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ABSTRACT
Enabling a robot to properly interact with users plays a key role

in the effective deployment of robotic platforms in domestic envi-

ronments. Robots must be able to rely on interaction to improve

their behaviour and adaptively understand their operational world.

Semantic mapping is the task of building a representation of the en-

vironment, that can be enhanced through interaction with the user.

In this task, a proper and effective acquisition of semantic attributes

of targeted entities is essential for the task accomplishment itself.

In this paper, we focus on the problem of learning dialogue policies

to support semantic attribute acquisition, so that the effort required

by humans in providing knowledge to the robot through dialogue

is minimized. To this end, we design our Dialogue Manager as a

multi-objective Markov Decision Process, solving the optimisation

problem through Reinforcement Learning. The Dialogue Manager

interfaces with an online incremental visual classifier, based on a

Load-Balancing Self-Organizing Incremental Neural Network (LB-

SOINN). Experiments in a simulated scenario show the effectiveness

of the proposed solution, suggesting that perceptual information

can be properly exploited to reduce human tutoring cost. Moreover,

a dialogue policy trained on a small amount of data generalises well

to larger datasets, and so the proposed online scheme, as well as

the real-time nature of the processing, are suited for an extensive

deployment in real scenarios. To this end, this paper provides a

demonstration of the complete system on a real robot.
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1 INTRODUCTION
One of the main steps towards the deployment of robotic platforms

in real scenarios concerns their capability to reference objects and

locations within the operational environment. Even though re-

search on visual perception is pushing forward the performance

of such systems, they still cannot be considered reliable enough

to be used without human validation. Moreover, a purely visual

perception system is often not able to provide a complete seman-

tic description of the entities populating the environment and its

output is often limited to feature representation about the world.

In addition, in real deployments, a robot may need to learn id-

iosyncratic language used by different individuals, so that word

meanings may need to be learnt and adapted through interaction.

Semantic mapping is a process that aims at building a representa-

Figure 1: The robot used in the real scenario demonstration

tion of the robot’s world that integrates perceptual information, i.e.,

derived from the robot’s sensors, with a semantic description of

the world [16]. Hence, in semantic mapping, a major role is played

by the process of semantic attribute acquisition. In recent years,

several orthogonal approaches to semantic mapping have been

proposed. A semantic map can be built by relying on hand-crafted

ontologies and using traditional AI reasoning techniques, unable to

catch uncertainty inherently connected with semantic information

coming from robot sensory systems [3, 17]. The resulting map will

be a static representation of the expert’s perception of the world,

preventing an effective adaptation to the end-user.
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Other techniques [2, 14, 25] explore semantic mapping as a pro-

cess where the purely automatic interpretation of perceptual out-

comes is exploited to semantically enrich a geometric map. In this

setting, no human effort is required and the process is performed

completely autonomously. On the other hand, a detailed structure

of the semantic properties is hard to acquire, some useful seman-

tic information could be lost, and information cannot be gained

through interaction.

Few approaches consider the human as part of the loop, by ex-

ploiting interactions in a human-robot collaboration setting [5, 19].

In this case, the user is an instructor (or tutor), that helps the robot

(or learner) to acquire the required knowledge about the environ-

ment. These approaches are affected by tutoring costs, as the user

becomes a main source of knowledge for the robot, and their annoy-

ance should be minimised. In fact, such online incremental learning

of the targeted semantic attributes can be tedious for the tutor,

whenever the robot does not exploit the acquired information to

improve the interaction experience and minimise the tutoring cost.

Moreover, at some point, we may want the robot to autonomously

acquire new knowledge, and become more and more independent

of the human, as the learning process proceeds.

In this paper we propose an interactive system for the acquisi-

tion of semantic properties of objects along with their synthetic

visual representation. In the proposed approach, the interaction

becomes more and more efficient over time, as the tutoring ef-

fort is quickly minimised. The dialogue policy is based on a multi-

objective Markov Decision Process (MDP), while the optimisation

problem is solved through Reinforcement Learning (RL). To this

end, in line with [26], we argue that such cost-effective teaching

can be obtained by exploiting the increasing reliability of the visual

classifiers that are learned incrementally. The latter is realised by

following the architecture proposed in [18], enabling an incremen-

tal online learning of object classes. The process is performed by

combining a pre-trained Convolutional Neural Network (CNN) with

a Self-Organizing Incremental Neural Network (SOINN). Images ac-

quired by the robot’s depth camera are preprocessed and fed to the

CNN, which maps them onto a lower-dimensional feature space.

