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ABSTRACT
With the increasing prevalence of electric vehicles (EVs), the pro-
vision of EV charging is becoming a standard commercial service.
With this shift, EV charging service providers are looking for ways
to make their business more profitable. Dynamic pricing is a proven
technique to increase revenue in markets with time-variant, het-
erogeneous demand. In this paper, we propose a Markov Decision
Process (MDP)-based approach to revenue-maximizing dynamic
pricing for charging service providers. We implement the approach
using an ensemble of policy iteration MDP solvers and evaluate it
using a simulation based on real-world data. We show that our pro-
posed method achieves significantly higher revenue than methods
utilizing flat-based pricing. In addition to achieving higher revenue
for charging service providers, the method also increases the effi-
ciency of allocation measured in terms of the total utilization of the
charging station.
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1 INTRODUCTION
After more than hundred years of niche use, electric vehicles (EVs)
seem on the cusp of displacing internal combustion engine (ICE)
vehicles in personal transportation. Better fuel efficiency, environ-
mental friendliness and lowering cost give EVs an edge over ICE
vehicles. In Europe, EVs have been forecast to match ICE cars in
the total cost of ownership as early as 2018 and by 2023 account
for 30% of new car sales1.

The rise of EVs drives interest frommany different actors, includ-
ing governments, cities, car manufacturers, environmental groups
1UBS report from 2017: Q-Series UBS Evidence Lab Electric Car Teardown – Disrup-
tion Ahead? Avaialable at http://www.iom3.org/sites/default/files/news-documents/
Automotive_Materials_EV_UBS_May_2017.pdf

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

and electric utilities. Each is trying to prepare for the expected rise
of EVs. For cities and electric utilities, the widespread use of EVs
may require large investments into infrastructure because large
numbers of EVs could increase the peak load on the grid up to
threefold2. However, methods of load balancing – moving of the
load “peaks” into the load “valleys” – can prevent the infrastructure
costs from growing.

This concern for the future infrastructure investment is one of
the primary motivations in the recent interest in dynamic pricing.
Dynamic pricing [1, 17] is a technique to balance load in various
domains. It is studied in economics, revenue management or supply
chain management. In the field of smart mobility where the system
cannot be controlled centrally, dynamic pricing was proposed to
improve efficiency of taxi systems [8, 9] or power grid management
for electromobility [5, 11, 20], balancing power load, power quality
and other grid-related metrics. These fields recognize dynamic
pricing as a critical lever for influencing the behavior of buyers.

Until recently, most of the research of charging for electro-
mobility focused on the optimization of charging station place-
ment [7, 12, 19, 21, 22]. Such approaches are only a seeming remedy
in a changing environment where charging station placement is
no longer optimal in the new environment. On the other hand,
dynamic pricing of the charging services and its application to
load balancing is robust to the dynamically changing situation in
the infrastructure, demand and energy costs. This direction was
recently taken by Xiong et al. [23]. The pricing problem proposed
considered EV drivers’ travel patterns and self-interested charging
behavior. The problem can be seen as a variation on sequential
posted pricing [3] for charging stations. The solution the authors
proposed uses mixed integer non-convex optimization of social
welfare in the model.

Dynamic pricing of charging services is a method that can poten-
tially provide cheap and robust alternative to expensive upgrades of
our current infrastructure. However, applications proposed above
focus on the dynamic pricing primarily toward optimization of
social welfare. Yet in real world situations, prospective charging
station providers are often privately owned and as such not strongly
incentivized to improve the social welfare.

Instead, private investors are concerned with the costs of in-
stalling and providing charging services and their financial returns3.

2Based on the IEEE Spectrum article: http://spectrum.ieee.org/transportation/
advanced-cars/speed-bumps-ahead-for-electricvehicle-charging
3From report "An Industry Study on Electric Vehicle Adoption in Hong Kong" by
the Hong Kong Productivity Council (2014): www.hkpc.org/images/stories/corp_info/
hkpc_pub/evstudyreport.pdf
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Modeling charging station providers as self-interested agents in-
stead of cooperative group seems to be closer to reality in many
places around the world.

