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ABSTRACT
We consider a “price-committment model” where a single seller

announces prices for some extended period of time. More specifi-

cally, we examine the case of items with a limited shelf-life where

storing an item (before consumption) may carry a cost to a buyer

(or distributor). For example, eggs, milk, or Groupon coupons have

a fixed expiry date, and seasonal goods can suffer a decrease in

value. We show how this setting contrasts with recent results by

Berbeglia et al [4] for items with infinite shelf-life.

We prove tight bounds on the seller’s profits showing how they

relate to the items’ shelf-life. We show, counterintuitively, that in

our limited shelf-life setting, increasing storage costs can some-

times lead to less profit for the seller which cannot happen when

items have unlimited shelf-life. We also provide an algorithm that

calculates optimal prices. Finally, we examine empirically the rela-

tionship between profits and buyer utility as the storage cost and

shelf-life duration change, and observe properties, some of which

are unique to the limited shelf-life setting.

KEYWORDS
pricing; Stackelberg game; indivisible storable goods; limited stor-

age

ACM Reference Format:
Atiyeh Ashari Ghomi, Allan Borodin, and Omer Lev. 2018. Seasonal Goods

and Spoiled Milk: Pricing for a Limited Shelf-Life. In Proc. of the 17th Inter-
national Conference on Autonomous Agents and Multiagent Systems (AAMAS
2018), Stockholm, Sweden, July 10–15, 2018, IFAAMAS, 9 pages.

1 INTRODUCTION
The problem of how to allocate resources to different people (or

agents) when each of them has a different valuation for a given

resource, is one of the most fundamental and well-studied problems

in micro-economics. The most common solution has been to set

anonymous prices (i.e. identical pricing for every agent) and then

agents who value the item above its price buy it, and otherwise

they do not.

In the simple multi-unit one-shot scenario setting (i.e. in which

buyers with a known valuation for the item make their purchasing

decision and leave), finding the optimal price (and hence, the opti-

mal allocation) is a relatively simple optimization problem. How-

ever, adding even a small amount of complexity to the scenario

makes it significantly harder to solve. Such complications include

adding uncertainty about buyers’ valuations [14], multiple vendors

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

[2, 5], and multiple items [12, 13] (all with various limitations on

the agents’ valuation functions). All these problems have spawned

intense research to explore their respective areas
1
.

Another such issue that leads to an additional complication of the

basic problem is adding a temporal dimension to the setting. This

means sellers can change their prices over time, and hence buyers

can choose to change their buying decisions from day to day, and

should they find it worthwhile, to store items over time (introducing

the issue of storage cost). Of course, if buyers’ valuations remain

constant over time, and they wish to buy every day, prices will also

remain the same for every day. So the interesting problem involves

buyers whose valuation for items change over time. Naturally, the

seller wishes to find prices which maximize its profit, while the

buyers seek to maximize their own utility (i.e. value at time of

consumption − price at time of purchase − storage cost, for each

item purchased). This is, fundamentally, a Stackelberg game, in
which the seller is the “leader” setting the prices, while the buyers

are the “followers” reacting to current and future prices, by pursuing

a best response strategy. We examine the outcomes of these games,

which are basically the subgame perfect Nash equilibria of the

games.

We wish to understand optimal seller pricing (as a function of

storage cost and shelf-life duration) and how it impacts the overall

utility of the buyers. While there have been several attempts to

construct such a model (see Section 2), only recently did Berbeglia

et al. [4] suggest a model for indivisible items sold over discrete

time steps, with buyers being able to store items at a given time for

consumption at some later time. The Berbeglia et al. [4] analysis

is greatly assisted by their insightful result showing that there are

seller optimal prices such that buyers will not store items.