With every new input feature vector, the SOINN is able to adapt in

order to reflect the underlying topology of the data distribution. The

whole process can be performed in real time. Hence, we hypothe-

sise that, when the perceptual information is properly exploited,

the Dialogue Manager (DM) is able to minimise the tutoring cost,

resulting in a less tedious interactive mapping process.

We tested our hypothesis through several empirical investiga-

tions, whose outcomes show that the resulting adaptive dialogue

strategy is able to find an optimal trade-off between the classifier

accuracy and the tutoring cost. Results are encouraging for the de-

ployment of the system in real scenarios: the experiments showed

that the policies can be successfully trained on a small dataset and

yet, generalise well to perform properly on larger ones.

The remainder of the paper is organised as follows. In Section 2,

we survey related work on approaches for visual attribute learning.

Section 3 provides a description of the proposed modular system,

focusing on the visual classifier and the dialogue strategy acquisi-

tion process. The experimental setting to validate our hypothesis is

presented in Section 4. In Section 5 the results are analysed, while

Section 7 draws some conclusions and discusses future work.

2 RELATEDWORK
In recent years, several systems have aimed at mapping the op-

erational environment of a robot with semantic attachments. Ac-

cording to the definition provided in [16], the resulting “semantic

map” is a representation of the environment that couples the spatial

structure with semantic information concerning locations and ob-

jects therein. In this respect, such a process is often carried out by

associating symbols to physical elements of the environment [7].

Several works treat the problem as a fully automated process.

In [2] the authors focussed on the recognition of rooms by extract-

ing “valuable” attributes. In [1, 4, 6, 13] topological maps are built

upon the metric ones, enabling the robot to perform an “aware”

navigation of the environment. With the recent advances in ob-

ject recognition and categorisation, several approaches exploiting

visual features have been proposed [14, 25].

A few approaches rely on the presence of a human in the learning

loop, acting as a tutor who instructs the robot to learn the envi-

ronment. In fact, fully automated semantic mapping systems are

error-prone and do not provide the wide-range knowledge that can

be acquired by interacting with a user through speech. For example,

in [15] the authors rely on a multivariate probabilistic model to

associate semantic labels to spatial regions and on the support of

the user in selecting the correct one. Conversely, in [11] clarifica-

tion dialogues are used to support the mapping process. Such an

approach is further extended in [27] to create conceptual represen-

tations of indoor environments which are used in human-robot

dialogue. More recently, in [5] a human-augmented semantic map-

ping system is presented. The authors focus on an online setting,

where the semantics of objects is acquired incrementally through

long-term interactions with the user. The dialogue policy is imple-

mented beforehand through Petri Net Plans (PNPs) and the robot

is not enabled to infer semantic properties of new objects from the

acquired knowledge. In [23], the authors propose an approach for

the opportunistic acquisition of objects descriptors (or attributes)

relying on the users’ feedback. Though the task is similar, our sys-

tem focuses mainly on the minimisation of the tutoring cost during

the teaching activity.

This paper makes several contributions. First, in contrast with

most of the previous research, the Dialogue Manager driving the

semantic attribute learning is entirely data-driven. This feature is

essential to enable the deployment and optimization of a robotic

platform in heterogeneous environments, interacting with different

users speaking different languages. In addition, our approach ex-

ploits an incremental object classifier to acquire visual information

about the objects. Such knowledge is then used to automatically

recognise new objects, supporting a quick acquisition of the se-

mantic map. The dialogue interactions benefit from an analysis of

the visual classifier reliability, as this information is exploited to

determine whether to ask the human tutor a clarification question

or not. Finally, the acquisition of the policies can be performed on

a very small set of examples, while still showing good performance

when tested on larger datasets. This feature enables the deployment

of our approach in a long-term mapping scenario. Moreover, the

policies may be further improved while the system is operating

and, hence, adapted to the specific user.
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Table 1: Dialogue Examples from the synthetic DialogueCol-
lection: (a) the user takes the initiative (b) the learner takes
the initiative.

(a) Tutor Initiative (b) Learner Initiative

T(utor): what is this object?

L(earner): I have no idea.

T: a shampoo bottle.

L: okay, shampoo bottle.

T: good job.

L: a shampoo bottle, am I right?

T: no, it is not.

