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ABSTRACT
Multi-agent systems (MAS) have long been envisioned as a key
enabling technology in manufacturing, but this promise is yet to
be realized: the lack of proper models, architectures, tooling, and
the high level of expertise required for designing and programming
agent-based manufacturing systems have hindered their large-scale
acceptance. The emerging Web of Things (WoT), now being stan-
dardized at the W3C and IETF, provides new research opportunities
that could help MAS enter the mainstream. In this paper, we present
an approach to design scalable and flexible agent-based manufactur-
ing systems that integrates automated planning with multi-agent
oriented programming for the WoT: autonomous agents synthe-
size production plans using semantic descriptions of Web-based
artifacts and coordinate with one another via multi-agent organiza-
tions; engineers can program and repurpose the systems on the fly
via an intuitive Web user interface. The systems use the Web as an
application architecture (and not just as a transport layer), which
facilitates the seamless integration of geographically distributed
production cells. To demonstrate our approach, we implemented a
prototypical production cell that uses industry-grade robots and
an augmented reality interface for human workers. Together, these
contributions demonstrate a means to achieve an intriguing vision
for the forthcoming fourth industrial revolution: a global collective
intelligence for manufacturing.
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1 INTRODUCTION
The dynamic reconfiguration of manufacturing systems has been a
major topic in academic research for several decades [40, 44, 70],
but the more recent Industry 4.0 movement [38] further stresses its
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significance: we arewitnessing an accelerating trend towards highly
customized products across a broad range of industrial domains.
For industry, mass-customization means that products in lot sizes
of as little as a single item now have to be manufactured at the
price of mass-produced goods. This development challenges the
practice of designing, verifying, implementing, and commissioning
manufacturing lines with target lifespans of more than thirty years.
Such systems are well optimized for mass-production, but they
are tightly coupled and can hardly be reused or reconfigured for
new products – even variations of the same product (e.g., a new
product generation) usually require a complete re-engineering of
the manufacturing line. In contrast, mass-customization calls for
the rapid and dynamic reconfiguration of manufacturing lines.

Multi-agent systems (MAS) have long been envisioned as a suit-
able technology for flexible and adaptive manufacturing lines [39],
but the actual number of mature (TRL1 8-9) applications deployed
to date is small [39, 60]. The lack of proper models, architectures,
tooling, and the high level of expertise required to program agent-
based manufacturing systems have hindered their acceptance in
the industry [47]. Thus, we still witness a large gap between the
existing body of research on agent-based manufacturing and appli-
cations deployed in the field. In recent years, however, a number
of key research topics have been identified that could help bridge
this deployment gap. In particular, the Internet of Things (IoT) and
cyber-physical systems have been recognized as potential catalysts
for MAS in manufacturing [38, 45, 58]. The integration of MAS
with Web services and Semantic Web technologies has also been
identified as a potential enabler for (more flexible) agent-based
manufacturing systems [47]. More recently, the Web is now emerg-
ing as the de facto means for enabling IoT devices and services to
interoperate at the application layer, initiative known as theWeb of
Things (WoT) [31]. We believe that the integration of concepts from
MAS and the WoT will facilitate the deployment of agent-based
manufacturing systems.

In this paper, we present an approach to design scalable and flex-
ible agent-based manufacturing systems that integrates automated
planning with multi-agent oriented programming for WoT systems.
Engineers can repurpose the systems on the fly via an intuitive
Web user interface that allows for a trade-off between programming
effort and the time required to infer production plans. To achieve
this, our approach relies on two novel elements: (i) it integrates
Belief-Desire-Intention (BDI) agents with first-principles planning

1NASA Technology Readiness Level [49]
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forWeb-based artifacts, and (ii) it applies semantic multi-agent or-
ganizations for the dynamic reconfiguration of manufacturing lines.
To demonstrate our approach, we implemented an agent-basedman-
ufacturing system for a prototypical production cell that integrates
two industry-grade robots and an augmented reality interface for
human workers. We used this system to deploy a manufacturing
line for assembling stools with various leg configurations.

This paper is structured as follows. In Section 2, we discuss the
various research lines that are relevant to our work.We then present
our approach in further detail in Section 3. In Section 4, we report
on the implementation of our prototype manufacturing line and
discuss the strengths and limitations of our approach. We conclude
in Section 5.

2 BACKGROUND AND RELATEDWORK
In this section, we discuss related work from several relevant areas,
including the WoT, engineering of Web-based MAS, automated
planning and acting in BDI agents, and agent-based manufacturing
systems. In particular, we highlight where an integration across
these areas is beneficial for creating practically viable agent-based
manufacturing systems that are both scalable and flexible.