For this reason, in this work we focus on maximizing the rev-
enue of charging station provider and show that this can be done
while still improving social welfare. To this end, we propose MDP
based dynamic pricing strategy for a self-interested charging ser-
vice provider that aims to maximize its revenue while improving
utilization of the limited available grid resources.

2 RELATEDWORK
To put dynamic pricing into perspective, we can see it as pricing of
services that are in high demand or that each buyer values differ-
ently, such as hotel rooms [10] or airline tickets [18]. For airfares and
hotel rooms, the price is changing based on the expected demand
throughout the season, existing bookings, as well as the customers
segment (business or tourist). Services such as airfares and hotel
rooms have strict expiration deadline, that is, the departure of the
airplane and the arrival of given booking day. Similarly, the EV
charging resources in a given time window expire if there are no
vehicles to use them.

With such a type of expiring services, the goal is to sell the
available service capacity for a profit under the constraints given
by their expiration and fluctuations in the demand. Unused service
capacity is a wasted profit opportunity. Maximizing revenue from
these expiring services is the topic of revenue management [17].

Literature on the revenue management including dynamic pric-
ing of hotel rooms and airline tickets is classically not primarily
concerned with competition of the service providers nor with com-
petition among customers [4, 14]. The primary concern is the prof-
itable utilization of the sold resource (rooms, tickets). In case of
the pricing of EV charging resources, there exist approaches that
model competition between customers [6]. However, competition
between different charging stations have not been investigated yet.
In our wiev, this is because the deployment of the EVs is still limited
and there is no data to validate competitive aspects of dynamic pric-
ing of charging services. While competition between the charging
stations might become important in the future, we focus on the
problem of optimal pricing in an environment where other charging
stations are not having an important effect. Thus, we adopt similar
approach to the early work on the airline revenue management
that disregards competitive aspect of pricing and focuses on ther
factors deemed more important at the time.

The common approach to the pricing of airline tickets, exten-
sively studied e.g., in [4], is to determine the number of tickets
which can be sold for a particular price in order to maximize the ex-
pected revenue. These decisions require the modeling of customers,
which is based on parameters such as price sensitivity, seasonality
of demand and others. The optimal rule for accepting or rejecting
air ticket bookings is as follows: Is the profit from this booking higher
than the expected profit from the booked seat that we could get later?
Confirm the booking now if the profit is higher than the expected
profit later. If it is lower, reject this booking. Moreover each accepted
booking can influence following bookings as customers booking
later are potentially not able to book seats at the same price. Ad-
ditionally, if we include connecting flights and group bookings,

Figure 1: The requests for charging in the future arrive to
the charging station in a sequence. Accepted charging re-
quests and their duration have an effect on whether request
that arrive later can be accomodated. If the charging station
accepts requests as they arrive, r1arriving at req(r1)will block
r2 and r3. If the charging station rejected r1 instead, r2 and r3
could be accepted. Whether to accept or reject a charging re-
quest can be decided by comparing the value of the charging
request with the expected value of not yet allocated avail-
able capacity.

pricing decisions can affect and be affected by other subsequent
pricing processes. Because of this snowball effect, the complexity
of the air ticket pricing problem (and similarly the charging service
pricing problem) is in general intractable [17]. For this reason, the
problem is often simplified (e.g., by assuming independence of de-
mand between booking classes, allowing no cancellations, etc.) so
that a solution can be found computationally.

An important distinction between airline pricing and charging
station pricing is coupling of the bookings in the case of charging
services, which is not present when selling airline tickets. In the
case of airline tickets, it is not particularly important which seat (in
a given class) was sold as the booking of a single seat does not block
the booking of surrounding seats. However, booking of a single
time window can influence time windows before and after it, as it
can block other charging opportunities.

In the following sections, we approach the charging station pric-
ing strategy in a way similar as revenue management deals with
pricing of airline tickets. Both problems focus on expiring services
where earlier transactions affect transactions that follow.