L: so what is it?

T: an apple.

L: okay, got it.

3 AN INCREMENTAL APPROACH TO
SEMANTIC ATTRIBUTE LEARNING

Semantic mapping is a complex task that involves several sub-

problems, such as representation of the semantic properties, route

planning, interaction management, and sensing. In this work, we

focus on two of them: (i) the management of the dialogue for the

acquisition of semantic properties, and (ii) the memorization of

synthetic representations of the object that are used to compose

the semantic map. To this end, we describe hereafter the proposed

interactive multi-modal system in support of learning semantic

maps (e.g., visual classes) through natural conversational interac-

tion with human tutors. Table 1 shows examples of possible inter-

actions where tutor and learner interactively exchange information

about the category of a particular visual object.

3.1 Overall System Architecture
In this section, we introduce the proposed system architecture (see

Fig. 2), which loosely follows that of [26] and employs two essential

modules: a Vision Module and a Dialogue Module.

Vision Module. The vision module is based on the system pro-

posed in [18], which accomplishes incremental online learning by

combining an adapted version of a Load-Balancing Self-Organizing

Incremental Neural Network (LB-SOINN) [28] and a pre-trained

Convolutional Neural Network (CNN) based on the architecture

proposed in [10]. Through this combination, we can leverage the

great representational power of deep CNNs while retaining the abil-

ity to adapt to novel input incrementally provided by the LB-SOINN.

The latter is a fundamental requirement for robots operating in real

and dynamic environments, as it is impossible to anticipate all the

possible situations the robot may encounter during its operation.

The system consists of two channels, processing RGB and depth

images respectively. Both channels resize and rescale the input im-

ages to the format expected by the CNN. The depth channel further

processes the depth image to produce a colourized surface normals

image. Once the images have been preprocessed, they are fed into

identical pre-trained CNNs that output the corresponding feature

vectors. These feature vectors are then combined by computing

their average: the result is used to adapt and grow the LB-SOINN.

Effectively, this module allows us to ground noun words such as “ap-

ple” and “shampoo”, which are used as parameters of the Dialogue

Acts in the dialogue module, onto their visual representations.

Dialogue Module. This module relies on a classical architecture

for dialogue systems, composed of Dialogue Management (DM)

and Natural Language Understanding (NLU), as well as Generation

(NLG) components. These components interact via Dialogue Act

representations [21] (e.g., in f orm(obj = apple ), ask (object )). The
Natural Language Understanding component processes human tu-

tor utterances by extracting a sequence of key patterns, slots and

values, and then transforming them into dialogue-act representa-

tions, following a list of hand-crafted rules. The NLG component

makes use of a template-based approach that chooses a suitable

learner utterance for a specific dialogue act, according to the sta-

tistical distribution of utterance templates from synthetic dialogue

examples. Finally, the DM component is implemented with an opti-

mised learning policy using Reinforcement Learning (see Sect 3.3).

This optimised policy is trained to: (i) process Natural Language

conversations with human partners, and (ii) achieve a better trade-

off between classification performance and the cost incurred by the

tutor ,e.g., time and effort, in an interactive learning process.

3.2 Visual Object Classification
As mentioned in Section 3.1, one of the main components of our

vision module is the LB-SOINN. This method is based on the Self-

Organizing Map [9] and is able to learn the underlying topology

of the data distribution, without the need to specify the number

of classes in advance. Each node in the network has an associated

weight which lives in the feature space. Every time a new image

is input to the vision module, the LB-SOINN algorithm assesses

whether a new node has to be added to the network, based on the

feature vector similarity to all the other nodes’ associated weights. If

no node is added, then the closest node and its neighbours’ weights

are updated, and the two closest nodes are joined by an edge. In

this manner, the structure of the network evolves to reflect how

the data is distributed in the feature space.

In this work, we focus on object classification as opposed to

image classification. To this end, we consider the contributions

of all the images corresponding to the same object in order to

produce a classification result. This procedure is consistent with

a real scenario, where a robot may look at the same object from

different views and infer what it is, based on the consensus achieved

from the results for every individual view.

