)
=

rv
dv

min

w ∈R
PR (w) +

(
1 −

rv
dv

)
min

w ∈B
PR (w)

=
rv
dv

(
1 −

(
p + (1 − p)(1 − ϕ

min
)
)
2

)
+

(
1 −

rv
dv

)
(1 − p)2ϕ2

min

=
rv
dv

(
1 −

(
p + (1 − p)(1 − ϕ

min
)
)
2

− (1 − p)2ϕ2

min

)
+ (1 − p)2ϕ2

min

⩾ ϕ
min

(
1 −

(
p + (1 − p)(1 − ϕ

min
)
)
2

− (1 − p)2ϕ2

min

)
+ (1 − p)2ϕ2

min

= ϕ
min

(
1 −

(
p + (1 − p)(1 − ϕ

min
)
)
2

+ (1 − p)2(1 − ϕ
min
)ϕ

min

)
= ϕ

min

(
1 − 2(1 − p)2ϕ2

min

+ (1 − p)(3 − p)ϕ
min
− 1

)
.

Note that we could cancel out 1 and −1, however, leaving them

facilitates the analysis. In the steps above, we can lower bound rv/dv

because its coefficient, i.e. (1−
(
p+ (1−p)(1−ϕ

min
)
)
2

−(1−p)2ϕ2

min

),

is non-negative for any p,ϕ
min
∈ [0, 1].

Conversely, we can upper bound the expectation using ϕ
max

, i.e.

E
[
ϕ
(t+1)
v

��� c(t )] ⩽ ϕ
max

(
1 − 2 (1 − p)2 ϕ2

max

+ (1 − p)(3 − p)ϕ
max
− 1

)
.

Notice that the lower and the upper bound for the expectation

have the same form. In fact, defining the functions

f (ϕ) = 2 (1 − p)2 ϕ2 − (1 − p)(3 − p)ϕ + 1,

д(ϕ) = ϕ(1 − f (ϕ)),

the lower and the upper bound for the expectation can respectively

be written as д(ϕ
min
) and д(ϕ

max
). Thus, analyzing f (ϕ), we can see

for which values of p the function д(ϕ) is increasing or decreasing.

Before proving the almost-consensus and the metastability con-

figurations that can be reached by the agents running the Biased-2-

Choices(p, blue), we study f (ϕ) in order to characterize the bounds

for the expectation. The roots of f (ϕ) are in
3−p±
√
p2−6p+1

4(1−p) and the

derivative of f (ϕ) is f ′(ϕ) = 4 (1 − p)2 ϕ − (1 − p)(3 − p). It follows

that f (ϕ) has a minimum point in
¯ϕ =

3−p
4(1−p) . Moreover, the sign

of f ( ¯ϕ) exclusively depends on p. In fact

f ( ¯ϕ) > 0 if p > 3 − 2

√
2, (1)

f ( ¯ϕ) < 0 if p < 3 − 2

√
2, (2)

since in (1) the discriminant of f (ϕ) is negative, while in (2) it is

positive.

Almost-consensus. Let p > 3 − 2

√
2. Let f ( ¯ϕ) = ε be the local

minimum of f . Notice that ε is positive because of (1) and it is a

constant since it only depends on p and
¯ϕ, which are both constants.

Due to the convexity of f (ϕ), it holds that f (ϕ) ⩾ ε . Thus, for
any v ∈ V , we have that

E
[
ϕ
(t+1)
v

��� c(t )] ⩽ д(ϕ
max
) = ϕ

max
(1 − f (ϕ

max
)) ⩽ ϕ

max
(1 − ε),

as ε > 0. Thus, we can apply the multiplicative form of the Chernoff

bounds [22, Theorem 1.1] and get that

P
(
ϕ
(t+1)
v > (1 − ε2)ϕ

max

��� c(t ))
= P

(
ϕ
(t+1)
v > (1 + ε)(1 − ε)ϕ

max

��� c(t ))

