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ABSTRACT
The robustness of multiagent systems can be affected by mistakes

or behavioral biases (e.g., risk-aversion, altruism, toll-sensitivity),

with some agents playing the “wrong game.” This can change the

set of equilibria, and may in turn harm or improve the social welfare

of agents in the system. We are interested in bounding what we call

the biased price of anarchy (BPoA) in populations with diverse agent
behaviors, which is the ratio between welfare in the “wrong” equi-

librium and optimal welfare. We study nonatomic routing games,

and derive an externality bound that depends on a key topological

parameter of the underlying network. We then prove two general

BPoA bounds for games with diverse populations: one that relies

on the network structure and the average bias of all agents in the

population, and one that is independent of the structure but de-

pends on the maximal bias. Both types of bounds can be combined

with known results to derive concrete BPoA bounds for a variety

of specific behaviors (e.g., varied levels of risk-aversion).
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1 INTRODUCTION
Game theory is founded on the assumption that agents are rational

decision makers, i.e. maximizing their utility, and that groups of

agents reach an equilibrium outcome. In many games there is some

objective measure of welfare that can be accurately measured in

terms of money, time, and so on. Utility on the other hand, is sub-

jective. It is not always easy to identify an explicit utility function

that an agent is trying to maximize, if such exists. Even when there

are objective factors that affect agents’ utility, such as profit, effort,

uncertainty, and temporal delays, various agents may weigh these

factors differently or have subjective constraints and biases. Thus

different agents may demonstrate different behavior even in the

same situation.

As a concrete example, commuters may have some information

on the expected congestion at each route via traffic reports or a

cellphone app. However they also know that this information is

inaccurate, and a risk-averse driver might take into account not just

the expected congestion, but also the likelihood of an unexpected
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delay, a heuristic safety margin and so on. Moreover, different

commuters may have different levels of risk-aversion, or act upon

different heuristics.

The implications of these subjective differences and biases on

a multiagent system are two-fold. First, from the perspective of

an outside observer who cares about a particular objective (say,

total latency), the agents are playing the “wrong game.” This is true

whether they are failing to optimize their true cost due to cognitive

limitations and biases [18], or optimizing their true subjective costs

that differ from those of the “objective” observer.

A second related issue, is that the behavior of one agent may

exert significant negative externality on the utility of another. The

extreme case is when some agents are adversarial, and act in a way

that tries to minimize the utility of some other agents.

It is well known that even in games without biases or subjective

utilities, there may be negative externalities, and that equilibrium

outcomes may be suboptimal in terms of the utilitarian social wel-

fare. This inefficiency is often quantified as the Price of Anarchy
(PoA), which is the ratio between the social welfare at the worst

equilibrium and the optimal social welfare. Biases may change the

equilibria of the game, and thus have a large effect on the PoA.

Externalities are widely studied in multiagent systems, but usually

in the context of well-defined behavior such as maximizing utility

in a game [28, 34] or finding an optimal or stable solution [6, 10, 11].

How can we hope to bound externalities in a diverse society of

agents with assorted biases and behaviors? The answer will lie

in a proper abstraction of such behaviors, but before that we will

present our questions more formally.

Research goals. Suppose that in game G, each agent i has some

true cost function ci (in this paper we consider negative utilities,

i.e. costs). Now, each agent i sees her cost as some other function

ĉi , and thus we are interested in the equilibria of the biased game
Ĝ comprised of modified utilities or costs {ĉi }i=1,2, ... . We ask the

following:

• Is there a bound to the negative externality that type j exerts on
type i , that applies regardless of the subjective cost ĉ j? (Exam-

ple: can we bound the equilibrium latency of type i commuters

without any assumption on the risk-aversion level of others?)

• Is there a bound to the social cost (in the “objective game” G) of
Ĝ’s worst equilibrium? (Example: can we bound the total latency

in equilibrium, given all commuters’ subjective cost functions?)

We refer to the ratio between the latter measure and the optimal

social cost in G as the Biased Price of Anarchy (BPoA), and note that

it coincides with the PoA when Ĝ = G.
While the first question is straight-forward, the second ques-

tion may raise some conceptual debate. One may argue that since

agents are acting so as to minimize their biased cost ĉi rather than
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ci , this is the cost we should take into account when computing the

social cost or welfare. We justify using G as the baseline for welfare

as follows. First, the social cost may be the objective used by the

system designer or analyst, as in our example above. A different

analyst might care about a different goal, resulting in a different

objective game G. Second, the social cost may be the sum of the

agents’ true utilities, while the agents are bounded-rational. For

example they may be unaware of some roads [2] or the exact la-

tency functions [41]; they may have uncertainty regarding actual

congestion [42] or the overall amount of other agents [4]; and may

assign wrong probabilities to rare outcomes [23].

Smoothness in routing games. Nonatomic routing games in the

Wardrop model [43] are a good testbed for the questions above: they

have very convenient theoretical properties, such as the uniqueness

of equilibrium (up to identical utilities); equilibrium inefficiency

and in particular the PoA is very well understood; and several

biases have already been suggested and studied in the context of

routing games (see Related Work). The smoothness method allows

to leverage a property of the edge cost functions to obtain a tight

upper bound on the Price of Anarchy that is independent of the

network topology: if all cost functions are (λ, µ)-smooth for some

parameters λ, µ, then the PoA is bounded by
λ

1−µ [17, 36, 37]. Thus

the smoothness of cost functions lets us abstract away the details

of the game and prove PoA bounds on large classes of games.

1.1 Paper structure and contribution
After a short overview of nonatomic routing games, price of anar-

chy, and a measure of graph complexity called serial-parallel width
(Section 2), we prove a tight bound on the negative externality in

any routing game without any assumption on agents’ behavior

(Section 3). Our bound generalizes previous results from specific

behaviors on series-parallel networks [2, 33] to arbitrary behaviors

and networks (parametrized by their serial-parallel width).

Next, we adopt smoothness as an abstraction for general biases

and behaviors. In Section 4we extend the definition of a smooth cost

function to ( ˆλ, µ̂)-biased-smoothness that takes into account both

the “true” and the “biased” cost functions. This approach follows

similar extensions for specific, modified costs [9, 12], and we review

recent smoothness bounds for such specific settings.