In order to classify each image, we compute a confidence score

as the average inverse distance between its feature vector and the

weights of every node belonging to a given class, i.e., the closest

the feature vector is to the nodes corresponding to the given class,

the bigger the score that class will receive. We repeat this for every

class in the network and then normalise the resulting confidence

scores, such that they resemble probabilities, i.e., their sum is equal

to 1. Hence, the class that receives the highest normalised score is

chosen as the classification result for that image. The normalised

confidence score is computed as follows:

confi =
1

σ

1

ni

ni∑
j=1

1

D (p,qj )
(1)

where ni is the number of nodes for the ith class, σ is the normal-

izing factor and D (p,qj ) is the distance between the feature vector

p and the weight qj corresponding to the jth node of the ith class.
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Figure 2: Overview of system architecture for semantic attributes learning

The normalizing factor is simply:

σ =
N∑
i=1

*.
,

1

ni

ni∑
j=1

1

D (p,qj )
+/
-

(2)

where N is the number of classes already learned. For the computa-

tion of D (p,qj ), we follow the procedure proposed by [28], where

they use a combination of Euclidean and cosine distances affected

by a weight that is a function of the dimensionality of the feature

vector, i.e., for low-dimensional features, the Euclidean distance

will be dominant whereas for high-dimensional features, the cosine

distance will be dominant:

D (p,qj ) =
1

ηd

EUpqj − EUmin

1 + EUmax − EUmin
+

+

(
1 −

1

ηd

)
COpqj −COmin

1 +COmax −COmin

(3)

where d is the dimension of the feature vector, η = 1.001 is a

pre-defined parameter, EUpqj is the Euclidean distance between

p and qj , EUmax and EUmin are the maximum and minimum Eu-

clidean distances between any two nodes in the network respec-

tively, andCOpqj ,COmax andCOmin are the equivalent quantities

corresponding to the cosine distance measure.

Finally, we adopt a voting schema over all the images of the

object, normalising the number of images classified for any given

class over the total number of images. The final result of an ob-

ject classification is defined as the class that obtains the highest

consensus among all the images, i.e., highest “probability”.

3.3 An Adaptive Dialogue Strategy for
Interactive Mapping Tasks

A comprehensive teachable system should learn as autonomously

as possible, rather than involving the human tutor too frequently

Skočaj et al. [20]. Accordingly, as pointed out in [26], an intelligent

agent should provide the capability of finding an optimised trade-off

between the goal achievement and the tutoring cost in a particular

task. In other words, given the visual mapping task, the agent should

be able to learn the visual scene accurately, and with little effort

from human instructors. In order to optimise the trade-off, the

interactive mapping problem can be formulated into two sub-tasks,

i.e., when and how to learn the mappings, which are trained using

Reinforcement Learning with a multi-objective Markov Decision

Process (MDP), consisting of two sub-MDPs. The robot behaviour

is characterised by the following sequence of steps: (i) a visual

instance is shown to the agent/learner; (ii) based on the outcome of

the instance classification, i.e., a confidence score for each category

acquired so far, the agent/learner determines when and how to ask

questions; (iii) the dialogue continues with a response from the user.

The output of the first MDP (adaptive threshold) will be applied to

determine the initial state of the second MDP (dialogue control), see
more details as below:

3.3.1 When to Learn. In the first MDP, the policy is required to

learn when the learner needs to acquire useful information from

human tutors, where a form of active learning is taking place: the

agent learns to ask questions about particular objects onlywhenever

it is uncertain about its own predictions. Following work from [26],

we adapt a positive confidence threshold, which determines when

the learner can trust its visual predictions. This threshold plays

an essential role in achieving an optimal trade-off between the

classification performance and the tutoring cost, since the learner’s

behaviour (e.g., whether to seek feedback from the tutor or not) is

dependent on this threshold.

Here, we learn an adaptive strategy that aims at maximising the

overall performance by properly adjusting the confidence threshold

in the range from 0.9 to 1
1
.

1
Here, we set the confidence threshold within a small range, because the output of the

classifier never dropped below 0.9 through our experiment.
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State Space. The adaptive-threshold MDP operates on a 2D state

space, consisting of curThreshold and levelRel. curThreshold repre-

sents the positive threshold the agent is currently applying. levelRel
is applied to locally measure the reliability of the visual classifier on

a single learning step. To this end, the total number of instances (ob-

jects) is clustered into bins, with each bin containing nB instances

and representing a single learning step. Then, the Local Accuracy

(Accloc , see Section 4.1) of classifiers is scaled between −1 to 1

(Acc
[−1,1]
loc ) and levelRel is discretised into three levels as below:

levelRel =




1, if Acc
[−1,1]
loc > 0

0, else if Acc
[−1,1]
loc = 0

−1, otherwise

(4)

Action Selection. Based on the previous performance of the clas-

sifier on a single learning step, the model updates its state space by

either increasing/decreasing the current confidence threshold by

0.02, or keeping it at the same value.