⩽ P
(
ϕ
(t+1)
v > (1 + ε)E

[
ϕ
(t+1)
v

��� c(t )] ��� c(t ))
= P

(
r
(t+1)
v > (1 + ε)dvE

[
ϕ
(t+1)
v

��� c(t )] ��� c(t ))
⩽ e−(1+ε )

2dvϕmax
(1−ε )/3 ⩽ e−2 logn = n−2,

where in the last inequality we can assume that the configuration

c(t ) is such that ϕ
max

⩾ 6 logn
(1+ε )2(1−ε )dv

= o(1), since dv = ω(logn)

by definition. Thus, using the union bound over all the agents, we

get that ϕ(t+1)
max

⩽ (1 − ε2)ϕ
max

w.h.p. Formally:

P
(
∃v ∈ V : ϕ

(t+1)
v > (1 − ε2)ϕ

max

��� c(t ))
⩽

∑
v ∈V

P
(
ϕ
(t+1)
v > (1 − ε2)ϕ

max

��� c(t )) ⩽ ∑
v ∈V

n−2 = n−1.

Such a multiplicative decrease rate of the expected maximum

fraction of red neighbors implies that ϕ
max

is in the order of o(1)
within O(logn) rounds of the Biased-2-Choices(p, blue). Again, ap-
plying the union bound, we get that this happens w.h.p.

Metastability. Let p < 3 − 2

√
2. Define f ( ¯ϕ) = −ε to be the local

minimum of f . Recall that ε is positive because of (2) and it is a

constant since it only depends on the constants p and
¯ϕ.

Then, using the fact that д(ϕ) is monotonically nondecreasing,
4

for every ϕ ⩾ ¯ϕ we have that д(ϕ) ⩾ д( ¯ϕ) = ¯ϕ(1− f ( ¯ϕ)) = ¯ϕ(1+ ε).
We can now use a multiplicative form of the Chernoff bounds in

order to show that if the fraction of red neighbors of a agent v is at

least
¯ϕ, then the probability that the number of red neighbors of v

in the next round is lower than
¯ϕ is negligible. Formally, let c(t ) be

an arbitrary configuration such that ϕ
min

⩾ ¯ϕ. First, note that due

to д(ϕ) ⩾ д( ¯ϕ), we have that E
[
ϕ
(t+1)
v

��� c(t )] ⩾ д(ϕ
min
) ⩾ д( ¯ϕ) =

¯ϕ(1 + ε). Then, it follows that

P
(
ϕ
(t+1)
v < ¯ϕ

��� c(t ))
= P

(
ϕ
(t+1)
v < ¯ϕ(1 + ε)

1

1 + ε

���� c(t ))
= P

(
ϕ
(t+1)
v < ¯ϕ(1 + ε)

(
1 −

ε

1 + ε

) ��� c(t ))
⩽ P

(
ϕ
(t+1)
v < E

[
ϕ
(t+1)
v

��� c(t )] (1 − ε

1 + ε

) ��� c(t ))
= P

(
r
(t+1)
v < dvE

[
ϕ
(t+1)
v

��� c(t )] (1 − ε

1 + ε

) ��� c(t ))
⩽ exp

(
−dv

1

3

¯ϕ(1 + ε)
(
1 −

ε

1 + ε

)
2

)
= e−Ω(dv ) = e−ω(logn) = n−ω(1).

Applying the union bound over all the agents, we get

P
(∃t ∈poly(n)

∃v ∈V : ϕ
(t+1)
v < ¯ϕ

��� c(t ))
⩽

∑
t ∈poly(n)
v ∈V

P
(
ϕ
(t+1)
v < ¯ϕ

��� c(t )) = ∑
t ∈poly(n)
v ∈V

n−ω(1) = n−ω(1).

Thus, with high probability we have that ϕmin ⩾ ¯ϕ for every

polynomial number of rounds. Before we can use this to finish the

proof, note that

∑
v ∈B dv =

∑
v ∈V (dv − rv ), by simply counting

4
Due to space constraints, we omit this standard verification.
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the number of blue endpoints of an edge in two different ways.