In Section 5, we consider games where agents have diverse biases,

and use our results from Section 3 along with biased-smoothness to

derive several bounds on the Biased Price of Anarchy. For example,

for symmetric games over series-parallel networks (which have

parallel-width of 1), we derive a BPoA bound in terms of the “aver-

age” biased-smoothness: BPoA ≤ O(1)
∑
i
ri
r

ˆλi
1−µ̂ i , where

ri
r is the

fraction of type i agents in the population. For arbitrary networks,

we get a bi-criteria result that depends both on the average bias as

above, and on the serial-parallel width of the underlying network.

For the special case of polynomial cost functions, we leverage

(Section 6) known results on the PoA in heterogeneous unbiased

games to derive a structure-independent BPoA bound. In contrast

to our main results, this bound depends on the worst bias rather
than on the average bias.

Omitted proofs, additional results and further discussion are

available in the full version of this paper (arxiv.org/abs/1411.1751).

1.2 Related Work
The most-well studied, modified cost function comes about as a

result of tolls, where the travel time plus the imposed toll can be

thought of as a modified cost function. In this context, most papers

focus on the objective of minimizing total latency [14, 20, 26], and

on the design of optimal or practical toll schemes [9, 21, 25, 40].

Heterogeneous biases arise when different agents have different

sensitivity to imposed tolls. We explain in the relevant sections how

these papers technically relate to our work.

Chen et al. [12, 13] apply smoothness analysis to provide BPoA

bounds for various games (including atomic congestion games)

where agents are altruistic, i.e., part of their utility is derived from

the social welfare. In the context of nonatomic routing games, their

model is formally equivalent to toll-sensitivity (see Section 4.2).

Acemoglu et al. [2] study nonatomic congestion games where

some agents are unaware of the existence of certain edges, which

is equivalent to having a wrong cost function that assigns infinite

costs to some edges. They prove that on directed series-parallel

networks, such ignorance can only lead to a worse equilibrium than

under true information, yet the worst-case PoA remains the same.

Another behavioral bias that has been studied in congestion

games is risk aversion [3, 4, 30, 33, 35], which can often be written

as biased cost functions (see Section 4.2 for details).

Closest to our work, a recent paper by Cole et al. [15] considers

topological conditions on the network such that diversity will al-

ways weakly reduce the social cost. This is guaranteed when the

network is series-parallel, which is highly related to a special case

of our main theorem.

Finally, Babaioff et al. [5] consider congestion games where some

of the agents are malicious. Babaioff et al. focused on the effect

of a negligible amount of malicious agents, and showed examples

where it can be either detrimental or (surprisingly) beneficial to

the other agents, but without any upper bounds. Indeed, malicious

behavior can be considered as another form of bias.

2 PRELIMINARIES
A network is a 2-terminal directedmultigraphG = ⟨V ,E, s, t⟩, where
s, t ∈ V are special vertices (source and target), and every edge e ∈ E
belongs to some simple s − t path.

a

s1

t1

b

c

s2

t2

d

A network is series-parallel [19, 24] if it is
either a single edge, or composed recursively

by joining two series-parallel networks in

series or in parallel. E.g., merging {s1, s2} and
{t1, t2} in the following networks also results
in a series-parallel network:

2.1 Nonatomic routing games
Following the definitions of Roughgarden [36] and Roughgarden

and Tardos [38], a nonatomic routing game (NRG) is a tuple G =
⟨G,m,c, s, t ,r ⟩, where

• G = ⟨V ,E⟩ is a directed multigraph;

• m ∈ N is the number of agent types;

• c = (ce )e ∈E , where ce (x) ≥ 0 is the cost incurred when x
agents use edge e;

• s, t ∈ Vm
, where (si , ti ) are the source and target nodes of

type i agents;
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• r = (ri )i≤m , where ri > 0 is the total mass of type i agents.
The total mass of agents of all types is

∑
i≤m ri = r , and we

assume unless specified otherwise that r = 1.

We denote by Ai ⊆ 2
E
the set of all directed simple paths be-

tween the pair of nodes (si , ti ) in the graph. Thus Ai is the set of
actions available to agents of type i . We denote by A = ∪iAi the
set of all directed source-target simple paths. We assume that all

cost functions mentioned in the paper (including biased costs men-

tioned later on) are non-decreasing, continuous, differentiable and

semi-convex (i.e., xce (x) is convex). Such cost functions are called

standard [36].

Player-specific costs. A nonatomic routing gamewith player-specific
costs (PNRG) is a tuple G =

〈
G,m, (ci )i≤m , s, t ,r

〉
. The difference

from a NRG is that agents of each type i experience a cost of cie (x)
when x agents use edge e . We can have multiple types with the

same source and target nodes to allow diversity of behavior. To

avoid confusion, we refer to (si , ti ) (or Ai ) as the demand type and
to ci as the cost type. Thus the type i specifies both the demand

type and the cost type.

A PNRG is symmetric if all agents have the same demand type,

i.e., Ai = A for all i . A PNRG is a resource selection game (RSG) if G
is a network of parallel links. That is, if the action of every agent is

to select a single (s, t) edge.

Flows. A flow (or action profile) of a PNRG is a vector f ∈

R
|A |×m
+ , where fp,i is the amount of agents of type i that use path

p ∈ Ai . In a valid flow,

∑
p∈Ai fp,i = ri for all i . The total traffic on

path p ∈ A is denoted by fp =
∑m
i=1 fp,i . Similarly, the total traffic

on edge e ∈ E is denoted by fe =
∑
p :e ∈p fp . Denote the support of

type i strategy in flow f by Pi (f ) = {p ∈ A : fi,p > 0}. That is, all

paths used by type i agents in flow f .
The cost for an agent of type i in gameG, selecting a path p ∈ Ai

in flow f , is ci (p, f ) =
∑
e ∈p c

i
e (fe ).

Social cost. For anNRG (not player-specific), we denote by SCi (G, f ) =∑
p∈Ai fi,pc(p, f ) the cost experienced by type i agents in flow f .

By summing over all types, we get the social cost:

SC(G, f ) =
∑
i≤m

SCi (G, f ) =
∑
i≤m

∑
p∈Pi (f )

fi,pc(p, f ) =
∑
e ∈E

ce (fe )fe

Thus the social cost only depends on the total traffic per edge.We

denote by f o (G) ∈ argminf SC(G, f ) some profile with minimal

total cost, and OPT (G) = SC(G, f o (G)) = minf SC(G, f ).