Reward Function. Here, we introduce a local reward function

Rloc for the learning task that is proportional to the local accuracy

of the visual classifier, computed over each bin ofnB instances (more

details about the local accuracy in Section 4.1). We rescale the local

accuracy to be in the range [−1, 1] to evaluate the effectiveness of

the selected action. The systemwill reward the action if the rescaled

accuracy is greater than 0, otherwise, the action is penalised.

Each training episode terminates when the agent passes through

all instances in the visual dataset.

3.3.2 How to Learn Using Dialogue. The second MDP aims at

acquiring useful information through interaction with human part-

ners. For example, if the learner has a low confidence on its pre-

dictions, i.e., the confidence score is lower than 0.5, it may ask

Wh-questions to acquire correct labels directly from the tutor (e.g.,

“what is this object?”). Otherwise, the learner should be able to make

a guess about the label by asking a Yes-No-question (e.g., “is this
an apple?”). In addition, the learner is also required to produce

coherent conversations with a human partner, i.e., understand par-

ticular dialogue intents from humans and properly produce the

next responses. In order to achieve these goals, the Reinforcement

Learning process and the correspondingMDP have been configured

as follows:

State Space. The dialogue policy initialises a 3D state space, de-

fined by cStatus, preDAts and preContext. cStatus is applied to repre-
sent the current status of predictions about a particular object. The

status level is determined by the confidence score (conf ) and the

positive threshold (curThreshold) described above (see Equation 5);

preDAts represents the actions the tutor performed in the previous

dialogue turn; preContext represents whether a visual category was
mentioned in the dialogue history and what category it is. In our

paper, as we only take into account the class name of the visual

object, preContext may only contain one out of two values, i.e.,

unmentioned (U ) and object class (C).

cStatus =




2, if conf > curThreshold
1, else if 0.5 ≥ conf ≥ curThreshold
0, otherwise

(5)

Action Selection. The actions are chosen based on the statistics

of task-oriented dialogue actions occurring in a set of hand-crafted

dialogue examples (see Table 1), including Wh-questions, Polar-

questions, DoNotKnow, Acknowledgement, as well as Listen-

ing.

Reward signal. The reward signal is defined by a global function

Rglob, which takes into account the cumulative cost by the tutor

(Cost, defined in Section 4.1) in a single conversation and penalties

(Penal) for inappropriate actions performed by the learner (e.g., if

the learner does not answer a question).

Rglob = 10 − Cost − Penal (6)

Each single dialogue represents an episode and is terminated

when the class name is either taught by a human tutor or inferred

through a sufficiently high confidence score. The SARSA algo-

rithm [22] is used to learn the adaptive dialogue policy, with a

greedy exploration rate of 0.1 and a discount factor of 1.

4 EXPERIMENTAL SETUP
The experimental setup aims at simulating a semantic mapping

task, where the robot navigates throughout the environment to

acquire semantic properties of the objects populating its world.

Notice that while the problems of planning and navigation are out

of the scope of this paper, we focus on the category (or label) of

objects (e.g., apple, calculator, . . . ). However, the approach can

be easily extended for the acquisition of other properties, such as

colour and shape.
Figure 3 shows the GUI used to visualise the simulated environ-

ment. The robot navigates the assigned area, seeking for unknown

objects (red squares in the grid). Once an item is reached, the visual

classifier is fed with with images corresponding to the current in-

stance (e.g., on the bottom right box in Fig. 3). The confidence score

provided by the visual classifier is then used for deciding whether

to assign the predicted label (without an interaction with the user),

or to ask a Polar/Wh-question, according to the current threshold

level. At the end of the interaction, the object is finally labelled

with the category provided by the user
2
, and the corresponding

images are used to train the visual classifier. It is worth noting that

the classifier is updated only whenever the label is provided by

the user. That is, when the agent/learner trusts the classifier, we

assume that that specific instance is already well represented in

the model. Such a conservative approach aims at avoiding possible

noise introduced into the net when unnecessary images are learnt.