We introduce a seemingly small but very natural extension to

this model. Instead of discussing items with an unlimited shelf life,

we discuss items with a limited consumption date. These can be

perishable items, like milk, eggs, or fruit, which lose their value

after several days, and are no longer fit for consumption. Perishable

items aren’t only food items; Groupon coupons, for example, also

have an expiry date and Amazon Web Services (AWS) server rental

periods are another case. A similar family of items that we will

discuss are degradable items, which diminish their value after

several days (though still maintaining some value). Such products

can be seasonal or fashion dependent, like clothing items, which

significantly lose value once out of season or fashion.

Changing the durability of products may seem small, but it

changes the results significantly. The various variables involved

in setting prices are effected in a much more direct manner. For

1
From here on, we use a buyer/seller terminology as it is easier to grasp. However,

this applies to many resource allocation problems.
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example, Berbeglia et al.’s [4] simplifying result that buyers will

never be required to use storage under optimal pricing no longer

holds, and therefore much of their analysis is no longer applicable

in our setting. This requires us to explore more directly the effect

of storage cost on prices and the resulting impact on buyer deci-

sions. Changing the duration of items allows further examination

of the inter-connection between prices and purchasing demand,

and how small changes in storage cost or shelf life can cascade into

unexpected changes in buyer utility and profits. Sometimes these

move in tandem (e.g when a seller lowers the price thereby selling

more items to more people, increasing profit and the overall utility

of buyers), while in other problem instances this is not necessarily

the case.

In this work we examine the issues of profit and buyers’ utilities

as a function of storage cost and shelf-life both theoretically and

empirically. In Section 4 we show a precise relationship between

the shelf-life of an item and the seller’s profit, both for perishable

and degradable items. In Section 5 we provide an algorithm for

setting prices optimally. Finally, in Section 6, we examine price

and social welfare empirically using simulations (with respect to

realistic distributions on buyer valuations). We show how a limited

shelf-life significantly changes previous results (in Berbeglia et

al. [4]) on the relation between storage costs and profits, including

counterintuitively, that in contrast to infinite shelf life, increasing

the cost of storage does not necessarily induce consumers to accept

higher prices, and can even reduce the profit of the seller.

2 RELATEDWORK
While the topic of limited shelf-life has been examined in different

settings, for example in [9, 15], it has generally treated time and

products as completely divisible. In contrast, we examine these

issues for discrete time and indivisible goods, as is common for

most consumer items. Some work on pricing over time involves

agents looking for the cheapest time to buy a single item [3], while

we examine agents who wish to buy an item each day. The closest

work to ours is Berbeglia et al. [4], in which both pre-announced

pricing as well as contingent pricing
2
were studied. They compared

these pricing policies over a finite time period (i.e., there is a known

fixed number of days) for an unlimited supply of an indivisible item

(e.g., digital goods). They proved that for pre-announced pricing

mechanisms with linear (per item unit per day) storage cost and

unlimited storage time, there is an optimal set of prices such that

for these prices, the consumers do not need to store any goods so as

to maximize their utility. They also gave a dynamic program to find

the optimal set of prices to maximize the monopolist’s revenue.

Slightly further afield, Dasu and Tong [8] considered the pricing

problemwhen there is a fixed number of items, goods are perishable

and there is a finite time horizon. Beyond their numerical exper-

iments, they showed that if buyers are not strategic, contingent

pricing dominates pre-announced pricing, but this result does not

hold if consumers are strategic (as they are in our case).

There has been some research about these topics when assuming

there are only two (rather than T ) time periods. Focusing more on

2
That is, “threat-based” pricing, in which a seller can announce that if consumers

won’t buy on day t , the price will increase on day t + 1, otherwise it will stay the

same.

pre-announced pricing (as we do), but in a different setting, Correa

et al. [7] proposed a new pre-announced pricing policy, in which

the seller commits to a price menu and dynamically chooses a price

in the menu based on available inventory. They considered a lim-

ited inventory of an item and different arrival times for consumers.

They proved the existence of an equilibrium and they also showed

that under certain conditions their pricing policy outperforms con-

tingent and pre-announced pricing policies.