2.1 Industry 4.0 and the Web of Things
The fourth industrial revolution, often referred to as “Industrie 4.0”
or “Industry 4.0” [38], emerged around 2011 in close relationship
with developments in the Internet of Things (IoT): it promotes the
networking and interoperability of industrial devices, and the de-
centralization of decision processes inmanufacturing environments.
Early research in the IoT was focused on enabling devices to con-
nect at the network layer via the Internet Protocol (IP) [16, 69]. Over
the past years, however, it became apparent that devices also need
to interoperate at the application layer in order to unlock the full
potential of the IoT vision. On account of its scalable and loosely
coupled architecture, theWorldWideWeb is nowwidely recognized
in academia and industry as a suitable middleware for enabling
application-layer interoperability in the IoT via Web standards and
protocols (e.g., HTTP [19], CoAP [68]) – effectively interconnecting
devices into a Web of Things (WoT) [31]. The WoT vision is cur-
rently being standardized through combined efforts of the W3C2,
IETF [37], and IRTF3, with strong support from industrial outfits.

2.2 Web-based Multi-agent Systems
The World Wide Web has also raised a lot of interest in the AA-
MAS community. There has been extensive research on integrating
MAS and Web services [27, 34, 35, 73] – and thus using the Web
as an infrastructure for distributed MAS. Most of the existing ap-
proaches to engineeringWeb-basedMAS use theWeb as a transport
layer – this includes all MAS platforms that implement the FIPA
specification for using HTTP as a message transport protocol [23]
(e.g., [14, 17, 29]) as well as those approaches that implement the
WS-* standards4 (SOAP, WSDL, UDDI etc.) [2, 6, 65, 74]. However,
systems that use the Web only as a transport layer are misaligned
with REST, the architectural style of the Web (see Section 6.5.3

2https://www.w3.org/WoT/WG/, accessed: 09.04.2018.
3https://datatracker.ietf.org/rg/t2trg/documents/, accessed: 09.04.2018.
4It is nowwell recognized thatWS-* services use theWeb only as a transport layer [62].

in [20] for a detailed discussion). Consequently, they do not inherit
its architectural properties (e.g., scalability, loose coupling), and
make limited use of the existing Web infrastructure (e.g., mecha-
nisms for load balancing, caching) or any of its future extensions.
In addition, when compared to WS-* services, REST services are
lighter and thus better suited for constrained devices [80], and also
easier to learn and use for developers [30], both of which are impor-
tant considerations when designing and programming agent-based
manufacturing systems. For all these reasons, the WoT community
adopted REST services for integrating devices into the Web [31],
and a large part of the broader IoT community followed suit.

More recent approaches to engineering Web-based MAS have
also turned to services that adhere to some of the REST princi-
ples (e.g., [1, 28, 57]), but they generally do not use hypermedia or
hypermedia-driven interaction, one of the core tenets of REST and
the Web architecture – a.k.a. Hypermedia As The Engine of Appli-
cation State (HATEOAS) [21]. Two exceptions are [9] and [15]: the
former uses HATEOAS to design agent environments for Internet-
scaleMAS, and the latter applies the linked data principles [3] (which
partly reflect the HATEOAS principle) to agent environments in
order to bring autonomous agents on the Web. Note that both ap-
proaches consider the agent environment as a first-class abstraction
in MAS [78] and a means to deploy MAS on the Web.

In recent years, the use of HATEOAS has been gaining momen-
tum inWeb service design, for instance through approaches such as
Hydra [42] or RESTdesc [76]. The main benefit of using HATEOAS
is that it reduces coupling between clients and service providers,
allowing them to be deployed and to evolve independently from one
another. These characteristics are particularly important in systems
that rely on machine-to-machine interactions, such as manufactur-
ing systems. One approach of particular interest to our work is the
WoT Thing Description currently being standardized in the W3C
WoT Working Group; we elaborate on this point in Section 3.1.1.

2.3 Planning, Acting, and BDI Agents
Much of the research on autonomous agents, automated reason-
ing and planning can be traced back to the mid-80s [24], or even
the early 70s [22], to the seminal work conducted at the Stan-
ford Research Institute. However, this research has yet to gain
mainstream acceptance. Motivated by the low deployment of au-
tomated planning techniques in fielded applications, Ghallab et al.
proposed recently to shift the research focus on integrating plan-
ning and acting (rather than further improving the performance of
search algorithms) [25]. To this aim, they introduced an approach
that is inspired by and formalizes the Procedural Reasoning System
(PRS) [36, 61]. A thorough overview of automated planning, and in
particular integrating planning and acting, is available in [26].

Another line of research looks at integrating automated planning
in Belief-Desire-Intention (BDI) agents (a recent thorough survey of
this research line is available in [54]). Note that most implementa-
tions of the BDI agent architecture have also been inspired by the
PRS [24], and one of the most prominent programming languages
for BDI agents is AgentSpeak(L) [64], which formalizes the opera-
tional semantics of PRS in a restricted first-order predicate logic.
Unsurprisingly, this line of research is thus closely related to the
one mentioned previously.
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The above research lines generally focus on actors (or agents,
respectively). In most cases, the agent environment is not considered
as a first-class abstraction in these systems.5 To help illustrate
this point, for instance, Meneguzzi and Luck [55] introduced an
approach that enables a BDI agent to synthesize new plans from
plans existing in its plan library. This approach thus enables the
BDI agent to extend its capabilities at runtime (e.g., to deal with
unforeseen situations). However, the BDI agent cannot synthesize
plans from environmental actions discovered at runtime in an open
environment, such as a WoT environment.