4.1 Evaluation Metrics
To evaluate the trained learning/dialogue strategy, we make use of

a measure metric based on the PARADISE evaluation framework by

[24] for task-oriented dialogue systems – the overall performance

of a robot takes into account both the task success (classification

accuracy) and cost (the tutoring effort within dialogues). The system

in the experiment is required to achieve and retain a better trade-off

between the accuracy and the cost through an interactive learning

period. More details about these metrics are described below.

2
We do not deal with lexical variation; categories are identified through a vocabulary.
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Figure 3: The simulated environment for interactive semantic attributes acquisition. The left block shows the labels available
within the dataset; the grid map in the centre emulates the environment in which the robot is moving, where green cells refer
to correctly recognized objects, red cells are the objects that have not already been discovered, while the orange cell is the
target object; on the right, the dialogue flow and the images of the target object are shown

Local Accuracy. In contrast with [26], instead of using a distinct

test set, we measure the learning performance of the agent using

visual instances which may have been seen in previous learning

steps. Hence, the system is able to self-test on objects that it has

seen before, as its learning progresses. To this respect, the Local
Accuracy (Accloc ) of the i-th bin is computed at the end of the bin

using the initial predictions obtained for each instance during the

processing of the bin.

𝐴𝑐𝑐𝑙𝑜𝑐 = 2
7⁄ = .29 𝐴𝑐𝑐%&' = 4

7⁄ = .57

SOINNi SOINNi+1

lea
rni
ng

SOINNi-1

classification

Figure 4: Local Accuracy evaluation

Operationally, as sketched in Figure 4, for each instance in the

dataset, we get the prediction from the visual classifier and if the

prediction is correct, the True Positives (TP) are increased by 1,

otherwise the instance is learnt. When the nB instances of the bin

have been processed, we evaluate the Local Accuracy as follows:

Accloc =
TP

nB
(7)

and reset the TP. Hence, the evaluation score obtained after each

bin is not biased by the training data. In fact, the prediction of each

object is made with the model acquired so far and the object is

learnt only if the prediction is wrong.

Cumulative Tutoring Cost. Intuitively, cost computation is based

on any user or agent dialogue turns. Skocaj et al. [20] pointed out

that a comprehensive systemmust be able to learn as autonomously

as possible, rather than involving the tutor too frequently.

In this paper, we take into account a cumulative tutoring cost (or

simply Cost), which is only applied to reflect the effort needed by a

human tutor in interacting with the system/robot. In the literature,

a wide range of cost measures have been proposed and exploited.

Given the learning task, there are four possible costs
3
that the tutor

might incur, as defined below:

• Cinf (Inform) refers to the cost of the tutor providing in-

formation on the name of the specific visual instance (e.g.,

“this is a shampoo bottle”); it may be either 5 or 0, depending

on whether the dialogue act is present or not within the

sentence;

• Cack (Acknowledgement) is the cost for a simple confirmation

(like “yes”, “right”); it is set to be 0.5;

• Cr e ject (Rejection) is the cost for a simple rejection (such as

“no”, “it is wrong”); it is set to be 0.5;

• Ccr t (Correction) is the cost of correction of a statement/polar

question (e.g., “no, it is an apple”); it is set to be either 5 or 0.

In this paper, the cumulative cost is considered as sums of these

action-costs across all dialogues (i.e., a single dialogue is considered

as talking about a single visual instance).

Cost =
∑
i=0

Ciinf +
∑
j=0

C
j
ack +

∑
k=0

Ckre ject +
∑
l=0

Clcr t (8)

4.2 Visual Object Dataset
To evaluate our proposed system, we used the Washington RGB-D

Object Dataset [12]. This dataset was acquired using a Kinect-like

sensor and consists of 300 household objects organized into 51

3
We also tested the cost function with other values (see details in [? ? ? ]). Although
somewhat arbitrary, this does not affect the overall performance, as long as there is a

significant difference between “inform” and “acknowledge/rejection”.
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categories. For each object, video sequences of full 360
◦
rotations at

three different heights of the sensor were acquired. In addition, the

dataset is provided with cropped versions of the objects and binary

masks which aid in pre-processing the images. The particular nature

of this dataset, i.e., the sensor used and the acquisition setup, allows

us to simulate a real interactive scenario, where the robot is able to

obtain different views of the same object in a sequential manner. In

this work, we assume that modules for detecting and segmenting

the objects would be available in a full system implemented on a

robotic platform and thus, fall outside the scope of our methodology.