Using that ϕv ⩾ ϕ
min

⩾ ¯ϕ for each v , we have

vol
(
B(t )

)
=

∑
v ∈B

dv =
∑
v ∈V
(dv − rv ) =

∑
v ∈V

dv

(
1 −

rv
dv

)
⩽ (1 − ¯ϕ)

∑
v ∈V

dv =
1 − 3p

4(1 − p)
vol(V ).

This means, the volume of the blue agents never exceeds a fraction
of

1−3p
4(1−p) of the total volume of the graph w.h.p.

Theorem 3.4 has several interesting implications on the behavior

of the 2-Choices dynamics on Core-Periphery networks which we

describe in the remainder of this section.

In the following, we always assume an initial configuration in

which all agents in the core C are blue and all agents in the periphery
P are red. Now, let G = (V ,E) be an (n, ε, cr , cd )-Core-Periphery
network. Furthermore, let q

C
= |N (u)∩P |/du be the probability

that an agent u ∈ C picks a neighbor in the periphery, and let

q
P
= |N (v)∩C |/dv be the probability that an agent v ∈ P picks a

neighbor in the core. The relations below follow from Definition 3.1:

cr =
|N (u) ∩ C|

|N (u) ∩ P|
=

1 − q
C

q
C

∀u ∈ C, (3)

cd =
|N (v) ∩ C|

|N (v) ∩ P|
=

q
P

1 − q
P

∀v ∈ P . (4)

Let c⋆ =
√

2−1

2
be the constant which later defines a threshold

between metastability and almost-consensus behavior. We get

cr =
1

c⋆ + δr
=⇒ q

C
= 3 − 2

√
2 + δ ′r (5)

cd = c
⋆ + δd =⇒ q

P
= 3 − 2

√
2 + δ ′d (6)

for δr and δ ′r (δd and δ ′d ) which are either both positive or both

negative. We can now prove a metastability phenomenon of the

2-Choices dynamics on Core-Periphery networks.

Corollary 3.5. Let c⋆ =
√

2−1

2
be a universal constant. Let G =

(V ,E) be an (n, ε, cr , cd )-Core-Periphery network such that each agent
in the network has ω(logn) neighbors. Then, with high probability,
we have that for each round t and for any poly(n) number of rounds
of the 2-Choices dynamics the following two statements hold:

• if cr > 1/c⋆ by a constant, then vol(B(t )) ⩾ 3

4
vol(C)

• if cd < c⋆ by a constant, then vol(R(t )) ⩾ 3

4
vol(P)

where B(t ) are the blue agents and R(t ) the red agents at time t .

Proof sketch. Consider the following worst case scenario: Ev-

ery time an agent in the core (periphery) chooses a randomneighbor

belonging to the periphery (core), then that neighbor is red (blue).
In this scenario, the 2-Choices dynamics can be thought of as two

independent Biased-2-Choices(p, σ ) in which for the core p = q
C

and σ = red, and for the periphery p = q
P
and σ = blue. From

cr > 1/c⋆ and cd < c⋆ and Equations (5) and (6), it follows that q
C

and q
P
are less than 3−2

√
2. By applying the metastability result of

Theorem 3.4, we get that the volume of the adversary never exceeds

1−3p
4(1−p) of the network’s volume. Since both q

C
and q

P
are smaller

than 3− 2

√
2, we have that

1−3p
4(1−p) ⩽

1

4
(as the inequality is tight for

p = 0 and its value is decreasing). Thus, the volumes of red (blue)
agents in the core (periphery) are at most a fraction of

1

4
. Therefore,

the volumes of blue and red agents in the whole network are at

least
3

4
of the volumes of C and P, respectively.

For the almost-consensus result, we require a high robustness of

the core such that it remains monochromatic for a logarithmic num-

ber of rounds. The following lemma is needed to link the robustness

with this property.