Equilibrium. A flow f for an PNRG is an equilibrium in game G
if for every agent type i , any used path p ∈ Pi (f ) and any p′ ∈ Ai ,
we have ci (p, f ) ≤ ci (p′, f ). That is, if no agent can switch to a path
with a lower cost. This provides the analogy of a Nash equilibrium

for nonatomic games.

It is known that in any NRG there is at least one equilibrium, and

that this can be reached by a simple best-response dynamic. Further,

all equilibria have the same social cost and in every equilibrium

all agents of type i experience the same cost [1, 8, 31, 38]. Player-

specific NRGs are also guaranteed to have at least one equilib-

rium [39], however, equilibrium costs may not be unique, and best-

response dynamics may not converge, except in special cases [22].

Affine routing games. In an affine NRG, all cost functions take
the form of a linear function. That is, ce (x) = aex +be for some con-

stants ae ≥ 0,be ≥ 0. The social cost can be written as SC(G, f ) =∑
e ∈E ae (fe )

2 +be fe . Pigou’s example is the special case of an affine

RSG with two resources, where c1(x) = 1 and c2(x) = ax . We

denote by GP (a) the instance where c2(x) = ax (see Fig. 1a).

The price of anarchy. Let EQ(G) be the set of equilibria in game

G. The price of anarchy (PoA) of a game is the ratio between the

social cost in the worst equilibrium in EQ(G) and the optimal social

cost [27]. Formally, PoA(G) = supf ∗∈EQ (G)
SC(G, f ∗)
OPT (G) . For example

in affine NRGs, it is known that PoA(G) ≤ 4

3
, and this bound is

attained by the Pigou example of GP (1) [38].

Smoothness. A cost function c is (λ, µ)-smooth for λ ≥ 0, µ < 1

if for any x ,x ′ ≥ 0, it holds that

c(x)x ′ ≤ λx ′c(x ′) + µxc(x). (1)

A NRG G is (λ, µ)-smooth if all cost functions in G are (λ, µ)-

smooth. For any (λ, µ)-smoothNRG, PoA(G) ≤ λ
1−µ [17, 37].Moreover,

w.l.o.g. λ = 1 (that is, for any class of cost functions there is an

optimal pair (1, µ) for some µ [16, 38]). For example, affine functions

are (1, 1
4
)-smooth, which again entails a PoA bound of

4

3
.

2.2 Serial-Parallel Width
Consider a network G = ⟨V ,E, s, t⟩.

Definition 2.1. A set of edges S ⊆ E is parallel if there is some

S ′ ⊆ E s.t. S ⊆ S ′, and S ′ is a minimal cut between s and t in the

network G.

Definition 2.2. A set of edges S ⊆ E is serial if there is a simple

directed s − t path p containing S .

Definition 2.3 (Serial-parallel Width). The serial-parallel width of

a network, SPW(G), is the size of the largest set S ⊆ E that is both

parallel and serial.

Intuitively, a serial-parallel width of k means there are at least

k non-intersecting source-target paths, and some additional path

that edge-intersects all of them.

Example 2.4. Consider the Braess network in Fig. 1b (ignore the

costs). The minimal s − t cuts are: {sa, sb}, {at ,bt}, {sa,bt} and
{sb,ab,at}. Thus the set {sa,bt} is both parallel and serial, which

means SPW(GB ) ≥ 2. The set {sa,at} is serial but not parallel; and
{sa, sb,ab} is neither. In fact, the only parallel set of size greater

than 2 is {sb,ab,at}, which is not serial, thus SPW(GB ) < 3. We

conclude that the serial-parallel width of the Braess network is 2.

Definition 2.5. For any k ≥ 2, we define the k-serial-parallel
graphGSP (k ) = ⟨V ,E, s, t⟩, whereV = {s, t ,a2, . . . ,ak ,b1, . . . ,bk−1},

and E =
⋃k−1
i=2 {(s,ai ), (ai ,bi ), (bi , t), (bi ,ai+1)} ∪ {(s,b1), (ak , t)}.

See Figure 2 for an example. The 2-serial-parallel network is the

Braess networkGB . The serial-parallel width of the k-serial-parallel
network is exactlyk , where the parallel edges are {(s,b1), (a2,b2), . . .
, (ak−1,bk−1), (ak , t)}. The network GSP (k ) was used in [5] to de-

rive examples of games with high Price of Malice, and we will use it

later in a similar way. In a companion paper, Meir and Deligkas [29]

Session 3: Game Theory 1 AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

88



(a) GP (a)

s

t

1 ax

(b) G

a b
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t

x
2 1

1

x
2

0

(c) Ĝα for α = 3

a b

s

t

9
x
2 1

1

9
x
2

0

Figure 1: (1a) Pigou’s example. (1b) An objective game G (a
quadratic variation of the Braess paradox). (1c)The game Ĝα

is the same game played by pessimistic agents with parame-
ter α = 3. The biased costs of edges with fixed costs like sb do
not change, but the biased cost on the edge sa for example is
ĉαsa (x) = csa (3x) = (3x)2 = 9x2.

proved that the serial-parallel width of acyclic networks can be

characterized completely, where SPW(G) < k if and only if GSP (k )
(or some small variants of which) is not embedded in G. For k = 1,

this entails another characterization.

Proposition 2.6 (Meir and Deligkas [29]). Let G be an acyclic
network, then SPW(G) = 1 if and only if G is series-parallel.

3 BOUNDING EXTERNALITIES
Suppose we are given a game G = ⟨G,m, (c j )j≤m , s, t ,r ⟩, and
agents play some equilibrium f ∗ of G. For any single type i , all
type i agents have the same cost in f ∗. We denote this cost by

Ci,∗ = ci (p, f ∗), where p ∈ Pi (f
∗) is an arbitrary path used by a

type i agent. Note that ri ·C
i,∗ = SCi (G, f ∗).