In order to make our analysis even more realistic, we further

reduced the size of the dataset by considering only 120 random

images per object and we randomly shuffled them on a per object

basis. This resembles a less organized way of collecting the data,

as opposed to the more structured protocol used in [12]. Then, we

trained on a random subset that accounted for 50% of the images

and tested on a random subset that accounted for 25% of the images.

This allowed us to speed up the learning process as well as to

increase the degree of overlap between train and test subsets. The

latter aims to account for the fact that in a particular environment,

the robot may run into the same objects several times and even

though it may see them from different perspectives, chances are

that it will get similar views some of the times.

4.3 User Simulation for the Learning Task
In order to train and evaluate the dialogue agent, we built a user

simulation that resembles human behaviours on the task of teach-

ing visual objects using a generic n-gram framework. The simulated

tutor is trained on a collection of synthetic dialogues (see dialogue

examples in Table 1), where the user’s action (e.g., Inform, Nego-

tiation, Rejects, . . . ) is predicted probabilistically. This simulation

framework takes as input the sequence of N most recent words in

the dialogue, as well as some optional additional conditions, and

then outputs the next user response on multiple levels as required

(e.g., full utterance, a sequence of dialogue actions, or even a se-

quence of single word outputs for incremental dialogue behaviour).

In this paper, we created an action-based user model that predicts

the next user response in a sequence of dialogue actions. The simu-

lator then produces a full utterance by following the statistics of

utterance templates for each predicted action.

5 RESULTS
We run several empirical evaluations aiming to determine the ef-

fectiveness of the adaptive-threshold MDP and the applicability of

the approach in real scenarios.

The policies have been trained for 5000 episodes on a small

amount of data within this experiment, only including 48 instances,

distributed over 10 classes randomly drawn from the Washington

RGB-D Object Dataset. In order to clearly visualise the trend of

overall performance of the learning agent, we group these instances

in bins with nB = 8 objects each. Table 2 provides example interac-

tions between the learned RL agent and the simulated user, showing

how the learner, in order to minimise the cost, favours taking the

initiative. Afterwards, we tested the policies as follows. In order

to prove the effectiveness of the policies over unseen objects, we

tested them on a dataset of 25 classes (143 instances), where the

Table 2: Example conversations between the RL-based
Learning Agent (L) and the Simulated User (T): (a) Learner
with low confidence (b) Learner with higher confidence.

Dialogue Example (a) Dialogue Example (b)

L: what is this object called?

T: an apple

L: okay, apple

T: good job.

L: this is a shampoo, right?

T: no, it is not shampoo, it is a stapler.

L: okay, got it.

overlap with the training set is minimal, repeating the experiment

for 10 folds. The size of the bins was nB = 9. In our scenario the

robot keeps navigating the environment, so after a while it may

reach an object that it has already seen before. To simulate this, we

replicated the number of instances by 2, randomly shuffling the

dataset, both when training and testing the policies. For example,

the instance apple_2 will be processed twice.

In Figure 5 we report the plots obtained from the experiments.

Results are provided in terms of Local Accuracy (left) and Cumu-
lative Tutoring Cost (right). In our analysis, we compared three

different approaches for adjusting the confidence threshold.

In the first setting, we used a Fixed threshold (FT ) set to 1. This

is the baseline, where the robot keeps asking questions, as the

classifier outcomes are always less than (or equal) to 1. The second

setting relies on a Rule-based adaptive threshold policy (RT ) to adjust
the threshold. This hand-crafted policy modifies the threshold as

follows: whenever the ∆Accloc is positive, the threshold is decreased
by 0.02; if the ∆Accloc is negative, it is increased by 0.02; otherwise

it is not modified. Finally, we tested the policy acquired through

the approach described so far (RL-based adaptive threshold, or RLT ).
We performed an ANOVA test to evaluate the significance of the

different settings for Accloc and Cost. The outcomes suggest that

there are no significant differences on the local accuracy under the

three different threshold conditions. However, this is not true for

the Cost, where the p-value is p < 1 × 10−14. The ANOVA results

are confirmed by a post-hoc pairwise comparison over the Cost,
performed through t-tests. The outcomes show that the RLT policy

has significantly less tutoring cost than the others, namely the FT
(p < 4 × 10−14) and the RT policies (p < 0.006).