Aviv and Pazgal [1] studied the pricing problem in another lim-

ited setting, assuming not only 2 time periods, but also assuming

consumer arrival times are drawn from a Poisson distribution. They

compared a pre-announced pricing policy with a contingent one in

which the seller sets the prices based upon the seller’s inventory and

declining consumer valuations. They argued that the monopolist

can increase her revenue up to eight percent in the pre-announced

pricing policy compared to contingent pricing.

Our setting is a particular instance of Stackelberg games, on

which there has is extensive research, though that has been focusing

in the recent past on security games (e.g., [10, 11, 16]).

3 MODEL
We study the problem of pricing where a monopolist tries to sell an

unlimited supply
3
of a certain product or good at times 1, 2, . . . ,T .

She sets the price for time i to pi , being aware of the valuations of

the consumers. She notifies the consumers of the prices for all time

periods before purchases commence (i.e., before t = 1). The number

of units of goods sold at time i is qi . The monopolist’s objective is

to maximize her revenue which is equal to

∑T
i=1 qipi .

On the buyer side, we have one or many self-interested rational

(i.e., wanting to maximize their utilities) consumers with a value

for consuming goods. They can buy on any day and store for con-

sumption on other days. We define the valuation function v(i, t)
with domain N × [T ] for items consumed “fresh” (i.e., that have not

been stored). Their utility is the value of the items they consume

on a given day minus the price they paid for the items and their

storage cost. We assume in the case of a tie, the buyer prefers to

store the goods as little as possible. Following [4] we discuss two

cases regarding the number of consumers and their demands:

Multi-buyers Multiple consumers, each demanding only a

single unit of demand. So on day t , if we sort the consumers’

values for one unit in decreasing order, the consumer’s value

is v(i, t) which is the ith highest value on day t . v(i, t) is
non-increasing in i .

Single-buyer One buyer with many units of demand. In this

setting,v(i, t) represents the consumer’s non-increasingmar-

ginal value for the ith unit of goods on day t . In other words,

v(i, t) is the consumer’s value for i units of goods minus

the value for i − 1 units of the goods, so the total value for
consuming i units on day t is

∑i
j=1v(j, t). We use [4]’s as-

sumption that there is a cap on the number of items desired

by the consumer, i.e., there existsH ∈ N such thatv(H , t) = 0

for all t ∈ T .

3
An unlimited supply can be either a digital good (e.g., a newspaper with online

subscription), and moreover, in practice we conceptually think that certain items can

be produced so as to satisfy any demand. For example, in some countries eggs and

milk seem to be in unlimited supply, and in Iceland one can believe that there is an

infinite supply of renewable energy.
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In the multi-buyer setting we have N consumers, and in the

single-buyer setting, the maximum demand on any day is N . The

total number of days is T . Consumers may have to pay for storing

the goods and this cost is defined as storage cost. While [4] study

both linear and concave cost, we only study linear storage cost with

cost c per day per unit.

Section 4 begins the study of items with a limited shelf-life, d ,
after which the item loses all value. We extend this model in Section

4.1 where we consider the pricing problem in the setting where

the value of the good when stored becomes a fraction of the initial

value. We define a function r : [T ] → [0, 1]which takes an integer l
which is the number of days that a good is going to be stored before

consumption and returns a fraction r (l) that specifies the value of
the good if consumed l − 1 days after purchase. The function r is
a non-increasing step function. We use this function r to define

another valuation function to represent decreasing values. In the

single-buyer case, let v ′(i, t , l) be the value of consuming the ith

unit on day t , where this unit has been stored l −1 days4. Therefore,
we have v ′(i, t , l) = v(i, t)r (l).

In single-buyer setting, our model is not well-defined yet since

the units that are consumed on a particular day can be bought on

different days, so the value of the consumed items is not clear. The

following immediate observation resolves this definitional issue.

Observation 3.1. In the single-buyer setting, if the buyer has cho-
sen some k specific units for day t ’s consumption that were bought on
different days, the order of consumption of those k items is to consume
those purchased most recently first. So if they are ordered according to
number of days they are stored – d1, . . . ,dk – the consumer’s value
is
∑k
i=1v

′(i, t ,di ).