Lemma 3.6. Let ε and δ be two positive constants. Let G = (V ,E)
be a graph of nε agents, and let 0 ⩽ p ⩽ n−(ε+δ )/2. Starting from a
configuration such that each agent initially supports the blue color,
within O(log(n)) rounds of the Biased-2-Choices(p, red) no agent be-
comes red, w.h.p.

Proof. The probability that an agent v changes its color to red
at time t , given that all the other agents are still blue, is

P
(
v ∈ R(t+1)

��� V = B(t )
)
= p2 ⩽

(
n−(ε+δ )/2

)
2

= n−(ε+δ ).

Applying the union bound over all the agents and over τ = O(logn)
rounds, we get

P
(∃t⩽τ
∃v ∈V : v ∈ R(t+1)

��� V = B(t )
)
⩽

nε · τ

nε+δ
= O(n−δ ).

Thus, all agents in the graph remain blue for any logarithmic num-

ber of rounds, w.h.p.

If cr ⩾ n(ε+δ )/2, by Equation (3) it follows that

q
C
=

1

cr + 1

<
1

cr
⩽ n−(ε+δ )/2.

Finally, we are ready to prove the almost-consensus behavior of the
2-Choices dynamics on Core-Periphery networks.

Corollary 3.7. Let c⋆ =
√

2−1

2
and let ε and δ be two posi-

tive constants. Let G = (V ,E) be an (n, ε, cr , cd )-Core-Periphery net-
work such that each agent in the network has ω(logn) neighbors. If
cr > n(ε+δ )/2 and cd > c⋆ by a constant, then the agents reach a
configuration such that the volume of blue agents is (1−o(1))vol(V )
within O(logn) rounds of the 2-Choices dynamics, w.h.p.

Proof sketch. Since cr > n(ε+δ )/2, we can apply Lemma 3.6

and thus the agents in the core never change color for O(logn)
rounds, w.h.p. Therefore, for any O(logn) number of rounds, the

process is equivalent to a Biased-2-Choices(q
P
, blue) run by the

periphery. Since cd > c⋆ and thus q
P
> 3 − 2

√
2 by Equation (6),

we can apply Theorem 3.4 and get almost-consensus on the blue
color in a logarithmic number of rounds, w.h.p.

4 EXPERIMENTS
In Section 3 we formally studied the 2-Choices dynamics on Core-

Periphery networks, observing a phase transition phenomenon that

appears on a dominance threshold c⋆ =
√

2−1

2
. Here, we report the

results of the empirical data obtained by simulating the 2-Choices

dynamics on real-world networks. Furthermore, we discuss our

results and compare them with our theoretical analysis. The source

code of the experiments is freely available.
5

5
https://github.com/chaot4/opinion_dynamics_impl/releases/tag/AAMAS2018
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We simulated the 2-Choices dynamics on 70 real-world networks,

25 of them taken from KONECT [33] and 45 of them taken from

SNAP [35]. Detailed information regarding the networks and the

results of the experiments are reported in Table 1. The networks

chosen for the experiments are drawn from a variety of domains in-

cluding social networks, communication networks, road networks,

and web graphs; moreover, they range in size from thousands of

nodes and thousands of edges up to roughly one million of nodes

and tens of millions of edges. Before simulating the 2-Choices

dynamics, we pre-process the networks in order to match the the-

oretical setting. In particular, for all the networks, we remove the

orientation of the edges and all loops, and we work on the largest

(w.r.t. the number of nodes) connected component.