3 MODEL OF CHARGING IN THE
ELECTROMOBILITY ENVIRONMENT

Our model describes a multi-agent system with a single charging
station operated by one charging service provider and several EV
drivers wanting to charge their vehicles. Within such system, we
focus on the problem of dynamic pricing strategy [1]. The strategy
is used by the single charging service provider to post prices, which
are accepted or rejected by EV drivers. The goal of the pricing strat-
egy described below is maximization of charging service provider
revenue within a particular time horizon. As discussed earlier, we
disregard the competition between charging service providers in
our pricing model and we leave it for future work.

In our multi-agent model of charging in electromobility, we
consider EV drivers as n agents and one charging station provider
as one additional agent. The model is formally defined as a tuple
M = ⟨D, c,ϕ1, . . . ,ϕn ,Φ⟩. D = (r1, . . . , rm ) is a demand expressed
as a sequence of charging services requests ri sent by the EV driver
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Figure 2: The structure of the transition function P . Given
state s, the probability of getting to the next state s ′ is given
by multiplying the probabilities along edges. States are the
decision nodes (in red), chance states are in blue and contain
the definition of the probability used on the edge.

agents to the charging service provider agent in a sequence. Each
request is defined by its start(ri ) and end(ri ) times of charging, time
req(ri ) when the request was issued and char (ri ), the requested
charge in kWh. We assume that req(ri ) ≤ start(ri ) < end(ri ) and
req(ri ) < req(ri+1). For each time we define free capacity c : R→
R+0 that determines the maximal charging capacity of the charging
station in time.

The interaction of EV driver agent and the charging service
provider agent is modeled via requests ri from EV driver agent
ϕ j and prices pi returned by the charging service provider agent.
Formally,pi = Φ(ri ), where Φ is the charging service pricing function
of the charging service provider agent, ri is the charging service
request andpi is the resulting proposed price. If the charging service
provider agent can not accept a given request, it sets pi = ∞.

ϕ1, . . . ,ϕn denote the decision processes of the EV driver agents
that determine whether the proposed price pi is accepted by the
driver agent. We write ϕ j (p) = ⊤ iff the j-th EV driver agent is
willing to pay price p for the requested charging service ri and
ϕ j (p) = ⊥ otherwise (ϕ j (∞) = ⊥ always). Provided that ϕ j (Φ(ri )) =
⊤, the EV driver agent accepts the proposed price for charging
request ri andwe assume both the charging and payment eventually
happen in the system. An execution of the modelM is a sequence of
prices and decisions A = (⟨p1,δ1⟩, . . . , ⟨pn ,δn⟩) for all agents and
their charging requests ri ∈ D, such that pi = Φ(ri ) and δi = ϕ j (pi ).

The goal of the charging service provider is to maximize its
revenue by optimally setting prices with Φ. Given that the price
pi of reservation ri , the revenue ρ at the end of the time horizon
can be written as the sum of prices across all realized reservations
(Equation 1):

ρ(D, c,ϕ1, . . . ,ϕn ,Φ) =
∑
ri ∈D

Φ(ri )1ϕj (Φ(ri ))=⊤ (1)

Figure 3: The figure shows state of MDP Πk for k-th time
interval (13:00 to 14:00) of a charging station with maximal
capacity cmax = 3 and expected demand for charginging in
k-th E(|Dk

t |) (curve in red). State of Πk is given by t = 3,
the number of time intervals to charging from current time,
current price p and free capacity c that depends on the real-
time overlap of the accepted charging requests (leftmost rec-
tangle) with the incoming charging request (two rectangles
with text show two possible incoming requests).

We are looking for revenue maximizing pricing function Φ∗:

Φ∗ = argmax
Φ

ρ(D, c,ϕ1, . . . ,ϕn ,Φ) (2)

The maximization is constrained by the free capacity:

∀t ∈ R, c(t) ≥
∑
ri ∈D

1ϕj (Φ(ri ))=⊤1start(ri )≤t<end(ri ) (3)

Here, 1ϕj (Φ(ri ))=⊤ is the indicator function that equals 1 for
requests accepted by the EV driver agent and 1start(ri )≤t<end(ri ) is
the indicator function of the charging interval of request ri .