Our goal in this section is to boundCi,∗. A-priori, this may seem

difficult, as we do not assume anything about the types of the other

agents. However, we will show that the negative externality of the

other types can be bounded using the structural parameters of the

network G (the serial-parallel width), and even adversarial agents

cannot be much worse for i than more type i agents.
Given a game G and type i , we define a new game Gi

by set-

ting both the cost type and the demand type of all agents in G
to i . That is, Gi = ⟨G, 1,ci , si , ti , r ⟩. We also define a game G(k ) =

⟨G,m,c, s, t ,k ·r ⟩, where the demand inG is multiplied by k . Finally,

we set Gi,(k ) = (Gi )(k ), i.e., Gi,(k)
is a game where there all k · r

agents are of type i . Note that Gi,(1) = Gi
, and denote Ci = Ci,1.

Let д∗ be an equilibrium of Gi,(k)
. As Gi,(k )

is a symmetric

game, all agents have the same cost in д∗. We denote this cost by

Ci,(k ) = ci (p,д∗), where p ∈ P(д∗) is an arbitrary used path.

Finally, let G |i =
〈
V i ,Ei , si , ti

〉
be the network obtained from

G = ⟨V ,E⟩, by eliminating all edges and vertices that are not in Ai .
The following bound is our main result in this section. Prop. 3.2

shows that the bound is tight.

Theorem 3.1 (Externality theorem). Let G be any PNRG
played on a network G. If SPW(G |i ) ≤ k , then Ci,∗ ≤ Ci,(k ).

Before we prove the theorem, we explain its implications. For

k = 1 (e.g., series-parallel networks), this means that there are no

negative externalities due to type differences—the cost of type i
agents may only increase when all others are of the same type.

We note that this result (along with Prop. 3.2) strictly generalizes

Theorem 5 from [2], which is attained as a special case for k = 1 and

specific demand types (namely, agents that ignore certain edges);

and Theorem 5.7 in [33] which is attained as a special case for k = 1

and symmetric games. [15] considers a model similar to [33], and

compare the social cost with diverse population versus uniform

population with the same average bias. There is a tight technical

connection between our results and their Theorem 1, see the full

version for details. Theorem 3.1 above also implies that the Price of

Malice [5] is 0 in series-parallel networks (this is since our theorems

make no assumption on the behavior of agents of other types).

For larger values of k , Theorem 3.1 means that regardless of

what the other agents are doing, the cost to the type i agents is
never more than their equilibrium cost in a game where all agents

are of type i , and their number is multiplied by k .

Proof. Denote P = Pi (д∗) (the set of paths p ∈ Ai s.t. д
∗
p,i > 0).

Assume towards a contradiction that Ci,∗ > Ci,(k ). This means

that ci (p, f ∗) > Ci,(k ) = ci (p,д∗) for any path p ∈ P , as ci (p, f ∗) is
either Ci,∗ or higher. For any path p ∈ P ,∑

e ∈p
cie (f

∗
e ) = c

i (p, f ∗) > ci (p,д∗) =
∑
e ∈p

cie (д
∗
e ),

thus there is an edge e = ep ∈ p s.t. cie (f
∗
e ) > cie (д

∗
e ). Consider the

set EP = {ep |p ∈ P}. Since cie is monotone, this means f ∗e > д∗e for

every edge e ∈ EP .
Consider the weighted directed graph H = ⟨V , F ⟩, where F =

{e ∈ p |p ∈ P}, and the capacity (weight) of every edge e ∈ F is д∗e .

By construction, EP is a cut between si and ti in H . Let E ⊆ EP
s.t. E is a minimal cut (not necessarily of minimum size or minimum

weight), then ∑
e ∈E

f ∗e >
∑
e ∈E

д∗e ≥ k · r . (2)

The first inequality is since f ∗e > д∗e holds for every e ∈ EP and

thus for every e ∈ E. The second inequality follows from the min-

cut-max-flow theorem, since E is some si − ti cut in H , and the flow

between si , ti is exactly k · r in any valid flow of Gi,(k )
(which by

definition has a mass of k · r type i agents).
Now, as there are only r agents in G = (G,m, (ci )i≤m , s, t ,r ),

then by Eq. (2) and the pigeon-hole principle there must be some

agents in profile f ∗ using strictly more than k edges from the set E.
Choose some path used by such an agent and denote it by p′ ∈ Ai .

We define S = p′ ∩ E, thus by our selection of p′, |S | > k .

Finally, all edges of S are contained in the minimal cut E between

si , ti (thus S is parallel), and S is also contained by the simple pathp′

(thus S is serial). By definition of serial-parallel width, SPW(G |i ) ≥

|S | > k , which is a contradiction to our assumption. �

3.1 Lower bound
We say that a class of cost functions is nontrivial if it contains
all constant functions, as well as at least one strictly increasing

function.
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b1

a2

b2

a3

b3

ak−1

bk−1
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s = a1

t = bk

cs t

c sa c s
a csa

c a
b

c a
b

c a
b

cbt c b
t

c bt

c ba

c b
a

c ba

c ab

cbt

csa

c ab

Figure 2: The solid edges compose the network GSP (k ). The
edge labels are used in Prop. 3.2 and 5.4, where edges with
the same label (e.g. cab ) have the same cost function. The
dashed (s, t) edge is not part of GSP (k ) and is used only in
Prop. 5.4.

Theorem 3.1 is tight in a very strong sense: the bound cannot be

improved for any network and any nontrivial class of cost functions.

Proposition 3.2. Let anyk ≥ 2, any networkG with SPW(G) = k ,
any nontrivial class of cost functions C, and any δ > 0. There is a
game with two types G =

〈
G, (c1,c2), s, t ,r

〉
, such that c1e , c

2

e ∈ C

for all e ∈ E, and C1,∗ > C1,(k ) − δ .

Proof. We first prove for the k-Serial-Parallel network GSP (k ).

The demand type of both agents is (s, t), thus all paths from s
to t are valid strategies. We define edge costs as follows. Recall

that C contains all constant functions, and at least one strictly

increasing function c . For type i = 1, we set ciab (x) = c(x). The cost

of all other edges is 0. For type j = 2, we set c
j
ab (x) = c

j
ba (x) =

0, c
j
sa (x) = c

j
bt (x) = c(1). We set ri = ϵ (ϵ will be determined later)

and r j = 1 − ϵ .