The first issue we faced simulating the 2-Choices dynamics was

the extraction of the set of agents representing the core. In fact,

there is no exact definition of what a good core is with respect

to dominance and robustness values. We started by using a simple

heuristic to extract the core, namely the k-rich-club method [45]:

This method establishes the core C as the set of k agents with

highest degree and the periphery P as the remaining agents. Avin

et al. [3] empirically show that when k is at the symmetry point,
i.e. k is chosen such that vol(C) ≈ vol(P), the core found by this

method is sublinear in size with respect to the number of agents

of the network. We remark that if vol(C) = vol(P) then, from the

definitions of robustness and dominance, it follows that cr = 1/cd .
We initially used the k-rich-club method to extract the core but

noticed that this simple heuristic produces a core with very low

robustness values, contrary to what common sense would suggest

to be a good core. In particular, low robustness values imply that

the dominance values never go below our theoretical threshold c⋆

(see columns c̄r and c̄d in Table 1), which hinders the compari-

son between theoretical and experimental results. Indeed, in our

theoretical analysis we assume that the core never changes color,

i.e. that the robustness is high; however, in the experiments the

core was very unstable when using the k-rich-club method. The

main issue of this method is that it does not take into account the

topological structure of the network: For example, if we consider a

regular graph with a well defined core-periphery structure (which

satisfies Definition 3.1), the k-rich-club method would identify the

core to be a random subset of nodes.

Therefore, we introduce a novel heuristic for extracting the core

which takes the network topology into account by prioritizing the

robustness of the core over its dominance. The procedure, which
we refer to as densest-core method, is described in Algorithm 1.

Informally, it iteratively extracts the densest subgraph from the

network and adds it to the core unless the core’s volume becomes

too large. In order to compute this constrained densest subgraph,

it uses a variation of the 2-approximation algorithm [12], which

chooses every time the densest subgraph that will not make the

core’s volume larger than the periphery’s volume.

We apply the densest-core method to the networks and, as ex-

pected, we obtain higher robustness and lower dominance values
compared to the k-rich-club method. The data reported in Table 1

shows that the robustness of the core extracted by our method is

higher in all the considered datasets but one. Indeed, we finally

obtain dominance values below the theoretical threshold c⋆.

Table 1: Experimental data. Source reports the source of the
dataset, i.e. SNAP (S) orKONECT (K). The values cr and cd are
the robustness and dominance obtained using the densest-
core method; the values c̄r and c̄d are the robustness and
dominance obtained using the k-rich-club method. C and
P are the fraction of experiments in which the core’s and
the periphery’s color respectively spread to reach an almost-
consensus, whileM is the fraction of experiments in which
there ismetastability, all having the core extracted with the
densest-core method. K stands for thousand, M for million.