Proof. To prove this we show that if the consumer buys two

units on different days to consume on the same day, the unit which

is stored longer must have less value. Hence it is considered the

second unit and the other unit is considered the first unit. Let d1
and d2 be the number of days these units are stored and p1 and p2
be the price at which they are bought. We assume d1 is less than
d2 (thus, r (d1) ≥ r (d2); therefore, p2 is less than p1, as otherwise, it
would be more beneficial to buy unit 2 at price p1 and store it d1
days as well. If the consumer’s value for unit 1 is v1 and for unit 2

is v2, we show v1 must be more than v2.
Since the buyer preferred to buy unit 1 when they did (d1 days

ago; price p1), and not buy it d2 days ago at price p2:

r (d1)v1 − p1 > r (d2)v1 − p2

v1 · (r (d1) − r (d2)) > p1 − p2

The buyer also preferred to buy unit 2 when it did (d2 days ago;
price p2), and not buy it d1 days ago at price p1, hence:

r (d1)v2 − p1 < r (d2)v2 − p2

v2 · (r (d1) − r (d2)) < p1 − p2

4
In the multi-buyer case, v ′(i, t, l ) is the i th largest value on day t when this unit

has been stored l − 1 days.

Combining these:

v2 · (r (d1) − r (d2)) < v1 · (r (d1) − r (d2))

v2 < v1

□

Practically, in all results the single-buyer and multi-buyer cases

are essentially equivalent, and a single proof suffices for both cases.

We note again that this particular setting is an instance of a

Stackelberg game, which is defined as a 2-stage game, in which a

“leader” announces their strategy and the “followers” respond to it.

A solution to this game is a subgame perfect Nash equilibrium, in

which the leader (e.g. a seller) choses the strategy that will maximize

their profit assuming that followers (e.g. buyers) will best-respond

to it. This is exactly the type of solution we examine here.

4 d-DAY SHELF-LIFE
In this model, a consumer in the single-buyer case or consumers in

the multi-buyer case can only store the goods for less than d days

after which the good is worthless. If d is equal to 1, it means the

goods must be consumed on the same day they are bought. Proofs

are written for the single-buyer case, but can be easily applied to

the multi-buyer one.

Theorem 4.1. The largest possible revenue of the monopolist is
a non-increasing function of d , and in some cases will be strictly
decreasing.

Proof. Let us assume our buyer can store the goods for d days.

We prove that if they can store the goods for d ′ = d − 1 days, the
monopolist can make as much money as in the d-day case.

Assume that the monopolist’s best strategy when the buyer can

store for d days is p1,p2, . . . ,pT . There are two cases regarding the

monopolist’s best strategy. In the first, the monopolist’s prices are

such that although the buyer can store the goods for d days, it is

not beneficial to do so. Hence, if we reduce the duration to d ′, the
monopolist can use the same strategy making the same amount of

money.

The second case is when it is beneficial for the buyer to store

some goods for d days. In this case, we describe a new strategy

p′
1
,p′

2
, . . . ,p′T by which the monopolist makes at least the same

amount of money. Let us assume day s is the last day that our buyer
is going to store one unit of the goods to consume d days later; that

is, to consume on day s + d − 1. As noted before, in the case of a tie

the buyer prefers to store the goods as little as possible. Therefore,

pt > ps + (t − s)c for all s < t ≤ s + d − 1 since otherwise, the

buyer would be better off buying the extra units of goods on day

t to consume on day s + d − 1, instead of day s . The buyer is not
going to store for d days on day s + 1, since s is the last day that the
item is going to be stored for d days. Moreover, now items will be

stored for less than d days on day s + 1 since ps+1 > ps +c as stated
above. Therefore, qs+1 = 0. When the buyer can only store the

goods for d ′ days, if we set p′s+1 = ps + c , the buyer’s behavior, in
terms of purchase, for the days before s do not change at all (since

it is not possible to buy on day s or s + 1 anyway to consume on

previous days, so later prices do not need to be taken into account).