As expected, in the first setting the Cost is represented by a

straight line, as the learner applies the same dialogue pattern for all

the interactions. Since the user always provides a label for the given

object, we would expect a better Accloc curve. Instead, it seems

that this metric is affected by “noise”: even though the classes are

well represented within the LB-SOINN model, the learner keeps

updating the network by injecting unnecessary examples. The RT
policy seems to get acceptable results, as (i) the tutoring cost tends

to decrease as more objects are processed, while (ii) the accuracy

is not degraded. In addition, the RLT setting seems to outperform

the other techniques. In fact, the Cost is always minimised and

most importantly, starts to decrease from the very beginning of the

process, i.e., the threshold is decreased as soon as the robot starts

to trust the classifier. This behaviour is essential, as the benefits

of the RL-based threshold will be perceived even after few interac-

tions. At the same time, the Accloc curve seems to follow the same

trend of the other settings, suggesting that the tutoring cost can be
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Figure 5: Results of the experimental evaluation, provided in terms of Local Accuracy (left) and Cumulative Tutoring Cost
(right), along with 95% Confidence Intervals.

minimised without loss in accuracy. Nevertheless, we noticed that

once a considerable number of classes is acquired, the confidence

values provided by the visual classifier are lower than in the early

stages, due to a higher internal uncertainty of the network. Hence,

even though the prediction for an instance is correct, but with a low

confidence score, the threshold does not have chance to decrease

further since its lower bound is set to 90 (we chose a conservative

solution for the classifier trust). As a consequence, the Cost stops
decreasing and the corresponding curve appears as a straight line.

This aspect could be further optimised in future work.

6 DEMONSTRATION ON REAL ROBOT
In order to support the effectiveness of the proposed approach,

we performed a preliminary deployment of the system on a real

robot
4
. The targeted platform is a modified version of the TurtleBot

2 Robot
5
(see Figure 1). While the base has not been modified, the

structure on top is customized, in order to make the robot taller

with respect to the off-the-shelf version. The robot is 107 cm high

and features a tablet as an interface for the interactions. In fact, the

ASR module has been realized through the Google Speech APIs [8],

available within the Android environment, in an ad-hoc mobile

application. The robot has been equipped with the Asus Xtion Pro

Live RGB-D camera. Though the nature of the resulting dataset is

still the same as in the simulated scenario (for each shot, RGB and

depth images are taken), the presence of a textured background

and the hand holding the object might interfere with the learning

process (segmentation and cropping of the object are outside the

scope of the paper). The video shows some interactions obtained

through the policy acquired during the simulated experiment, over

the dataset composed of 48 instances (10 classes). The robot was

tele-operated by the user. In fact, as it was not able to autonomously

detect the presence of an object in front of the camera, it was forced

to capture 30 RGB-D images on command by the user, i.e., by press-

ing a button on the joystick controller. Then, the pipeline proceeds

as in the simulated experiment. Although we did not measure the

4
https://youtu.be/jKGSuEHmDWU

5
http://www.turtlebot.com/turtlebot2/

performance, the system behaves as expected, minimising the effort

needed by the human in instructing the robot to acquire new ob-

jects. This further demonstration provides a preliminary evidence

of the effectiveness of the proposed solution.

7 CONCLUSION
This paper focused on the problem of acquiring a dialogue pol-

icy to support interactive semantic attribute acquisition, with the

goal of minimising the human users’ tutoring cost. To this end, we

proposed a multi-objective MDP Dialogue Manager, where the op-

timisation problem is solved through Reinforcement Learning and

the interaction is made dependent on visual information. In fact,

while one MDP is devoted to the selection of the proper Dialogue

Act, the other one modifies the level of trust in visual information.

The latter is provided by an online visual classifier, based on a Load-

Balancing Self-Organizing Incremental Neural Network. We proved

the benefits introduced by the adaptive threshold MDP through

empirical investigations that confirmed our initial hypothesis. Nev-

ertheless we consider this work as a starting point for a future line

of research. First, the online schema proposed here, as well as its

real-time processing, allowed for a preliminary deployment of such

system in a real scenario. This will enable a thorough evaluation on

a real robot interacting with real users. Second, the investigation

of more accurate metrics to evaluate the reliability of the visual

classifier (e.g., entropy, robustness, . . . ) could be beneficial for the

policy acquisition. Finally, in this work we focused on the category

property of an object, but a vast plethora of semantic properties

could also be taken into account (e.g., colour, affordances, . . . ). To
this end, different MDP design patterns could be explored.
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