Dataset (Source) |V | |E | cr (c̄r ) cd (c̄d ) C P M

Chicago (K) 0.8K 1.6K 6.55 (0.10) 0.15 (9.72) 0.00 0.00 1.00

email-Eu-core (S) 0.9K 32.1K 0.75 (0.53) 1.32 (1.88) 0.92 0.08 0.00

Euroroad (K) 1.0K 2.6K 5.53 (0.62) 0.18 (1.61) 0.00 0.00 1.00

Blogs (K) 1.2K 33.4K 0.62 (0.38) 1.57 (2.60) 0.00 0.00 1.00

Traffic Control (K) 1.2K 4.8K 1.25 (0.51) 0.78 (1.96) 0.00 0.00 1.00

Protein (K) 1.4K 3.8K 0.90 (0.33) 1.10 (2.95) 1.00 0.00 0.00

US Airport (K) 1.5K 34.4K 0.54 (0.48) 1.82 (2.10) 0.00 0.00 1.00

Stelzl (K) 1.6K 6.2K 1.03 (0.36) 0.96 (2.73) 1.00 0.00 0.00

Bible (K) 1.7K 18.1K 0.74 (0.54) 1.33 (1.84) 0.98 0.02 0.00

Hamster full (K) 2.0K 32.1K 0.96 (0.66) 1.02 (1.51) 1.00 0.00 0.00

Opsahl OF (K) 2.9K 31.2K 0.76 (0.55) 1.30 (1.81) 1.00 0.00 0.00

OpenFlights (K) 3.3K 38.4K 0.73 (0.50) 1.35 (1.98) 0.80 0.00 0.20

bitcoin-alpha (S) 3.7K 28.2K 0.53 (0.39) 1.87 (2.52) 1.00 0.00 0.00

ego-Facebook (S) 4.0K 176.4K 4.83 (1.53) 0.20 (0.65) 0.00 0.00 1.00

ca-GrQc (S) 4.1K 26.8K 3.33 (1.29) 0.29 (0.77) 0.00 0.00 1.00

US power grid (K) 4.9K 13.1K 3.17 (0.53) 0.31 (1.86) 0.00 0.00 1.00

bitcoin-otc (S) 5.8K 42.9K 0.52 (0.38) 1.88 (2.59) 1.00 0.00 0.00

p2p-Gnutella08 (S) 6.2K 41.5K 1.20 (0.53) 0.82 (1.86) 0.00 1.00 0.00

Route Views (K) 6.4K 25.1K 0.30 (0.16) 3.26 (6.13) 0.96 0.04 0.00

wiki-Vote (S) 7.0K 201.4K 0.60 (0.44) 1.64 (2.24) 1.00 0.00 0.00

p2p-Gnutella09 (S) 8.1K 52.0K 1.08 (0.53) 0.91 (1.86) 0.00 1.00 0.00

ca-HepPh (S) 8.6K 49.6K 1.40 (0.69) 0.71 (1.44) 1.00 0.00 0.00

p2p-Gnutella06 (S) 8.7K 63.0K 0.91 (0.53) 1.09 (1.87) 1.00 0.00 0.00

p2p-Gnutella05 (S) 8.8K 63.6K 0.93 (0.54) 1.06 (1.83) 0.86 0.14 0.00

PGP (K) 10.6K 48.6K 2.54 (1.18) 0.39 (0.84) 1.00 0.00 0.00

p2p-Gnutella04 (S) 10.8K 79.9K 0.91 (0.52) 1.08 (1.90) 1.00 0.00 0.00

ca-HepTh (S) 11.2K 235.2K 3.49 (2.39) 0.28 (0.41) 0.00 0.00 1.00

ca-AstroPh (S) 17.9K 393.9K 1.54 (0.84) 0.64 (1.18) 1.00 0.00 0.00

ca-CondMat (S) 21.3K 182.5K 1.70 (0.68) 0.58 (1.46) 1.00 0.00 0.00

p2p-Gnutella25 (S) 22.6K 109.3K 0.72 (0.41) 1.37 (2.43) 1.00 0.00 0.00

E.A.T. (K) 23.1K 594.1K 0.60 (0.48) 1.64 (2.07) 0.96 0.04 0.00

Cora citation (K) 23.1K 178.3K 1.37 (0.54) 0.72 (1.83) 1.00 0.00 0.00

CAIDA (K) 26.4K 106.7K 0.31 (0.16) 3.13 (6.03) 1.00 0.00 0.00

p2p-Gnutella24 (S) 26.4K 130.7K 0.71 (0.42) 1.39 (2.34) 1.00 0.00 0.00

cit-HepTh (S) 27.4K 704.0K 1.33 (0.74) 0.74 (1.34) 1.00 0.00 0.00

Digg (K) 29.6K 169.5K 0.59 (0.49) 1.67 (2.01) 1.00 0.00 0.00