The behavior for the days after s + 1 also does not change because

prices did not change. The only changes are at times s and s + 1
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Day: 1 2 3
Consumer valuation 1 1 1000

Optimal price (all cases) 1 1000 1000

Seller profit when storage cost is 0 2 0 1000

Seller profit when storage cost is 2 1 0 1000

Table 1: Example in Theorem 4.3

when the buyer bought on day s and stored for future. Under the

new prices, the item can be bought on day s + 1 instead since p′s+1
is equivalent to ps for the buyer. The amount of the goods does not

change since from buyer’s perspective their utility has not changed

either. Hence, overall, cost of buying and storing the goods has not

changed from the d-day case. □

Corollary 4.2. As a result, the monopolist makes the most money
when the goods must be consumed on the day they are purchased (i.e.,
d = 1).

We begin exploring our limited shelf-life problem by noting that

a significantly useful and simplifying result from [4] (Theorem 3.1)

does not hold in our case. In their setting (i.e., for items with infinite

shelf-life), optimal pricing results in buyers not using storage at all;

that is, buyers consume items on the days they buy them.

Theorem 4.3. There are settings where the monopolist will make
less money as the storage cost is increased. Additionally, in this setting
with limited shelf-life, the best strategy for the monopolist sometimes
makes consumers store the items.

Proof. We give an example of the situation where the monopo-

list makes less money when the storage cost increases, and where

the consumer will always use the storage. In this example, let d = 2

and the cost of storage 0. As shown in Table 1, we assume that

there is a single consumer whose values for one unit of the goods

on days 1, 2 and 3 are 1, 1 and 1000, respectively and for additional

units is 0. Because the largest value is equal to 1000, the best price

for days 2 and 3 must be 1000 to ensure the large payment on day

3. For the first day, best price is 1.

When the storage cost is 0, the consumer will buy two units

on the first day, to consume on days 1 and 2 – unlike the infinite

shelf-life case, storage must be used for optimal case. However,

when the storage cost is 2, the consumer will only buy one unit

on the first day. Hence, the monopolist’s profit is reduced with the

increase in costs. □

Throughout this Section letM be themaximum amount ofmoney

that the monopolist makes when goods are always consumed on

the day of purchase and cannot be stored (i.e. d = 1).

Theorem 4.4. When goods can be stored ford days, the monopolist
makes at least M

d amount of money for any 5 linear storage cost
function c .

Proof. We set prices so that themonopolist will make
M
d amount

of money for any linear cost function and any set of consumer (or

5
In fact, this theorem holds for an arbitrary weakly monotonic cost function but we

are only considering linear cost functions in this work.

consumers, in the multi-buyer setting) values. Let p1, . . . ,pT be

the optimal prices when d = 1 and let q1, . . . ,qT be the number

of units purchased on each day. Now, to set the prices, consider

d different pricing options. In each case t (0 < t ≤ d), the goods’

price, on day sd + t for all 0 ≤ s < ⌊Td ⌋ is equal to psd+t and

the goods’ prices for other days are very high (effectively,∞). The

buyer will not store the goods for day sd + t because the prices on
days (s − 1)d + t + 1, (s − 1)d + t + 2, . . . , sd + t − 1 are large numbers

and greater than psd+t . Therefore, the amount bought on day sd + t
will be at least qsd+t . Hence, summing over the d different pricing

schemes, the sum of the revenue in these d cases is more than or

equal toM , so there is at least one of them for which the revenue

for the d-day case is more than or equal to
M
d . □

That theorem showed a lower bound for the seller’s profit. We

now show this bound is tight:

Theorem 4.5. For any ϵ > 0, there is a setting in which the
monopolist’s maximal revenue is less than (1 + ϵ)Md .