A recent proposal that integrates hierarchical task network (HTN)
planning with BDI agents and also models the agent environment
is PLACE [32], a programming language for agents and their envi-
ronment. This approach defines a meta-model that is very similar
to the Agents & Artifacts meta-model [66], but in PLACE an artifact
is a logical entity and not a physical or computational entity in the
environment, such as a device or a Web service.

2.4 Agent-Based Manufacturing Systems
Manufacturing is one of the most well-studied application domains
for MAS [60]. Multiple surveys of research in this area have been
published over the last decade [44, 50, 59, 70, 71], more recent ones
in [39, 46, 47]. However, the actual number of mature (TRL6 8-9)
applications deployed to date is small [39, 60]. Early systems that
were successfully deployed as part of large industrial demonstrators
had to be programmed and maintained by experts highly-skilled in
MAS technology, and any changes required significant work [47].
Consequently, the accumulated costs of such systems – a key factor
for acceptance [39] – were not sustainable.

The design of flexible and adaptivemanufacturing systems, which
would require less human intervention, is still an active area of re-
search. In addition to the surveys mentioned above, recent works
cover topics such as realizability of product specifications (e.g., [13]),
production planning and scheduling (e.g., [18]), and agent-based
architectures (e.g., [8, 67]). Of particular interest to our work, in [67]
the authors report on the implementation of a manufacturing line
for printed circuit boards that is based on the JaCaMo meta-model
for multi-agent oriented programming (MAOP) [4]. This contribu-
tion validates the applicability of MAOP (and JaCaMo) to legacy
manufacturing systems, but also highlights the additional difficulty
of learning the MAOP paradigm (as defined in [4]), even when
compared to more traditional agent-oriented programming.

In an attempt to design more flexible manufacturing systems, re-
searchers have also turned towards Web services and the Semantic
Web [43, 47]: industrial devices are abstracted as Web services to
reduce coupling on the shop floor, and ontologies are used to ex-
tend the runtime behavior of a deployed system while minimizing
manual integration efforts. Planning agents can discover and use se-
mantic descriptions of services to synthesize production plans. This
evolution towards Web services in manufacturing is now recog-
nized as an important step [39, 47], with more recent developments
focusing on both on-device services and cloud-based services (a.k.a.
cloud manufacturing) [10, 11, 48, 79]. However, many efforts in this

5Over the past decade, however, the agent environment has gained broad recognition
as a first-class abstraction in MAS [77, 78].
6NASA Technology Readiness Level [49]
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Figure 1: The various layers of abstraction in our approach.

direction were influenced by the WS-* standards (e.g., see [43]) and
thus suffer from the limitations discussed in Section 2.2. Further-
more, integrating planning and acting (discussed in Section 2.3)
remains an open challenge.

3 APPROACH
Following our analysis of relevant related work, we integrated
these recent developments into an approach to design scalable and
flexible agent-based manufacturing systems. The novelty of our
approach is two-fold: (i) it integrates PRS-like BDI agents with
first-principles planning for Web-based artifacts, and (ii) it applies
semantic multi-agent organizations for repurposing manufacturing
lines on the fly.

Figure 1 depicts an overview of the layers of abstraction used in
our approach. The manufacturing systems use the Web as an appli-
cation architecture, which induces scalability and evolvability (cf.
Section 2.2, see also [21]). Then, the various programming abstrac-
tions (e.g., agents, artifacts, organizations), which were inspired
by the JaCaMo meta-model for MAOP [4], further enhance the
modularity of the systems. Together, modularity, BDI reasoning7,
and automated planning enable the flexible pursuit of manufactur-
ing goals, while the use of high-level programming abstractions
(e.g., organizations) and automated planning allows engineers to
repurpose the systems on the fly (see also Section 4.1.2).

In the following, in Section 3.1 we first discuss considerations for
designing the agent environment and single-agent planning. In Sec-
tion 3.2, we elaborate on using semantic multi-agent organizations
for the dynamic reconfiguration of manufacturing lines.

3.1 Integrating BDI Agents with Planning for
Web-based Artifacts

Our approach to integrate planning into PRS-like BDI agents goes
beyond the state-of-the-art by considering the agent environment
as a first-class abstraction (cf. Section 2.3): to achieve their manufac-
turing goals, agents either use plans programmed by engineers, or
7The main feature of the BDI agent architecture that makes it suitable for our approach
is that it balances reactive and proactive behavior [24]: in pursuit of theirmanufacturing
goals, BDI agents can still react to input from factory workers or to changes in their
environment.
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they synthesize plans from semantic descriptions of Web-based ar-
tifacts discovered at runtime. Both programmed and inferred plans
are represented in AgentSpeak [5]. Engineers can thus use the same
language both for writing plans and for inspecting or editing plans
synthesized by agents at runtime.