4 MDP-BASED DYNAMIC PRICING OF
CHARGING SERVICES

The maximization problem given by Equation 2 is sequential in
nature. The pricing function has to respond to the confirmed reser-
vations as it can not exceed the capacity of the charging station
(Equation 3). Additionally, the charging station provider agent will
generally not have exact knowledge of the individual ϕ j or of the
number of requests to be made in one day. However, the charging
station can have a probabilistic model of the EV driver behavior
and of expected demand. Thus, from the perspective of the charg-
ing station, revenue maximization is a Markov Decision Process
(MDP) [2].

We aggregate the charging station provider’s understanding of
the EV drivers decision processes ϕ1, . . . ,ϕn into the price elas-
ticity function E. Given a request r and a generated price p, price
elasticity E(p) is the probability of an EV driver agent accepting
the price p. Arrivals of requests are modeled using two random
variables, E(|D |), the number of requests arriving in some time
interval, and probability distribution over req(ri ), start(ri ), end(ri ),
the parameters of the request ri .

Using these probabilities, we reformulate the maximization goal
from (2) as themaximization of the expected revenue across possible
decision policies π :

π∗ = argmax
π

E(ρ(D, c,ϕ1, . . . ,ϕn ,π )) (4)

Session 21: Engineering Multiagent Systems 1 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

834 



The expectation is with respect to the joined probability distribution
of arrivals and probability of acceptance and the maximization is
subject to (3).

Based on the price elasticity function, we define the MDP pric-
ing strategy that determines prices offered by the charging station
provider throughout the day. We discretize time into n time inter-
vals, price into np price levels and free capacity into nc capacity
levels. Since we assume in our model that all charging sessions use
the same electrical power, the maximal free capacity in the time
interval is the upper limit on the number of concurrent charging
sessions. Free capacity incorporates all charging station provider
constraints, including the power grid capacity or the number of
available charging connectors, into one number.

4.1 MDP-based Pricing in Discrete Time
Intervals

In each charging time window, there are np price and nc capacity
levels and up to n time windows prior to the charging. As such, the
state space in each time window has size nnpnc and the branching
factor is up to 5 (see Figure 2). Because price or capacity change
in any time window can have an effect on any other time window,
finding solution to (4) means finding solution for n time windows
together; that is in a state space with n(npnc )n states and branching
factor at least 5n .

π∗k = argmax
πk

E(ρ(D, c,ϕ1, . . . ,ϕn ,πk )), k ∈ 1, . . . , l (5)

To avoid this combinatorial explosion, we find optimal pricing
policy for each time window independently through n independent
MDPs that maximize expected revenue in each time interval (5).
However, this means that the new problem is no longer optimal
in the sense of (4) but only as a set of n independent solutions
to (5). Combined together, summed maximums from (5) are bound
above by maximum from (4). The tightness of this bound is data
dependent. As such, we do not attempt to determine the tightness
of this bound with an experiment using smaller, but full MDP as
this would require us to oversimplify the data.

The pricing strategy uses one MDP for each time interval. The
solution to MDP for the k-th interval is the pricing policy πk .

The MDP is a tuple Πk = ⟨S,A,R, P , s0, Se ⟩ , k ∈ 1, . . . , l . In
each Πk , S is a finite set of states, A is a finite set of actions; P :
S ×A × S → [0, 1] is the transition function forming the transition
model giving a probability P(s ′ |s,a) of getting to state s ′ from state
s after action a; and a reward function R : S ×A × S → R.

Starting in the initial state s0, any action from A can be chosen.
Based on this action, the system develops as prescribed by P to the
next state where another action can be applied. During the move,
the reward can be received based on the R(s,a, s ′) function.