Proof. Choose a natural number a such that
1

a−1 < ϵ . At first,
assume T = d , then later, we will complete the proof for T = kd
for k ∈ N. For simplicity, we will assume that c = 0

6
. We now

define b as

∏d
t=1(a

d−t+1 − 1). For each day t , 1 ≤ t ≤ d , the buyer

wishes to purchase ad−t items, each with a value of to
b ·(a−1)
ad−t+1−1

.

Any additional item has a value of 0.

For themonopolist, it is beneficial to set the price to one of the val-

uations of the buyer, since otherwise, it can increase the price with-

out losing any purchase, so prices are of the set {
b ·(a−1)
ad−t+1−1

: 1 ≤ t ≤

d}. Increasing prices as time goes on does not increase the revenue,

since the buyer can buy when prices are lower and store for later,

as storage cost is 0. Since values are going up, reducing the price

does not increase the revenue either. Therefore, the monopolist just

sets a fixed price for all days, which, as noted, should be equal to

some item’s value. So the monopolist’s revenue equals
b ·(a−1)
ad−t+1−1

(for

some 0 < t ≤ d) times the number of items with value more than or

equal to the price. I.e.,
b ·(a−1)
ad−t+1−1

·
∑d−t
t=0 a

t =
b ·(a−1)
ad−t+1−1

· a
d−t+1−1
a−1 = b.

In comparison,M =
∑d
t=1

b ·(a−1)
ad−t+1−1

· ad−t . Monopolist revenue in

the d-day case compared toM is:

b∑d
t=1

b ·(a−1)
ad−t+1−1

· ad−t
=

1∑d
t=1

(a−1)
ad−t+1−1

· ad−t

1∑d
t=1

ad−t+1−ad−t
ad−t+1−1

<
1∑d

t=1
ad−t+1−ad−t

ad−t+1

=
1∑d

t=1 1 −
1

a

=
1

d − d
a

=
1

d (1 − 1

a )
=

1

d ( a−1a )

( a
a−1 )

d
=
(1 + 1

a−1 )

d
<
(1 + ϵ )
d

So far we showed that if T = d , the total revenue is less than
(1 + ϵ)Md . In a more general case, we set T = kd which means

we have k blocks of length d . On day t , 1 ≤ t ≤ d in block i ,

0 ≤ i < k , the buyer wants to buy ad−t items, each with a value

of
b ·(a−1)
ad−t+1−1

bk−i (and additional items are valued at 0). Therefore,

6
For c > 0, by increasing b to an arbitrarily high value, we can make values large

enough, and the difference between each day significant enough, so the behavior is

practically as if c = 0.
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the optimal prices in each block i are also multiplied by bk−i . Since
in each block compared to its previous block, prices are lower, the

buyer would not store any goods from the previous block.We define

Mi for 0 ≤ i < k as the maximum achievable revenue for block i
when there is no storage. As proved, in each block i , the maximum

revenue is less (1 + ϵ)Mi
d . Therefore, in general, the maximum

revenue is also less than (1 + ϵ)Md . □

4.1 d-Day Fractional Value
Generalizing our shelf-life results from the previous Section, instead

of assuming that after d days the goods’ values drops to 0, we

assume that after d days the goods’ value drops to a fraction r (0 ≤
r < 1) of its value when bought. In other words, for 1 ≤ i ≤ N and

1 ≤ t ≤ T ,v ′(i, t , l) = v ′(i, t , 1) for l ≤ d andv ′(i, t , l) = r ·v ′(i, t , 1)
for l > d .

The results are, to a large extent, a generalization of the r = 0

case.

Theorem 4.6. In d-day storage with fractional value model, the
monopolist makes at least 1−r

d M amount of money.

Theorem 4.7. For all small ϵ > 0 there is a setting with d-day stor-
age with fractional value model in which the monopolist’s maximum
revenue is less than ( 1−rd + ϵ)M .

The proofs for these two theorems are somewhat more com-

plicated than for the corresponding Theorems 4.4 and 4.5, but as

they follow a similar structure we omit the proofs due to space

constraints.