Thus in the unique equilibrium д∗ of game Gi,(k )
, the agents (k

in total) split evenly over all k short paths, and Ci,(k ) = ciab (
k
k ) =

ciab (1) = c(1).

In the unique equilibrium f ∗ of game G, all type j agents take
the long path p = (s,b1,a2,b2, . . . ,bk−1,ak , t) since c

j (p, f ∗) = 0.

The type i agents split evenly over all k short paths , and thus each

experiences a cost of Ci,∗ = ciab (r j +
ri
k ) = c(r j +

ri
k ) > c(r j ).

Let ϵ > 0 such that c(1− ϵ) > c(1) − δ . Since c is continuous and
strictly increasing such ϵ must exist. Finally,

Ci,∗ > c(r j ) = c(1 − ϵ) > c(1) − δ = c(1) = Ci,(k ) − δ , as required.

Now, consider an arbitrary network G with SPW(G) ≥ k . Con-
sider some serial-parallel set S of size k and the path p that contains

it, and S will play the role of the ab edges above. Specifically, For

type i agents we set cie ≡ ciab ≡ c for any e ∈ S , and cie ≡ c ≡ 0 for

all other edges. For type j , we set c
j
e ≡ 0 for all e ∈ p, and c

j
e ≡ c(1)

for all other edges. It is easy to verify that Ci,∗,Ci,(k ) are the same

as for GSP (k). �

4 BIASED PRICE OF ANARCHY
Given an NRG G = ⟨G,m,c, s, t ,r ⟩ and modified cost functions

ĉie for every type i ≤ m and edge e ∈ E, we obtain a PNRG Ĝ =〈
G,m, (ĉi )i≤m , s, t ,r

〉
. We assume that agents act based on their

modified cost functions, irrespective of whether this is a rational

behavior or not. We refer to Ĝ as the biased game, where every
agent of type i experiences a cost of ĉie rather than ce . Both games

G and Ĝ have a role in our model, and we often denote the overall

setting as G = ⟨G, Ĝ⟩. The way we interpret G is that agents play

the biased game Ĝ (and thus, it is the equilibria of Ĝ that matter),

whereas their true costs are according to game G. We say that G is

uniform if all agents in Ĝ have the same cost type (same bias).

Biased Price of Anarchy. We measure the price of anarchy in a

game with biased costs by comparing the equilibria of Ĝ (denoted

by
ˆf
∗
) to the optimum of G. Formally:

BPoA(G) = BPoA(G, Ĝ) = sup

ˆf
∗
∈EQ (Ĝ)

SC(G, ˆf
∗
)

OPT (G)
. (3)

In the uniform bias case where ĉi = ĉ for all i , the game Ĝ is just

another NRG. Chen et al. [13] referred to the BPoA (when applied

to altruism) as the Robust PoA. The Price of Risk Aversion [33] and

the Deviation Ratio [26] are similar concepts to the BPoA, except

they compare
ˆf
∗
to the equilibrium of the unbiased game G.

A simple example of a biased cost is induced by pessimism, which

is one way to model risk-aversion [30]. Suppose that whenever

faced with some expected load fe on edge e , an agent takes a safety

margin by playing as if the actual load isα · fe (for some fixed private

parameter α ≥ 1). Such an agent will play as if every cost function

ce is replaced with a new cost function ĉαe , where ĉ
α
e (x) = ce (αx)

(see Fig. 1). We denote the (uniform) game where all agents play

according to (ĉαe )e ∈E by Ĝα
.

Example 4.1. In the optimal flow of the objective game G in

Fig. 1, the amount of agents taking the long path is ∼ 0.155, and

thus OPT (G) � 1.23. The equilibrium f ∗ of G is suboptimal (as

all agents take the long path s − a − b − t ), and PoA(G) � 2

1.23 =

1.626. In contrast, in the equilibrium
ˆf
∗
of Ĝα

for α = 3 (Fig. 1c),

agents divide equally among the two short paths, which leads to

BPoA(G, Ĝα ) � 1.25
1.23 = 1.016.

Interestingly, the bias of the agents on Example 4.1 somewhat

mitigates the increase in social cost that is incurred by rational

behavior.

4.1 Smoothness for Biased Costs
Our goal is to provide bounds on the biased Price of Anarchy for

a given game with biased costs ⟨G, Ĝ⟩. That each of ce and ĉie are

smooth is insufficient to provide such a bound.

Example 4.2. Consider a Pigou game with pessimistic agents

Gα = ⟨Gα , Ĝα
α ⟩ where Gα = GP (2/α) and thus Ĝα

α = GP (2). For

any α the equilibrium of Ĝα
α (and thus of Gα ) is the same: 1/2 of all

agents use each resource. However as α increases, the optimal flow

of Gα shifts more agents to the resource with variable cost, and

the optimal social cost decreases to 0. Thus the gap between the
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equilibrium cost and the optimal cost (the BPoA) goes to infinity

with α even though both of Gα , Ĝα
α are affine.

It is crucial, then, to extend the definition of smoothness to

games with biased costs in a way that takes into account both c and
ĉ . This technique has been applied before for specific modified costs,

for example nonatomic games with restricted tolls [9] and atomic

games with altruistic agents [12]. We provide a general extension.

Definition 4.3. Let λ ≥ 0, µ < 1. The function c is (λ, µ)-biased-
smooth w.r.t. biased cost function ĉ , if for any x ,x ′ ∈ R+,

c(x)x + ĉ(x)(x ′ − x) ≤ λc(x ′)x ′ + µc(x)x . (4)

It is instructive to check the familiar case where there is no bias.

Indeed, if ĉ = c , and c is (λ, µ)-smooth, then

c(x)x+ĉ(x)(x ′−x) = c(x)x+c(x)(x ′−x) = c(x)x ′ ≤ λc(x ′)x ′+µc(x)x ,

and Eq. (4) collapses to “standard” smoothness (Eq. (1)).

Recall that the PoA of a (λ, µ)-smooth game is bounded by
λ

1−µ .

This bound extends to games with biased costs that are biased-

smooth and when all agents have the same bias. This was explicitly
shown for specific biases, but we write down the general formula-

tion for completeness.