A state s is defined by triplet (t ,p, c). Here t ∈ {0, . . . , tmax} ∪
{−1} denotes the number of time intervals to the execution of charg-
ing (0 denotes the hour of charging, t = −1 marks the exit states Se
of the MDP). c ∈ {0, 1, . . . , cmax} is the current available capacity
in the time interval, i.e. how many more requests can be accommo-
dated in the time interval, and p ∈ {0, 1, . . . ,pmax} is the current
price level set in the time interval. The set of actions A contains
three actions, price +1, price −1 and no change to the price.

Because each accepted request reduces capacity in the time win-
dows by one, the reward function R generates reward p for any
transition between states s = (t ,p, c) and s ′ = (t ,p, c − 1) for all
t ∈ {0, . . . , tmax}, p and c in their domains.

The transition function P is based on the price elasticity function
E(p) and the expected number of requests E(|Dk

t |) for the charging
in k-th interval t intervals prior execution of charging. Compo-
nents of the transition function are given in (6) and (7). The way to
combine these components into a transition function is shown in
Figure 2.

pd (t) =
1

E(|Dk
t |) + 1

(6)

pe (p) = E(p) (7)

The probability pd (t) of no more charging requests arriving
in state (t ,p, c) is calculated from the expected absolute demand
for charging in k-th time interval t intervals prior to the start of
charging E(|Dk

t |) (red curve in Figure 3). Equation (6) is obtained by
modeling |Dk

t | as having geometric distribution, arrival of charging
request as Bernoulli trial (failure in Bernoulli trial meaning no
more charging request t intervals before charging) with failure
probability 1 − pd (t).

The geometric distribution is the probability distribution of the
number Y of failures before first success in consecutive Bernoulli
trials with success probability q (this means 0 is in the support).
Y has expected value 1−q

q . Identifying Y with |Dk
t |, we get q =

pd (t). For each t , the MDP remains in some state s ∈ {(t ,p, c)|c ∈
{0, 1, . . . , cmax},p ∈ {0, 1, . . . ,pmax}} until successful Bernoulli
trial with pd (t) being the probability of success.

Arriving charging request has probability of acceptance E(p). If
the price offered by the pricing strategy is rejected by the customer,
the MDP remains in the same state. This is illustrated in Figure 2
in the branch ending in s ′ = (t ,p, c).

There are few exceptions to the probabilities defined by Figure 2.
One of them consists of the bounds of the domains of state variables.
If the price is maximal resp. minimal, the action to increase resp.
lower the price is not available. Similarly, when capacity is 0,pe (p) =
0 as no additional request can be accommodated by the charging
station provider in the given time interval. Finally, t = −1 denotes
the set of exit states Se = {(t ,p, c) ∈ S |t = −1} where the MDP
terminates.

The pricing strategy uses nMDPs at once. For a charging request
r , the free capacity ckr in each MDP is calculated from the overlap
(in continous, not discretized, time) of accepted requests (green
rectangle in Figure 3) and incoming request r (blue rectangles in
Figure 3). In every time window Ik corresponding to Πk , starting
from the state (tk ,pk , ckr ), we apply pricing policy πk repeatedly
until the policy does not suggest change in price. The final price of
the request r offered to the EV driver agent is the sum of the prices
in time windows the request overlaps. In the case of partial overlap
with some time window, the price is proportional to the size of the
overlap:

Φ(r ) =
n∑

k=1

|Ik ∩ (start(r ), end(r ))|
|Ik |

Πk (r ) (8)
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Table 1: Summary statistics of the real-world charging data
for the selected charging station with three charging points.
The dataset contains charging sessions recorded over several
weeks.

CS Dataset Statistics Mean Std

Charging session duration 0.726 h 0.794 h
Charge per charging session 6.72 kWh 5.19 kWh

Note that k-th MDP internally assumes that EV driver is making
decision based on the price pk (the state variable in Πk ). Depending
on the length of the charging request, this price is only part of the
price Φ(r ) offered to the driver by the pricing strategy. Thus, the
length of the time window should be chosen similar to the length
of the average charging request.

5 EVALUATION OF THE MDP-BASED
DYNAMIC PRICING METHOD

We evaluate the MDP dynamic pricing algorithm on real-world data.
First, we provide summarizing statistics of the dataset and describe
the preprocessing we performed on the data. Then we describe
the experiments we conducted with the data and the results we
obtained.