3.1.1 WoT Environments for Manufacturing. Following the WoT
initiative, industrial devices on the shop floor are abstracted as Web
resources, and controlling the devices is then performed by inter-
acting with those resources. For instance, to move a robotic arm to
a specific location, a client can use any standard Web interaction
protocol, such as HTTP [19] or CoAP [68], to issue a request to
update the state of the resource representing the robotic arm. We
use theWoT Thing Description (TD)8 currently being standardized
in theW3C WoT Working Group to enable hypermedia-driven in-
teraction with devices: similar to how Web browsers use HTML
forms to interact with heterogeneous Web servers, software clients
can use WoT TDs to interact with heterogeneous industrial devices
on the shop floor. Devices can register their TDs with a resource
directory9 (cf. Figure 1, WoT Environment), which enables their
dynamic discovery as they are added or replaced on the shop floor.

On the surface, this approach of exposing and advertising Web
services on the shop floor might seem very similar to the ones
relying on the WS-* standards (SOAP, WSDL, UDDI, etc.), but there
are significant differences at the architectural level: by embrac-
ing a resource-oriented design and hypermedia-driven interaction,
devices are effectively integrated into the Web, and the deployed
manufacturing systems can fully benefit from the existing Web
infrastructure. This Web-based design is central to our approach:
it reduces coupling on the shop floor and enables the seamless
integration of geographically distributed production cells.

3.1.2 Web-based Artifacts. The proposed architecture for agent-
based manufacturing systems follows the Agents & Artifacts meta-
model [66], in which the agent environment is a first-class abstrac-
tion: a component designed and programmed with clear-cut re-
sponsibilities, which include providing agents with mechanisms for
interaction and coordination and with access to industrial devices
on the shop floor. The agent environment is composed of dynamic
sets of artifacts (i.e., workspaces, cf. Figure 1), where artifacts can
be both physical entities (e.g., devices on the shop floor) or digital
entities (e.g., a planner). Artifacts that model devices are loosely
coupled to the WoT environment via WoT TDs.

Note that even though the artifact abstraction10 and the TD
model have been developed independently in two different research
communities (and for different purposes), they have similar features:
both models expose a uniform interface defined in terms of observ-
able properties, events, and operations (or actions, respectively).11
Therefore, mapping artifacts to TDs is straightforward and provides
for a clean vertical integration that facilitates the deployment of
MAS in WoT environments.

The use of artifacts as first-class abstractions is a key design
choice in our approach. First, the separation of concerns between

8https://www.w3.org/TR/wot-thing-description/, accessed: 09.04.2018.
9https://tools.ietf.org/html/rfc6690, accessed: 09.04.2018.
10As defined by Agents & Artifacts [66].
11The Thing Description model is slightly more generic however: TD properties are
writable, whereas artifact properties are read-only.

agents and artifacts simplifies the writing and generation of plans –
for instance, plans consist of high-level artifact operations and are
insulated from the low-level details of executing HTTP requests.
Second, artifacts enhance component reusability since the same
artifact can be reused to encapsulate functionally similar devices
from different manufacturers. Third, artifacts enhance modularity
and enable the independent deployment and evolution of agents
and artifacts. All these properties are essential for designing flexible
manufacturing systems that can be repurposed on the fly.

3.1.3 Planning with Artifacts in AgentSpeak. To achieve their
manufacturing goals, agents either use plans that have already been
programmed by an engineer, or they use an automated planner to
synthesize production plans from semantic descriptions of artifacts
available in their environment at runtime. All plans, either pro-
grammed or inferred, are represented in AgentSpeak [5]. To use a
planner, an agent has to specify: (i) the goal to be achieved (i.e., the
intended system state), (ii) a serialization of the agent’s belief base
(i.e., the current system state per the agent’s beliefs), and (iii) a list of
manuals for available artifacts, where an artifact manual consists of
semantic descriptions of the artifact’s operations. To maintain the
alignment with Web standards, all knowledge used in the planning
process is represented in RDF [12] using Web ontologies.

1 {
2 ?ob j e c t S t a t e a s t : S t a t e ;
3 l o g : i n c l u d e s {
4 ex : p l a t e ex : l o c a t e d I n ex : F i n a lO b j e c t L o c a t i o n .
5 ex : l e g 1 ex : a t t a chedTo ex : p l a t e .
6 ex : l e g 2 ex : a t t a chedTo ex : p l a t e .
7 ex : l e g 3 ex : a t t a chedTo ex : p l a t e .
8 } .
9 } => { } .

Listing 1: Manufacturing goal for a stool with three legs.

The representation of a goal state typically includes an RDF
description of an object (or part) to be produced. For instance,
Listing 1 shows the goal of manufacturing a stool with three legs
(represented as an N3 rule12): the stool is composed of a plate with
three legs attached to it, and the plate is placed at a specific location.
This declarative goal can either be provided explicitly as an RDF
graph by an engineer (with proper tool support, see [41, 51]), or it
can be selected/composed by non-technical workers via a graphical
user interface (such as the interfaces we used in [53] and [52]).

An artifact manual consists of a set of N3 rules, where each
rule describes an artifact operation in terms of: preconditions for
performing the operation, the artifact interface used to perform
the operation, and the operation’s postconditions. For illustrative
purposes, Listing 2 shows an N3 rule that describes the operation
of moving an empty robotic arm to a location given in a three
dimensional Cartesian coordinate system.13 The rule also provides
a description of how to perform the operation using the interface of
a CArtAgO artifact [66] (see Section 4 for implementation details),
where the interface description includes the name of the operation
to be called, its input parameters, and their data types (cf. Listing 2).