Linux (K) 30.8K 426.4K 0.47 (0.24) 2.10 (4.14) 0.90 0.10 0.00

email-Enron (S) 33.6K 361.6K 0.71 (0.54) 1.39 (1.84) 1.00 0.00 0.00

cit-HepPh (S) 34.4K 841.5K 1.34 (0.61) 0.74 (1.61) 1.00 0.00 0.00

Internet topology (K) 34.7K 215.4K 0.61 (0.32) 1.62 (3.08) 0.88 0.00 0.12

p2p-Gnutella30 (S) 36.6K 176.6K 0.82 (0.44) 1.21 (2.23) 1.00 0.00 0.00

loc-Brightkite (S) 56.7K 425.8K 0.99 (0.71) 1.00 (1.40) 1.00 0.00 0.00

p2p-Gnutella31 (S) 62.5K 295.7K 0.78 (0.44) 1.27 (2.26) 1.00 0.00 0.00

soc-Epinions1 (S) 75.8K 811.4K 0.72 (0.60) 1.37 (1.65) 1.00 0.00 0.00

Slashdot081106 (S) 77.3K 937.1K 0.51 (0.46) 1.93 (2.13) 0.98 0.02 0.00

soc-Slashdot0811 (S) 77.3K 938.3K 0.51 (0.46) 1.93 (2.13) 1.00 0.00 0.00

ego-Twitter (S) 81.3K 2.6M 1.12 (0.57) 0.89 (1.75) 0.00 0.00 1.00

Slashdot090216 (S) 81.8K 995.3K 0.53 (0.48) 1.87 (2.08) 1.00 0.00 0.00

Slashdot090221 (S) 82.1K 1.0M 0.53 (0.48) 1.87 (2.08) 1.00 0.00 0.00

soc-Slashdot0922 (S) 82.1K 1.0M 0.53 (0.47) 1.87 (2.08) 1.00 0.00 0.00

Prosper loans (K) 89.1K 6.6M 0.82 (0.47) 1.21 (2.10) 0.00 0.00 1.00

Livemocha (K) 104.1K 4.3M 0.47 (0.38) 2.10 (2.56) 0.94 0.06 0.00

Flickr (K) 105.7K 4.6M 2.27 (1.07) 0.43 (0.92) 0.00 0.00 1.00

ego-Gplus (S) 107.6K 24.4M 0.95 (0.54) 1.04 (1.82) 0.00 0.00 1.00

epinions (S) 119.1K 1.4M 0.64 (0.52) 1.53 (1.89) 1.00 0.00 0.00

Github (K) 120.8K 879.7K 0.88 (0.70) 1.12 (1.41) 1.00 0.00 0.00

Bookcrossing (K) 185.9K 867.2K 0.52 (0.34) 1.90 (2.87) 1.00 0.00 0.00

loc-Gowalla (S) 196.5K 1.9M 1.14 (0.80) 0.87 (1.24) 0.02 0.00 0.98

email-EuAll (S) 224.8K 679.8K 0.16 (0.06) 6.19 (14.4) 0.00 0.00 1.00

web-Stanford (S) 255.2K 3.8M 2.52 (0.37) 0.39 (2.68) 0.00 0.00 1.00

amazon0302 (S) 262.1K 1.7M 2.61 (0.44) 0.38 (2.23) 1.00 0.00 0.00

com-DBLP (S) 317.0K 2.0M 1.43 (0.70) 0.69 (1.42) 1.00 0.00 0.00

web-NotreDame (S) 325.7K 2.1M 2.63 (0.60) 0.37 (1.65) 0.00 0.00 1.00

com-amazon (S) 334.8K 1.8M 1.72 (0.32) 0.57 (3.03) 0.98 0.00 0.02

amazon0312 (S) 400.7K 4.6M 2.18 (0.41) 0.45 (2.41) 0.00 0.00 1.00

amazon0601 (S) 403.3K 4.8M 2.08 (0.40) 0.47 (2.44) 0.00 0.00 1.00

amazon0505 (S) 410.2K 4.8M 2.01 (0.41) 0.49 (2.40) 0.00 0.00 1.00

web-BerkStan (S) 654.7K 13.1M 1.60 (0.43) 0.62 (2.30) 0.00 0.00 1.00

web-Google (S) 855.8K 8.5M 1.77 (0.42) 0.56 (2.33) 0.00 0.00 1.00

roadNet-PA (S) 1.0M 3.0M 7.35 (1.01) 0.13 (0.98) 0.00 0.00 1.00
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Algorithm 1 Densest-Core Extraction.