5.1 Real-world EV Charging Data
The dataset contains information on charging sessions realized
at one of the E-WALD charging stations. E-WALD4 is one of the
biggest EV charging service providers in Germany. The E-WALD
data includes timestamps of the beginning and the end of each
charging session, the status of the electricity meter at the beginning
and the end of each charging session and the anonymized identifier
of a user who activated the charging session. In the preprocessing
step, we remove clearly erroneous data points (such as charging
sessions with negative duration) and merge some short charging
sessions with following charging sessions if the same customer
initiated both sessions.

The summary statistics of the dataset can be found in Table 1.
Histogram of charging session start times can be seen in Figure 4.
The dataset was collected at the charging station over the period
of several weeks. In this period, the charging station averaged 2.53
charging sessions per day. With such low demand for charging,
there were almost no conflicts in requested charging sessions. Thus,
in our experiments, we randomly sample the dataset to generate
single days with up to 60 daily charging sessions.

The particular charging station dataset does not contain any
pricing information about the charging sessions for its three charg-
ing locations. However, E-WALD (similarly to the majority of other
charging service providers) uses only flat rate pricing in all their
charging stations.

4We would like to thank E-WALD (https://e-wald.eu/) for providing us with the charg-
ing data for this study.

Figure 4: Histogram of the charging session start times in
the real-world dataset for the selected charging location.
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Figure 5: Price elasticity E(p) of demand curves for different
values of the C parameter.

5.2 MDP-based Pricing Strategy
Implementation

For the implementation of the MDP pricing strategy, we discretize
single day into 24 time intervals, each 1 hour long. As the real-world
data was collected at a charging station with three charging slots,
in our experiments we consider our station to have three charging
points. That is, we use cmax = 3. This means that at most three
charging sessions can be realized at any point in time.

The dataset contains information only about realized charging
sessions5. In our electromobility model, EV drivers can book charg-
ing sessions ahead of time. We model this by setting the request
time req(r ) for each charging session r in the dataset randomly, with
the request time drawn uniformly between 0 and 6 hours ahead of
start(r ).

Values of E(|Dk
t |) are estimated from the dataset. For each time

interval k in the discretization of time, we calculate normalized
histogram hkt of request times req(rk ) of request rk for which the
charging interval (start(rk ), end(rk )) is in k-th time interval. Bins
of the histogram are the intervals of the time discretization and the
normalization is done with the size of the used dataset. Givenm,
the absolute number of requests in a day, we set E(|Dk

t |) =m · h
k
t .

Recall that E(p) is the probability of the EV driver agent accept-
ing price p. Because we do not know the real price elasticity of
5 E-WALD as most of the existing charging service providers does not yet allow
booking of charging services ahead of time
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Table 2: Description of the evaluation metrics.

Metric Description

CS Revenue Revenue of the charging station is the sum of prices of all charging sessions. Revenue is directly dependent on
the selected pricing scheme Φ as given by Equation 1.

CS Utilization Measured in hours. It is the added duration of all charging sessions realized by the charging station. This is a
proxy of the social welfare of the EV drivers achieved through various pricing strategies. The higher the
utilization, the more of the EV driver charging demand was satisfied by the charging station. Definition of CS
utilization µ is given by Equation 9.

µ(D, c,ϕ1, . . . ,ϕn ,Φ) =
∑
ri ∈D
(end(ri ) − (start(ri ))1ϕi (Φ(ri ))=⊤ (9)

Figure 6: Experimental results using the evaluation metrics. Each boxplot is a result of 400 independent runs with m = 40
and C = 0.03. MDP lower index denotes number of time windows used for one day in the MDP dynamic pricing strategy. DC
denotes demand correlated strategy and F1 to F5 the different flat rate strategies.

demand for EV charging services and we cannot estimate it from
available data, we define the price elasticity function E(p) parametri-
cally as E(p) = e−Cp . This is one of the standard demand functions
in transport economic textbooks [16]. The different values ofC and
the corresponding shapes of price-elasticity curves are shown in
Figure 5. The evaluation is done for multiple values ofC . ForC = 0,
we talk about inelastic demand as customers will accept any price.
At C = 0.5 the demand is highly elastic as small changes to the
price have a big effect on customer’s acceptance or refusal of the
offer. For comparison, the price elasticity of demand for gas station
services is usually described as relatively inelastic, meaning low
values of C [15]. When data on customer price elasticity becomes
available, parametric function E(p) can be replaced by a model
learned from data.