12https://www.w3.org/TeamSubmission/n3/, accessed: 09.04.2018.
13An artifact operation can have multiple N3 rules attached to it. For instance, we
defined a rule similar to the one in Listing 2 to describe the operation of moving the
robotic arm when an object is grabbed. The two rules thus describe using the same
artifact operation in two different contexts (the differences between them being in
terms of preconditions and postconditions).
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For this purpose, we developed an OWL ontology for describing
CArtAgO environments, but any ontology for any other platform
that implements the Agents & Artifacts meta-model could also be
used.

1 {

2 ?objectState a st:State ;

3 log:includes {

4 ex:PLCArmGripper ex:locatedIn ?gripperposition ;

5 ex:grabbed "none".

6 } .

7 ?gripperposition a ex:PhysicalLocation3D .

8 ?destination a ex:PhysicalLocation3D ;

9 ex:hasX ?x ; ex:hasY ?y ; ex:hasZ ?z .

10 }

11 =>

12 {

13 [ a cartago:Operation ;

14 cartago:hasName "move" ;

15 cartago:hasInputParameters [

16 a rdf:Seq ;

17 rdf:_1 "?x"^^xsd:decimal ; rdf:_2 "?y"^^xsd:decimal ;

18 rdf:_3 "?z"^^xsd:decimal ;

19 ]

20 ] .

21

22 [ a st:StateChange ;

23 st:replaced {

24 ex:PLCArmGripper ex:locatedIn ?destination .

25 } ;

26 st:parent ?objectState

27 ] .

28 } .

Listing 2: Semantic description of an artifact operation for
moving an empty robotic arm.

If a solution is found, the planner returns an AgentSpeak plan
whose body is a sequence of artifact operations. The agent can
then add the new plan to its library of plans and execute it to
achieve its manufacturing goal. For illustrative purposes, Listing 3
shows a synthesized AgentSpeak plan for moving an object from
one location to another. In this example, the agent retrieved the
semantic description of the deliver_pad1 goal (which is used to
invoke the automated planning operation) from the specification
of a manufacturing organization (discussed next).

1 +! deliver_pad1 : true <-

2 move(-3, 20, 14)[artifact_name("plc_arm")];

3 grab[artifact_name("plc_arm")];

4 move(20, -3, 14)[artifact_name("plc_arm")];

5 release[artifact_name("plc_arm")].

Listing 3: Synthesized AgentSpeak plan for moving an
object using a robotic arm artifact.

3.2 Manufacturing Organizations
In the previous section, we discussed production planning from a
centralized, single-agent perspective. A decentralized, multi-agent
design: (i) can decrease production planning time by splitting the
search space into independent sub-spaces, and (ii) can further en-
hance modularity and the independent development and deploy-
ment of components. However, adopting a multi-agent design also
raises the problem of agent coordination.

mount_leg1
m2

deliver_leg1
m1

attach_leg1
m2

assemble_stool
m2

mount_leg4
m2

deliver_leg4
m1

attach_leg4
m2

. . .

m2: make_stool
m1: deliver_legs
Missions:

(a) Stool with 4 legs.

mount_leg1
m3

deliver_leg1
m1

deliver_pad1
m2

mount_pad1
m3

attach_leg1
m3

assemble_stool
m3

mount_leg4
m3

deliver_leg4
m1

deliver_pad4
m2

mount_pad4
m3

attach_leg4
m3

. . .

m3: make_stool
m2: deliver_pads
m1: deliver_legs
Missions:

(b) Stool with 4 padded legs.

Figure 2: Stool assembly schemes.

To address this problem, we use multi-agent organizations, and
in particular MOISE [33], to coordinate communities of industrial
agents. A MOISE organization is defined on three dimensions [33]:
a structural dimension, which defines roles and groups within the
organization; a functional dimension, which defines goals, missions
(i.e., sets of goals), and coordination schemes; and a normative di-
mension, which assigns missions to roles via norms (e.g., obligations,
permissions). Norms provide a means to hot-deploy coordination
schemes in running MAS (assuming all agents are norm-aware),
which enables the dynamic reconfiguration of manufacturing lines.

We model MOISE organizations in RDF using the ontology in-
troduced in [81]. This design choice allows us to reuse standard
tooling for storing and querying organizational specifications, and
enables extensibility – for instance, to attach RDF descriptions to
MOISE goals that can then be used for automated planning.

3.2.1 Agentification and Coordination. Ascribing agency to sys-
tem components (a.k.a. “agentification” [72]) is a key design choice
in the engineering of MAS. In agent-based manufacturing systems,
two main agentification approaches have been recognized [70]:
functional decomposition, in which agents encapsulate functional
modules (e.g., planning, scheduling, material handling, transporta-
tion management), and physical decomposition, in which agents rep-
resent physical entities (e.g., industrial devices on the shop floor).14
In the functional decomposition design, agents tend to share many
state variables, while in the physical decomposition design agents
tend to manage independent sets of state variables and require few
interactions with one another.