5 FINDING OPTIMAL PRICES IN d-DAY
SHELF-LIFE

Themonopolist’s goal is to maximize revenue, while consumers aim

to maximize utilities. Consequently, when the prices are announced

by the monopolist, the consumers seek the best strategy for them,

which manifests itself in the number of units bought each day and

the number of units consumed each day.

In the multi-buyer setting, each consumer starts from day T and

works backward, trying to find the best day to purchase the unit

that will be consumed on day T . Then the consumer proceeds to

day T − 1, repeating the process, and then moves on to day T − 2
and onwards. We have N consumers and each of them finds their

best strategy in time T 2
, so the running time of this algorithm is

T 2N . This same algorithm also works in single-buyer setting. In
single-buyer setting, on each day, for each marginal value greater

than 0, the consumer finds the best day to buy a unit to maximize

the utility separately. Therefore, the running time is T 2
for each

unit, multiplied by the maximal number of units which is N . This

algorithm works for any storage model (d-day storage, more than

d-day storage with fractional values and multi-step value decrease

model which we define later in this paper) and many storage cost

functions beyond the linear we mainly address here.

On the other hand, from the monopolist’s point of view, finding

the best prices is not as easy as finding the best strategy for con-

sumers. In this Section, we deal with finding the best strategy for the

monopolist. We present an algorithm, exponential in d , which finds

the best prices in the d-day storage model in both the single-buyer
and multi-buyer settings.

The next theorem is similar to Theorem 3.2 in [4]. However, as

in our model the best pricing sequence may require storage, the

proof and the theorem are not the same.

Theorem 5.1. There exists an optimal pre-announced pricing se-
quence p1,p2, . . . ,pT such that for each t , we have pt = v(i, s, 1) +
c(t − s) for some 1 ≤ s ≤ T and some 0 ≤ i ≤ N .

Proof. The difference between this theorem and theorem 3.2

in [4] is that here, 1 ≤ s ≤ T whereas in [4] 1 ≤ s ≤ t . Notice
that here, t − s can be negative, in which case the price for day t
is equal to v(i, s, 1) minus storage cost. To prove this theorem, we

set v(0, t , 1) = L for all t ∈ [T ] where L is a large number. We make

this assumption because on days that nothing is sold, we set prices

to L.
Let us assume {p1,p2, . . . ,pT } is the set of optimal prices and if

there are several optimal sets of prices, choose one set arbitrarily.

Take the smallest t such that pt , v(i, s, 1) + (t − s) · c for any

1 ≤ s ≤ T and any 1 ≤ i ≤ N . If qt = 0, then set p′t = v(0, t , 1) = L.
Clearly, the consumers still do not buy anything on day t because
the price on this day is a large number and consumers’ behaviour on

other days does not change either. Therefore, themonopolist did not

lose any money by this change. If qt > 0, set p′t = min{v(j, s, 1) +
(t −s) ·c : 1 ≤ s ≤ T ; 1 ≤ j ≤ N ;v(j, s, 1)+ (t −s) ·c > pt }. If qt > 0,

then p′t is well-defined because v(j ′, s ′, 1) + (t − s ′)c ≥ pt for some

1 ≤ j ′ ≤ N and 1 ≤ s ′ ≤ T in order to have qt > 0. Now we are

going to prove why this new set of prices is more profitable. On

any day t ′ < t , the consumers will buy those units of goods they

bought previously since the prices did not change on these days

and future prices are either increasing or staying the same. On any

day t ′ > t , again the consumers will buy those units of goods they

bought previously since additional purchases on day t for future
consumption are not beneficial.