In each experiment, we use the same price elasticity function
for all drivers. In reality each person will respond differently to
changing price. However, using randomly selected C for each user
does not give us different results when compared to using single C
for all users. Using one C for all users means we are aggregating
behavior of the population. Thus, for simplicity, we use one value
of C for all users in the experiments described in Section 5.3.

We find the optimal policies for Πk through the policy iteration
algorithm [13].

5.3 Experiments and Results
In our experiments, we compare the performance of the MDP based
dynamic pricing strategy to the flat rate strategies and demand-
correlated pricing strategy. The flat rate pricing strategy calculates
the charging request price in the same way as the MDP based dy-
namic pricing strategy, except it uses one price in all time windows
(see (8)). The demand correlated strategy sets price based on the
expected demand for each time interval. For time windows with
smallest demand, it sets lowest price while for time windows with
highest demand it sets the highest price.

In most experiments, we use pmax = 5 and five price levels, 1
to 5. The choice of the maximum price value is tied to the choice
of price elasticity parameters. For given choice of price levels and
given average length of charging session, we chose price elasticity
parameters that generate price elasticity curves of varied shapes
over the domain of probable charging session prices (see Figure 5).
The number of price levels is selected at 5 as a tradeoff between
the fidelity of pricing and size of the state space in the MDPs. We
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Figure 7: Performance of the MDP dynamic pricing compared to the performance of the flat rate (F1 to F5) and the demand
correlated pricing strategy (DC) during one simulated day using prices between 1 and 5when varying the numbern of charging
requests per day. The curves show the average values based on 400 runs with a random selection of n booking requests from
the real-world dataset and with price elasticity parameter C = 0.03 in each run.

Figure 8: Performance of the MDP dynamic pricing compared to the performance of the flat rate (F1 to F5) and the demand
correlated pricing strategy (DC) during one simulated day using prices between 1 and 5 when varying the price elasticity
parameterC. The curves show the average value of themetric based on 400 runs with a random selection of 40 booking requests
from the real-world dataset in each run.

use the same price levels for the flat rate strategies and the demand
correlated strategy.

To compare the performance of different pricing strategies we
use two metrics: charging station revenue and charging station
utilization time. Detailed description of these metrics is given in
Table 2.

In each run of the experiment, we randomly draw the set D of
size m from the real-world E-WALD dataset. These requests are
ordered by req(r ) and processed in parallel by each pricing strategy.
Each strategy discards some requests due to capacity constraints,
for other requests the issuing EV driver agents refuse the price.
Metrics described in Table 2 are calculated from requests accepted
by the charging stations with prices accepted by the EV driver
agents. In each experiment, we perform 400 runs and average the
resulting metrics. The runtime of the simulations and the solver

implemented in Python is in the order of minutes on the Intel Core
i7-3930K CPU @ 3.20GHz with 32 GB of RAM, with most of the
time spent on pre-calculation of the policies for the MDPs.

For the first experiment, we fixed price elasticity parameter at
C = 0.03 andm = 40 requests. In this experiment, we report the
quartiles of the evaluation metrics in Figure 6. We can see that
for given parameters, MDP dynamic pricing improves revenue.
Furthermore, it also improves utilization. The same figure shows
the effect of length of the MDP time window on the results. Using
shorter time windows improves revenue but increases the variance
of the results. For this reason, we use 24 time windows per day in
the rest of the experiments. Figure 6 also shows that the results
obtained for the MDP dynamic pricing can be achieved reliably,
without increasing the variance of the observed metrics over the
flat rate pricing.
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Figure 9: Performance of the MDP dynamic pricing strategy
compared to he baselines (flat rates and demand correlated
pricing) with demand and price elasticity parameters aver-
aged out.