Theorem 4.4 (Bonifaci et al. [9]). Consider a uniform game
with biased costs G =

〈
G, Ĝ

〉
where every cost function ce is ( ˆλ, µ̂)-

biased smooth w.r.t. biased cost function ĉe . Let ˆf
∗
∈ EQ(Ĝ), and f

any valid flow. Then SC(G, ˆf
∗
) ≤

ˆλ
1−µ̂ SC(G, f ).

In particular, BPoA(G, Ĝ) ≤
ˆλ

1−µ̂ .

Proof. The proof extends the standard proof of PoA bounds for

nonatomic congestion games via smoothness arguments. In any

equilibrium
ˆf
∗
, the variational inequality

∑
e ĉe ( ˆf

∗
e )

ˆf ∗e ≤
∑
e ĉe ( ˆf

∗
e )fe

holds (see [17, 37]). Thus,

SC(G, ˆf
∗
) ≤ SC(G, ˆf

∗
) +

∑
e

ĉe ( ˆf
∗
e )fe −

∑
e

ĉe ( ˆf
∗
e )

ˆf ∗e

≤
∑
e
[ ˆλce (fe )fe + µ̂ce ( ˆf

∗
e )

ˆf ∗e ] =
ˆλSC(G, f ) + µ̂SC(G, ˆf

∗
).

We get the bound by reorganizing the terms. The only part that

differs from the standard smoothness is the first inequality. �

An alternative derivation of optimal tolls. We can also check that

the extension provides the right result in regard to modified costs

c̃(x) = c(x) + c ′(x)x (where c ′(x) = ∂c(x )
∂x ) that represent optimal

tolls and should lead to optimal play [7]. Let’s confirm this result

via a biased-smoothness argument.

Observation 4.5. If we set modified cost c̃(x) = c(x) + c ′(x)x ,
then cost function c is (1, 0)-biased smooth w.r.t. to c̃ .

This follows immediately from the convexity of xc(x), and af-

firms via Theorem 4.4 that BPoA(G, G̃) = 1 for any game. For ex-

ample, adding optimal tolls to the game in Fig. 1b will set c̃sa (x) =
c̃bt (x) = 3x2, and in the only equilibrium, SC(G, f ∗) = 1.23 =

OPT (G).

4.2 Bounds for Specific Biases
Theorem 4.4 lets us bound the BPoA of a population of agents with

uniform bias, and in the next sections we will prove theorems that

bound the BPoA of populations with heterogeneous biases. How-
ever, all these theorems require some explicit bounds on the biased

smoothness parameters
ˆλ and µ̂ in a given scenario (i.e., for the

specific bias and specific class of cost functions).

There are by now many such studied biases. We already intro-

duced pessimism, which depends on a single parameter α , and
where the biased cost is ĉαe (x) = ce (αx). Toll-sensitive agents [14]

have a single parameter β , and their biased cost is ĉ
β
e (x) = ce (x) +

βxc ′e (x) (meaning that marginal tolls are imposed, but agents dis-

count or over-weigh them by a factor of β). Altruist agents [13]
have exactly the same biased cost function as tolls, except that now

β should be interpreted as howmuch they care about hurting others.

In the Mean-Var risk-aversion model [32, 33], ce (x) is a distribution
over costs, and the biased cost is ĉ

γ
e (x) = E[ce (x)] + γVAR[ce (x)],

i.e., γ represents the sensitivity of agents to variance. We assume

that VAR[ce (x)] ≤ τ for some constant τ . Small error means that

c and ĉ are within a small multiplicative factor of 1 + δ from one

another (see Sec. 6 for details).

Figure 3 summarizes known biased smoothness bounds for rout-

ing games with affine cost functions (see the full version for bounds

for more general classes of cost functions). Note that from every

column in the table we can derive a BPoA bound via Theorem 4.4.

For example, for any biased game

〈
G, Ĝα 〉

where all cost functions

in G are affine, and all agents in Ĝ are pessimistic with parameter

α ≤ 2, we have BPoA(G, Ĝα ) ≤ 4

4α−α 2
. This bound, which is tight,

is illustrated in Fig. 3b. Note that for certain values of α , the BPoA
is lower than the PoA, i.e., bias steers the society to better outcomes

(we also saw this phenomenon in Example 4.1).

We note that BPoA bounds have also been derived independently

using different techniques by Nikolova and Stier-Moses [33], by

Meir and Parkes [30] and by Kleer at al. [26].

5 STRUCTURE-DEPENDENT BOUNDS
In this section, we derive a bound, tight up to a constant, on the

equilibrium cost for agents participating in a game with heteroge-

neous biases. This bound depends on their own biased-smoothness

parameters, as well as on the structure of the network. In some

cases, this also allows us to derive BPoA bounds that depend on

the average bias. Most importantly, our bounds in this section do

not assume any specific class of cost functions, and work for any

function and any bias, as long as biased smoothness holds.

5.1 Upper bound
Our primary question is whether we can get a bound on the social

cost of any equilibrium of G in terms of the smoothness parameters

of all types, and the optimal social cost.

In the next theorem and corollaries, each ce is (λ, µ)-smooth (as

per Eq. (1)), each ĉie is (λi , µi )-smooth , and ce is ( ˆλi , µ̂i )-biased-
smooth w.r.t. ĉie (as per Def. 4.3). Recall that

ri
r is the fraction of

agents of type i .

Theorem 5.1 (Smoothness theorem). Consider any game with
biased costsG =

〈
G, Ĝ

〉
where SPW(G) ≤ k . Let ˆf

∗
be an equilibrium
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(a) Maximal values of ˆλ, µ̂ under various biases

Bias Pessimism Toll-sensitivity / Altruism Risk-Aversion Small error

Params. α ≤ 2 α ≥ 2 β ≤ 1 β ≥ 1 any γ , τ any δ, ˆδ

ˆλ 1
α 2

4α−4
1

(β+1)2

4β 1 + γ τ 1 + δ

µ̂ 1 + α 2

4
− α 0

(β+1)2
4

− β 0
1

4
1 − 3

4(1+ ˆδ )

(b) BPoA(Gα )

2 4 6

1

1.5

2

α

B
P
o
A

Figure 3: Biased-smoothness bounds for affine cost functions. For a trivial bias of α = 1, β = 0, γτ = 0, or δ = ˆδ = 0, we always
get the familiar affine smoothness of ( ˆλ = 1, µ̂ = 1

4
). The bound on Altruism with β ≤ 1 is due to Chen et al. [13]. The bound on

small error is due to Prop. 6.2 applied to affine cost functions. The proofs for all other bounds are in the full version.

of Ĝ. Then for any type i ,

SCi (G, ˆf
∗
) ≤

ri
r

λλi ˆλi

(1 −
√
µ)2(1 − µi )(1 − µ̂i )

1

k
OPT (Gi,(k )).