We adopt the latter design and conceive of a manufacturing
system as a socio-technical system in which agents can be either
human workers or autonomous software entities that manage one
or more industrial devices (i.e., physical artifacts). We assume agents
manage independent sets of state variables, and thus agent coordi-
nation can happen before the planning phase.

To illustrate our use of multi-agent organizations, Figure 2a de-
picts a MOISE coordination scheme (represented as a goal decom-
position tree) for manufacturing a four-legged stool: assembling
the stool requires mounting each of the four legs, and mounting
each leg requires that the leg is first delivered to a designated loca-
tion and then attached to the stool plate. In this example, non-leaf
goals are decomposed into sub-goals achieved in sequence, but a
goal could also be decomposed into sub-goals that are achieved in
parallel (see [33]). Goals are grouped intomissions that are assigned
14Complex systems, however, generally follow hybrid approaches [70].
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Algorithm 1 Algorithm for probing the deployment of a manufac-
turing scheme.

1: function ComputeSchemeDiff
2: for all roles relevant to a scheme do
3: determine set G of goals role r is obliged to achieve
4: for all known agents do
5: agent_rating← number of achievable goals from G
6: return ratings for all known agents

via obligation norms to two roles (cf. Figure 2a): human_worker and
leg_transporter_robot. Roles provide an indirection level that
effectively decouples the manufacturing organization from individ-
ual agents (and thus increases its reusability).

3.2.2 Probing Manufacturing Organizations. Manufacturing or-
ganizations provide formal specifications that can also be used
to probe if an agent-based manufacturing system is able to man-
ufacture a given product. If the deployed system cannot readily
manufacture the product, the organizational specification can help
determine what are the missing capabilities of the production cell,
or even determine components that could be procured from or
delegated to other production cells.

To demonstrate this capability, we developed Algorithm 1 for
probing the deployment of manufacturing organizations designed
with MOISE [33]. The core idea is that the meaning of a role in a
MOISE organization is determined by the set of all goals attached to
that role via norms. Therefore, to probe the deployment of a manu-
facturing scheme, the algorithm selects all roles that are relevant for
that scheme and, for each role, it evaluates all known agents based
on the number of goals that they can achieve for that role (in our
implementation the evaluation is based on semantic descriptions
of agents and the goals they can achieve). A complete (or partial)
solution for deployment can then be presented to an engineer, who
can decide on a course of action for manufacturing the product.

For illustrative purposes, Figure 2b depicts a manufacturing orga-
nization for a stool with four padded legs. In contrast to the scheme
in Figure 2a, manufacturing this stool requires an agent that can
enact the role of pad_transporter_robot to deliver the pads. Fur-
thermore, the make_stool mission now includes additional goals
for mounting the pads. The system can evaluate this organizational
specification using Algorithm 1 in order to propose a solution for
its deployment to an engineer.

4 IMPLEMENTATION AND DEPLOYMENT
To demonstrate our approach, we implemented an agent-based
manufacturing system for a prototypical production cell that in-
tegrates two industry-grade robots and an augmented reality (AR)
interface for human workers. We present the main system com-
ponents in Section 4.1, and discuss the prototype deployment in
Section 4.2. A video that demonstrates the main features of our
research prototype is available online.15

15https://youtu.be/tfAVDpYn_ow, accessed: 09.04.2018.
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4.1 System Architecture
Figure 3 depicts the main components of the implemented system,
which interact with one another via HTTP. To store and manage
semantic models (e.g., organizational specifications, agent descrip-
tions), we use the Open Semantic Framework (OSF) [51], a standard-
compliant industrial knowledge management platform. Software
agents and the artifacts they use run in an Agents & Artifacts Con-
tainer implemented with the JaCaMo platform [4], and schedule
planning jobs on a remote machine. The automated planning sys-
tem is based on the Eye Reasoner [75], which is wrapped in a REST
HTTP API.

When participating in manufacturing organizations, human
workers interact with the system via an AR interface for Microsoft
HoloLens16 devices. For simplicity, in our implementation human
workers are proxied by software agents: the agents forward to
humans all their obligations (e.g., to achieve goals), and use organi-
zational artifacts on behalf of humans to signal the fulfillment of
those obligations (e.g., the achievement of goals). Obligations are
displayed to human workers in textual form, and workers use voice
commands to notify when they have fulfilled their obligations.

In the next two sections, we first describe the Agents & Artifacts
Container and then present our system’s engineering user interface
that can be used for repurposing deployed systems.

4.1.1 Agents &Artifacts Container. TheAgents &Artifacts (A&A)
Container uses a custom extension of the MOISE framework [4]
for reading organizational specifications in RDF (rather than the
usual XML-based specifications). The A&A Container provides
agents with two infrastructure artifacts: a planner artifact and a
Web interface artifact.

Agents use the planner artifact to synthesize plans in a non-
blocking manner: they schedule planning jobs, and once a job is
finished, they receive a notification with the result. Agents are thus
effectively decoupled from the automated planning system. If a
solution is found, the notification payload includes a representation
of the plan as an RDF Sequence [7] of CArtAgO operation descrip-
tions (such as the one shown in Listing 2). The RDF sequence is
translated to an AgentSpeak plan and added to the calling agent’s
library of plans.