1: procedure DensestCore(G)
2: C⋆ ← ∅

3: do
4: C ← ∅; D ← G
5: while D , ∅ do
6: v ← LowestDegreeNode(D)
7: D ← D \ {v}
8: if Density(D) > Density(C) and

FractionOfVolume(C⋆ ∪ D) ⩽ 1/2 then
9: C ← D
10: end if
11: end while
12: C⋆ ← C⋆ ∪ C

13: G ← G \ C
14: while C , ∅
15: return C⋆

We proceed as follows: We initialize all the agents in C with

blue and all the agents in P with red. Then, we simulate the 2-

Choices dynamics on each network, keeping track of the volumes

of blue and red agents in each iteration. We consider a simulation

metastable if within |V | iterations – waiting for a superpolynomial

number of rounds would be infeasible – neither the red nor the blue
agents reach a volume greater than 95% of the network’s volume.

Otherwise, we declare almost-consensus on the majority’s color. The

experiments were repeated 50 times for each network.

As can be observed in Figure 1, there exists an empirical thresh-
old σ = 1/2 which is different from the theoretical one. In fact, in 86%

of the datasets with a dominance below the threshold, the 2-Choices

dynamics ends up in a phase of metastability, while in 81% of the

datasets with a dominance above the threshold the 2-Choices dy-

namics converges to an almost-consensus. The empirical threshold

is greater than the theoretical threshold because of several factors: i)

in the experiments the core actually changes color to a small extent

(while in the theoretical part we ignored such small perturbations),
and it consequently lowers the probability for an agent in the pe-

riphery to pick the core’s color; ii) the real-world network we used

in the experiments do not have the regularity assumptions of the

networks that we consider in the analysis; iii) in the experiments

we declare metastability only after |V | iterations and this increases

the likelihood of metastable runs. The gap between the theoretical

and the empirical threshold should be closed in future work by

providing a more fine-grained theoretical analysis which does not

assume the adversary’s color to be monochromatic and considers

more general networks.

We want to highlight that the protocol’s convergence to the

core’s color (as shown in Table 1) is remarkable in light of the fact

that the densest-core method ensures that the sum of the agents’

degrees of the core and of the periphery are equal. More precisely,

notice that equal volumes of core and periphery, starting from

an initial configuration where two sets support different colors,

is sufficient in the Voter Model to say that the two initial colors

have the same probability to be the one eventually supported by

all agents [29], regardless of the topological structure. Previous

works on the 2-Choices dynamics [14] provided convergence results

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

cd

10−4

10−3

10−2

10−1

100

t/
|V
|

M
C
P
c?

σ

Figure 1: Metastability and almost-consensus of the experi-
ments compared to the theoretical and empirical thresholds
c⋆ and σ . The 86% of the runs are metastable when cd < σ ;
in 81% of them there is an almost-consensus if cd > σ . The
value t is the arithmeticmean of the number of rounds until
almost-consensus/metastability was declared.

which are parametrized only in the difference of the volumes of the

two sets, suggesting a similar behavior. Our experimental results

highlight the insufficiency of the initial volume distribution as

an accurate predictive parameter, showing that the topological

structure of the core plays a decisive role.

5 CONCLUSIONS
We analyzed the 2-Choices dynamics on a class of networks with

core-periphery structure, where the core, a small group of densely

interconnected agents, initially holds a different opinion from the

rest of the network, the periphery. We formally proved that a phase-
transition phenomenon occurs: Depending on the dominance pa-

rameter cd characterizing the connectivity of the network, either

the core’s opinion spreads among the agents of the periphery and

the network reaches an (almost-)consensus, or there is a metastabil-
ity phase in which none of the opinions prevails over the other.

We validated our theoretical results on several real-world net-

works. Introducing an efficient and effective method to extract the

core, we showed that the same parameter cd is sufficient to predict

the convergence/metastability of the 2-Choices dynamics most of

the time. Surprisingly, even if the volumes of core and periphery are

equal, the core’s opinion wins in most of the cases. These behaviors

suggest that in many real-world networks there actually is a core

whose initial opinion has a great advantage of spreading in simple

opinion dynamics such as the 2-Choices. We think that these results

are a relevant step towards understanding which dynamical prop-

erties are implicitly responsible for causing social and economic

agents to form networks with a core-periphery structure.
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