In simple words, the theorem says that for every agent type, the

equilibrium cost to all ri agents of this type may increase (compared

to the optimal cost) by a factor that only depends on the smoothness

of cost functions, their own bias, and the structure of the network,

but not on the biases of other types. This result is bi-criteria, as

we compare to the optimum of a game with higher demand. Since

costs are increasing functions,
1

kOPT (G
i,(k )) is increasing in k .

Lemma 5.2. For every x > 0, and every type i , it holds that:

(a) ĉi (x) ≥ (1 − µ̂i )c(x);1 and (b) ĉi (x) ≤ λ ˆλi
(1−

√
µ)2 c(x).

Proof sketch. We use the biased-smoothness definition: (a)

with x ′ = 0; (b) with x ′ =
√
1/µ · x . �

Proof sketch of Theorem 5.1. Let д̂∗ be an equilibrium of Ĝi,(k )
.

Define Ĉi,∗ = ĉi (p, ˆf
∗
) for some used path p ∈ Pi ( ˆf

∗
), and Ĉi,(k ) =

ĉi (p, д̂∗) for some used path p ∈ Pi (д̂
∗). In words, Ĉi,∗, Ĉi,(k ) are

the perceived costs to agents of type i in equilibria
ˆf ∗ and д̂∗, re-

spectively. Note that they are not affected by which used path we

choose.

The next steps are: to upper bound the ratio between rk ·Ĉi,(k ) =

SC(Ĝi,(k ), д̂∗) and OPT (Gi,(k )), using Lemma 5.2(b) on every used

edge; and to lower bound Ĉi,∗ by the true cost c(p, ˆf
∗
) of path p,

using Lemma 5.2(a) on all edges of p. The most important part is

the inequality Ĉi,∗ ≤ Ĉi,(k ), which is due to Theorem 3.1 applied

to the biased game Ĝ.
Finally, recall that what we need to bound is social cost for all

type i agents in the “real game” G, which is SCi (G, ˆf
∗
). Since each

such type i agent has a cost of exactly c(p, ˆf
∗
), we now chain all

the previous inequalities to get the desired upper bound. �

5.2 Implications
Theorem 5.1 has a number of useful corollaries. Some use the fact

that for series-parallel networks k = 1 (Prop. 2.6).

Corollary 5.3. Consider any game with biased costs G =
〈
G, Ĝ

〉
where SPW(G) ≤ k . Let ˆf

∗
be an equilibrium of G. For any type i :

1
For some biases (e.g. tolls), we have a tighter inequality ĉ i (x ) ≥ c(x ) from the

definition. In such cases we can eliminate the factor 1 − µ̂ i in Theorem 5.1 and all

following corollaries.

(1) if G is affine, SCi (G, ˆf
∗
) ≤ 4

ri
r

λi ˆλi
(1−µ i )(1−µ̂ i )k ·OPT (Gi );

(2) if type i is unbiased, SCi (G, ˆf
∗
) ≤

ri
r

λ
1−µ

1

kOPT (G
i,(k )).

Moreover, if G is symmetric, then:

(3) SC(G, ˆf
∗
) ≤

(∑
i≤m

ri
r

λλi ˆλi
(1−

√
µ)2(1−µ i )(1−µ̂ i )

)
1

kOPT (G
(k ));

(4) if G is affine, BPoA(G) ≤ O(1)k
∑
i≤m

ri
r

ˆλi
1−µ̂ i ;

(5) If G is series-parallel, then BPoA(G) ≤ O (1)
∑
i≤m

ri
r

ˆλi
1−µ̂ i

.

These corollaries provide us with more explicit bounds. In par-

ticular: (1) for affine cost functions we can get rid of the bi-criteria

result since the optimal social cost is linear in the demand (more

generally, for polynomials of degree d the factor becomes O(kd )).
(2) entails that in a setting where most agents are unbiased and

there is only a small fraction of adversarial agents (as in [5]), the

damage to the unbiased agents is limited. (3)-(5) show that the

equilibrium social cost in symmetric games depends on the average
bias over all agents: each type of biased agents can only increase

the social cost by a factor that is proportional to their mass (and

also affected by the serial-parallel width of the network). Kleer at

al. [26] proved a result similar in spirit to our Corollary 5.3(5), but

restricted to toll-sensitivity.

5.3 Lower Bounds
Our main theorems both rely on the restricted structure of the

underlying network. Prop. 3.2 already shows the necessity of this

restriction when some agents behave adversarially.

We next show that the neither smoothness parameters ( ˆλi , µ̂i )
nor the structural parameter k = SPW(G) can be relaxed in Theo-

rem 5.1 and in its corollaries.

Proposition 5.4. Let k ≥ 2, any smoothness parameters ( ˆλi , µ̂i ),
and any ri <

1

2
. There is an affine symmetric game with biases

G = ⟨G, Ĝ⟩ with SPW(G) = k , such that in the unique equilibrium
ˆf
∗
of Ĝ, SCi (G, ˆf

∗
) ≥ Ω(1)

ˆλi
1−µ̂ i k · SCi (G, f o ).

Proof sketch. See Fig. 2 for GSP (k ) with one additional edge

est . We define the real costs as follows: csa = cbt = cba ≡ 0, cst ≡
q
2
, cab (x) = x , where q =

ˆλi
1−µ̂ i . In the flow of G where all agents

split evenly, the cost isCo = 1

k . In the biased game, ĉiab (x) = qx , and

all other agents prefer the long path. Thus in equilibrium
ˆf
∗
all type

i agents use edge est for a cost of
q
2
≥

ˆλi
2(1−µ̂ i ) ≥

ˆλi
2(1−µ̂ i )k ·Co . �
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Since we only used affine cost functions, the bounds in both

Theorem 5.1 and Cor. 5.3(1) are tight up to a constant. Also, since

the network used in the proof is embedded in GSP (k+1), and thus

embedded in any acyclic network with SPW(G) > k (due to [29]),

the example in Prop. 5.4 can be constructed for any acyclic network
G with SPW(G) ≥ k + 1.