The Web interface artifact exposes a REST HTTP API that is
used by both the AR interface and the engineering front end to
interact with the MAS. For instance, clients can use this API to
send notifications to individual agents, or to create organizational

16https://www.microsoft.com/en-us/hololens, accessed: 09.04.2018.
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Figure 4: Engineering front end. Users can set the general au-
tonomy level of the system via a central controller (center)
and can guide/constrain the system by specifying organiza-
tions (left) and programming concrete plans (right).

artifacts (i.e., group boards or scheme boards [4]).When a valid HTTP
request is received, theWeb interface artifact processes the resource
representation in the request payload and dispatches notifications
to all interested agents. For instance, the representation of a group
board can include role allocations for agents – in which case, when
a group board is created, all participating agents are notified of its
creation and the roles they are required to enact in it.

4.1.2 Engineering Front End. To enable high-level control by
a production engineer, the system exposes a graphical Web user
interface (see Figure 4) that can be used from stationary and mo-
bile devices alike. This interface is structured around a central
autonomy controller (center of Figure 4) that is used for setting the
global autonomy level of the system. If set to the maximum, the
system attempts to synthesize a production plan purely based on
first-principles planning and using the semantic descriptions of
discoverable Web-based artifacts with no further input from the
engineer (except the manufacturing goal). For lower settings of the
controller, the interface is enriched with more and more options
that enable engineers to guide/constrain the system: they can define
(arbitrarily deep) goal decomposition trees, organizational roles,
groups, missions, and assign missions to roles (left panel of Fig-
ure 4), and even program plans in AgentSpeak (right panel). When
satisfied with the system configuration, a production engineer can
start the manufacturing process by clicking the “Deploy!” button.

4.2 Prototype Deployment
In what follows, we report on the deployment of our prototype.
First, we introduce the concrete use case scenario of assembling
customized furniture, and then we present our prototypical produc-
tion cell and the scenario implementation. Lastly, we discuss the
strengths and current limitations of our approach.

4.2.1 Flexible Assembly of Customized Furniture. To validate
our prototype implementation, we considered the assembly of cus-
tomized furniture. This market seems particularly appealing for

flexible manufacturing systems both due to high potential and high
demand for customization: even when restricting our scope to only
a few different types of furniture, colors, leg configurations (e.g.,
three-legged vs. four-legged stools), and types of floor protector
pads, the manufacturing line already faces several hundreds of
product variations. This scenario thus warrants the use of manu-
facturing systems that are capable of switching between product
variants and can be extended with additional industrial devices. The
concrete example we use is switching between the assembly of sev-
eral different variants of a wooden stool: our system should be able
to continuously manufacture stools with three legs; this behavior can
then be interrupted by requests to assemble stools with a four-leg
configuration, which does not require any adjustment of the manu-
facturing line itself but merely of the behaviors of involved agents;
furthermore, the system should react appropriately to assembly
requests for stools with padded legs (in any leg configuration) –
in this case, the system should transparently add another agent (a
second robot) that delivers felt pads to the assembly station.

4.2.2 Prototypical Production Cell. We deployed the presented
system in a prototypical production cell in our laboratory. The cell
contains two handling robots that interact with human workers.
The robots are controlled by systems that are representative for a
state-of-the-art production cell in a real manufacturing environ-
ment. The first of the two handling robots is aUniversal Robotics UR5
robot with an attached Robotiq 2-Finger Gripper that is connected to
the rest of the system via ROS [63], a Linux-based robot program-
ming framework that includes modules for movement planning,
optimization, and visualization. The second robot in our laboratory
production cell is a Fischertechnik ROBO TX Automation Robot that
is controlled via an industrial controller (a Siemens S7-300 PLC) and
is programmed by means of the STEP7 language using ladder logic.
Both robot controllers expose REST HTTP APIs for integration
with the rest of the system (cf. Figure 3).17

This setup allows us to demonstrate that our system enables
collaborative robots (i.e., the UR5), which are widely perceived as
important future participants in industrial production processes,
to interact with devices that are controlled via conventional factory
automation systems such as PLCs. Furthermore, by building on
top of the WoT, our system can be seamlessly extended with any
Web-enabled devices that expose WoT TDs for their Web APIs.

4.2.3 Scenario Implementation. We implemented the stool as-
sembly scenario in our prototypical production cell using the UR5
robot for delivering stool legs, the Fischertechnik robot for deliv-
ering pads, and a human worker for assembling the stool.18 The
engineering front end shown in Figure 4 displays the system con-
figuration for a stool with four padded legs. When the autonomy
lever is at 99%, the only input required by the system is an RDF
description of the final goal (similar to the one shown in Listing 1),
which is retrieved from OSF. In this case, the system uses a single
planning agent that controls both robots to deliver the parts. As
the engineer lowers the autonomy lever, the front end gradually
refines the organizational specification with knowledge retrieved

17For more technical details about the setup of the laboratory production cell we refer
interested readers to [53].
18A demonstrator video is available online: https://youtu.be/tfAVDpYn_ow, accessed:
09.04.2018.
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Table 1: Agent ratings for roles in the manufacturing orga-
nization for assembling a stool with four padded legs.