The selection of the number of price levels was done empir-
ically; appropriate choice of price levels inherently depends on
the concrete values of demand and price elasticity. However, any
sufficiently high number of price levels is enough to demonstrate
trends in the dependence on price elasticity and demand. Thus, for
simplicity, we use np = 5 in the following experiments.

For the second experiment, we fixed the price elasticity parame-
ter toC = 0.03 and variedm, the number of customers arriving per
day from 2 to 70. Results of this experiment can be seen in Figure 7.
As could be expected, increasing the number of booking requests
increases revenue, utilization and delivered charge for all pricing
schemes. Unsurprisingly, the revenue maximizing MDP strategy
comes out ahead of other pricing strategies in terms of revenue.
Moreover, MDP dynamic pricing outperforms the other pricing
strategies in utilization across all numbers of booking requests.
While the MDP dynamic pricing is closest to flat rate with price
1 in utilization and delivered charge, it is closest to flat rate with
price 5 in revenue and average price per kWh.

For the third experiment, we varied the price elasticity parameter
C through values given in Figure 5. We fixed m, the number of
requests in D, to 40. Results of the second experiment are shown
in Figure 8. With the increasing elasticity, revenue and utilization
decrease. MDP dynamic pricing again comes on top in both metrics.

In the second and third experiment, the revenue of flat pricing
strategy increases as we increase the flat rate. However, by increas-
ing the number pmax and the number of price levels above 5, we
found that the revenue of flat rate starts to decrease after certain
threshold price level dependent on demand and elasticity. At all
times, MDP pricing strategy that uses the same pmax achieves
multiple times higher revenue.

Notice the utilization and delivered charge in the second experi-
ment are the same for all pricing strategies when C = 0; when the
demand is inelastic, customers always accept the offered price and
the charging capacity is distributed solely on the first come, first
serve basis. The downslope trend of the utilization and delivered
charge with increasing elasticity were to be expected, given the

fixed number of 40 booking requests at average duration 0.726 (the
maximal theoretical utilization with three charging points would
be 3 ∗ 24).

Figure 9 shows the aggregate results of our experiments with
MDP pricing clearly outperforming the baseline pricing strategies.
Note that the demand correlated strategy falls short of the MDP
pricing strategy as it does not respond to the changes in capacity.

The results show that that in simulation, the MDP dynamic
pricing will improve revenue compared to the baselines in all values
of absolute daily demand and all values of price elasticity, with the
exception of completely inelastic demand. The relative increase
in revenue is greater if demand is higher or if it is more elastic.
Moreover, the MDP dynamic pricing also improves the utilization
and delivered charge when compared to the flat rate and demand
correlated baselines.

6 CONCLUSION
We have shown how to use Markov Decision Process dynamic
pricing of charging services for electric vehicles. The proposed
method is focused on maximizing revenue, but it also improves the
utilization of the charging station resources over the flat rate and
demand correlated baselines through the improved allocation of
charging services.

We have compared the proposed MDP dynamic pricing strategy
with the baseline of currently most commonly used flat rate pricing
across a range of system parameters, that is, the price elasticity of
demand and volume of demand for charging services. The revenue
generated by the proposed dynamic pricing strategy was up to 5
times higher than any flat rate pricing method with the relative
revenue improvement increasing fast as the elasticity increases.

Moreover, while not directly optimizing the utilization of the
charging station, our proposed method performed better than flat
rate pricing and delivered energy across all considered scenarios.
The improvement of our method in the utilization of the charging
station over the flat rate pricing was up to 200%, depending on the
price elasticity and demand.

The most obvious future work is to incorporate dependence
of the consecutive time windows into the MDP model. Further,
the model can be extended to a game theoretic setting. Such ap-
proach will, however, need substantial work to provide scalability
for the solution to be practically usable. Another problem entirely
is practicality of creating realistic instances of such games.
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