6 STRUCTURE-INDEPENDENT BOUNDS
In this section, we leverage known PoA bounds in routing games

with player-specific costs [22] to obtain BPoA bounds in biased

games with heterogeneous agents. These are bounds that do not

depend on the network structure, but only on the cost functions

and agents’ biases.

The bounds in this section are typically worse than those in

Section 5, as they depend on the worst bias rather than the average

bias, and this dependency is polynomial rather than linear. Yet,

these bounds hold regardless of network structure.

For two cost functions c, ĉ and r > 0, denote by ∆(c, ĉ, r ) =

supx ∈[0,r ]
c(x )
ĉ(x ) . Let Ψ(G) = maxi, j≤m maxe ∈E ∆(cie , c

j
e , r ).

Theorem 6.1 (Gairing et al. [22]). Consider any PNRG G =〈
G, (ci )i≤m ,r

〉
where ci are polynomials of degree d for all i . Then

PoA(G) ≤ (d + 1) · Ψ(G)d .2

Intuitively, the PoA is low if for each edge e and any x , all func-
tions (cie (x))i≤m attain similar values. We can use this PoA bound

to prove a similar BPoA bound that is independent of the network

structure. Given a game with biased costs G =
〈
G, Ĝ

〉
, let:

• Φ(G) = maxi≤m maxe ∈E ∆(ĉie , ce , r );
• Φ(G) = maxi≤m maxe ∈E ∆(ce , ĉ

i
e , r );

• and Ψ(G) = Ψ(Ĝ).

We first observe that ∆ is tightly related to biased-smoothness, as

biased-smoothness bounds entail bounds on ∆, and vice versa.

Proposition 6.2. Consider c, ĉ such that c is (λ, µ)-smooth,∆(c, ĉ, r ) ≤
1 + δ , and ∆(ĉ, c, r ) ≤ 1 + ˆδ for some δ , ˆδ ≥ 0 and any r > 0. Then c

is
(
(1 + δ )λ,

µ+ ˆδ
1+ ˆδ

)
-biased-smooth w.r.t. ĉ .

Proposition 6.3. Consider c, ĉ such that c is (λ, µ)-smooth, and
( ˆλ, µ̂)-biased smooth w.r.t. ĉ . Then for any r > 0 ∆(c, ĉ, r ) ≤ 1

1−µ̂ ;

∆(ĉ, c, r ) ≤ λ
(1−

√
µ)2

ˆλ. Also, if c is a polynomial of degree at most d ,

∆(ĉ, c, r ) ≤ (d + 1) · e · ˆλ, where e is the natural logarithm base.

Proposition 6.3 follows from Lemma 5.2 and from the smoothness

of polynomial functions. Next, we derive a BPoA bound. Due to

tightness results on the PoA [22], we cannot hope to significantly

improve the bound in this approach.

Theorem 6.4. Consider any game G =
〈
G, Ĝ

〉
where all of ĉie are

polynomials of degree atmostd . Then BPoA(G) ≤ (d+1)(Φ(G)Φ(G))d+1.

Finally, we can combine Proposition 6.3 and Theorem 6.4 to ob-

tain a BPoA bound that depends only on the smoothness parameters

of the “worst” type:

2
The tight bound (Thm. 4.10 in Gairing et al. [22]) is better by a factor of up to (d + 1).

Corollary 6.5. Consider any game with biased costs G = ⟨G, Ĝ⟩
where for all i ≤ m and e ∈ E: (a) ce , ĉie are polynomials of degree at
most d ; and (b) ce is ( ˆλ, µ̂)-biased smooth w.r.t. ĉie .

Then BPoA(G) ≤ (d + 1)d+2ed+1
(

ˆλ
1−µ̂

)d+1
.

7 CONCLUSION AND FUTUREWORK
We have considered strategic settings in which participants are

making routing decisions based on individually perceived costs.

From the perspective of a system analyst who considers the objec-

tive costs, the agents’ behavior deviates from optimal self-interested

play. Whether these deviations come from a cognitive limitation,

subjective preferences, or external influence such as tolls, it is im-

portant to understand how the equilibria of the game are affected.

Our work is the first to provide (Biased) PoA bounds for popula-

tions with heterogeneous arbitrary biases, and the first to consider

heterogeneous biases in general networks. Our main results (Sec. 3

and 5) bound the equilibrium cost of each agent type separately,

based only on their own biases and on the structure of the network.

When considering the entire population, this entails a bi-criteria

bound on the social cost (in some cases can be written as a Biased

PoA bound) that depends on the average bias in the population.

These results can help estimate the worst case effect when the exact

structure of the population is not known in advance: one only has

to know the smoothness bounds of each type and a bound on the

quantity of each type.

Since in nonatomic routing games all mixed and correlated equi-

libria have the same social cost anyway [8], smoothness does not

add more “robustness,” and is thus perhaps considered less interest-

ing in such games. Our results show that smoothness is useful for

a different kind of robustness, namely to heterogeneous biases.

An additional result (Sec. 6) relies on the PoA of the heteroge-

neous “wrong” game, and while it does not require the network to

have a particular structure, it provides bounds stated in terms of

the worst bias in the population, and only applies for polynomial

cost functions. We can think of these results as bounding the nega-

tive externalities of each type on all others, whereas the results in
Sections 3 and 5 bound the externalities that all others may inflict

on agents of type i .
We hope that our results and techniques will inspire further

progress in understanding both the effect of network topology and

the effect of bounded rationality on equilibria.

Some challenges are to derive BPoA bounds that only depend on

the average bias (i.e., not on the network structure); and bounds on

the negative externality that become negligible for a small amount

of adversarial agents.

Biased smoothness can also be applied to obtain robust PoA

bounds in atomic congestion games and other normal form games

(i.e. for mixed and correlated equilibria), by extending the standard

smoothness definition as in [13]. An important open question is

whether atomic games with heterogeneous biases can be similarly

analyzed, by showing biased-smoothness independently for each

type of agent.
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