Role human worker ur5 robot fischertechnik robot
human_worker 9/9 0/9 0/9

leg_transporter_robot 4/4 4/4 0/4
pad_transporter_robot 4/4 0/4 4/4

from OSF. In Figure 4, the autonomy lever is at 9% and the front end
displays a 2-level goal decomposition tree, which is the complete
coordination scheme for this scenario.

The engineer can easily switch production between stools with
various leg configurations. For instance, when switching production
from 3-legged stools to 4-legged stools (without pads), the new prod-
uct variant fits within the capabilities of the deployed manufactur-
ing line. The engineer can adjust the 3-legged stool manufacturing
organization using the front end, or by loading the corresponding
organizational specification from OSF. If the engineer next switches
to 4-legged stools with pads, the production now exceeds the capa-
bilities of the manufacturing line. When probing the corresponding
manufacturing organization, the system retrieves from OSF seman-
tic descriptions of known agents to compute and display the role
ratings in Table 1 (i.e., the number of goals an agent can achieve for
each role). The engineer can use this information to bring online the
Fischertechnik robot for delivering the pads, and can then deploy
the manufacturing organization.

4.2.4 Discussion and Limitations. Our setup demonstrates that
the proposed design for agent-based manufacturing systems attains
the required properties that motivate our work. First, the deployed
systems are modular and flexible, which allows them to be repur-
posed on the fly – for instance, in response to high customization
demands in markets such as furniture manufacturing. Second, this
approach facilitates the programming and repurposing of man-
ufacturing lines: engineers use high-level concepts to introduce
knowledge into deployed systems via an intuitive interface that
allows for a flexible trade-off between programming effort vs. the
computational effort spent by the system to arrive to a solution (if
any). This approach thus has the potential to significantly lower the
engineering costs – a key factor for acceptance of MAS technology
in manufacturing [39]. We leave it as future work to perform an
empirical evaluation of the effectiveness of this interface and to
study the use of domain terminology for further increasing the
usability of MAS concepts for production engineers.

The WoT provides an effective means to deal with heterogeneity
on the shop floor: WoT TDs allow the A&A Container to discover
at runtime how to interact with heterogeneous industrial devices
(PLCs, robots etc.). Furthermore, by piggybacking on the Web archi-
tecture, the deployed manufacturing systems inherit the properties
of the Web as an Internet-scale and long-lived system [21, 31]. We
currently argue that these architectural properties are preserved
based on our theoretical understanding of the Web architecture,
but in the future we intend to build and deploy large-scale, geo-
graphically distributed demonstrators to support this claim.

The automated planning system used in our implementation
inherits assumptions that are specific to the classical planning do-
main, such as [26]: the environment is static, there is no explicit
model of time (e.g., how long an action will last), concurrency is
not considered (only discrete sequences of states and actions), all
actions are deterministic (the planning algorithm assumes that it
can predict with certainty what state is produced if an action a is
performed in state s). Some of these assumptions are relaxed by
our integration with BDI reasoning (e.g., coping with dynamic en-
vironments, recovery from failed actions). In addition, our modular
and loosely coupled architecture enables the easy replacement of
the current automated planning system with any other system (e.g.,
systems that consider temporal models [26]).

At the moment, we do not address the use of variables in syn-
thesized AgentSpeak plans: all arguments to artifact operations are
passed by value (cf. Listing 3), which limits the reusability of syn-
thesized plans. Closely related, we also do not refine the application
context of inferred plans: the inferred context is always true, and
thus agents do not have a proper means to select inferred plans
when achieving their goals (this issue has already been addressed
in related work, e.g. [56]). We intend to address these issues in the
future.

5 CONCLUSIONS AND OUTLOOK
Manufacturing has been envisioned as a major application domain
for MAS since the late 1980s, yet the actual number of mature appli-
cations deployed to date is small. This paper presents an approach
to design scalable and flexible agent-based manufacturing systems
that attempts to bridge this deployment gap by integrating auto-
mated planning with MAOP for the WoT. The use of MAOP with
WoT TDs enhances the modularity of manufacturing systems – and
together, modularity, BDI reasoning, and automated planning allow
the systems to pursue manufacturing goals in a flexible manner.
The use of high-level programming abstractions and automated
planning allows to hide the system complexity behind an intuitive
interface for programming and reconfiguring organizations of in-
dustrial agents on the fly. This can effectively reduce the time and
effort required to repurpose manufacturing lines for small batch
sizes – and thus lowers the engineering costs, a key factor for the
adoption of MAS in manufacturing. We demonstrated these proper-
ties in a fully functional prototype that was deployed in a laboratory
production cell using realistic industrial equipment.

The WoT plays a central role in our approach: it enhances in-
teroperability and reduces coupling among devices on the shop
floor. Furthermore, it allows manufacturing systems to exploit the
existing Web infrastructure and inherit its architectural properties
– thus promoting the vision of world-wide manufacturing systems.
Together with MAS and the use of AR for seamless collaboration
between human workers and industrial agents, we believe this
integration outlines an intriguing vision for the fourth industrial
revolution: a global collective intelligence for manufacturing.
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