We only need to study what happens on day t . With our optimal

prices, consumers bought qt units on day t . These qt units were
consumed on different days, among all of these units, consider

the one which had the least value for consumers. Let us say this

value is the value of the kth unit on day t ′, v(k, t ′, 1). So we have

pt + c · (t
′ − t) ≤ v(k, t ′, 1), but because pt , v(i, s, 1) + (t − s) · c

for any 1 ≤ s ≤ T and any 1 ≤ i ≤ N , we have pt < v(k, t ′, 1).
We know v(k, t ′, 1) + c · (t − t ′) belongs to {v(j, s, 1) + (t − s) · c :

1 ≤ s ≤ T ; 0 ≤ j ≤ N ;v(j, s, 1) + (t − s) · c > pt }, so the new

price p′t which is the minimum value of the set is less than or equal

to v(k, t ′, 1) + c · (t − t ′). Therefore, the consumer still affords to

buy those units of goods, but they may prefer to buy them on

other days rather than day t . These other days cannot be any day

before day t because we assumed that day t was the first day that

pt , v(i, s, 1)+ (t −s) ·c for any 1 ≤ s ≤ T and any 1 ≤ i ≤ N . Thus,

prices on all previous days are in that form and p′t is minimum

value of the prices in that form. As a result, the consumers do not

prefer to buy those units of goods on earlier days. It is possible that

consumers buy those units on days after day t . In this case, the

amount of money that consumers are paying is more than or equal

to previous amount since previously, they preferred to buy on day

t . Besides, they are storing for fewer days; therefore, the amount of

money the monopolist makes is more than or equal to the previous

amount. In conclusion, the monopolist does not lose any money by

this change. □
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In order to give a dynamic program to find the optimal prices

in the d-day storage model, we need some definitions. First, we

defineCt which is the set of possible prices considering only future

prices at time t and C ′t which is the set of all possible prices. Ct =
{v(j, s, 1) + (t − s) · c |t ≤ s ≤ T , 0 ≤ j ≤ N } and C ′t = {v(j, s, 1) +
(t − s) · c |1 ≤ s ≤ T , 0 ≤ j ≤ N }. Next, we define price p′t to be the

price the monopolist sells the goods that consumers are going to

consume on day t ; it can be sold on any day up to and including day

t . Now we define cost p′′t to be the total cost that consumers have

paid for the goods to be consumed on day t , i.e., purchase price +
cost of storage.

We need to define additional functions: p′′t (x1,x2, . . . ,xd ) takes
prices x1, . . . ,xd which are prices on days t −d + 1, t −d + 2, . . . , t
and returns the lowest cost for the buyer (that is, including storage

cost) to buy item for day t . We also use arдmintp
′′
t (x1, . . . ,xd ) to

return the index of the day with the lowest cost considering storage

cost for day t . Note that p′t = xarдmintp′′t (x1,x2, ...,xd ). Finally, we

define q′t (x1,x2, . . . ,xd ) which is the number of units of goods

which consumers will buy to consume on day t , it can be purchased

on any day up to and including day t , q′t (x1,x2, . . . ,xd ) = |{j ≥ 1 :

vj,t ≥ p′′t (x1,x2, . . . ,xd )}|

Theorem 5.2. The dynamic program (algorithm 1) finds the opti-
mal prices.

Algorithm 1 Optimal Prices in d-day Model

1: R(T + 1, x1, x2, . . . , xd−1) ← 0 for all x1, . . . , xd−1 ∈ (
T⋃
t=1

C′t )
d−1

2: for t = T → d do
3: for all x1, x2, . . . , xd−1 ∈ C′t−d+1 ×C

′
t−d+2 × . . . , C′t−1 do

4: R(t, x1, . . . , xd−1) ←
max{q′t (x1, . . . , xd−1, xd )p

′
t (x1, . . . , xd−1, xd ) + R(t +

1, x2, x3, . . . , xd ) : xd ∈ Ct ∪ {xi + (d − i)c, 1 ≤ i ≤ d }}
5: S (t, x1, x2, . . . , xd−1) ←

arдmaxxd {q
′
t (x1, . . . , xd−1, xd )p

′
t (x1, . . . , xd−1, xd ) + R(t +

1, x2, x3, . . . , xd ) : xd ∈ Ct ∪ {xi + (d − i)c, 1 ≤ i ≤ d }}
6: end for
7: end for
8: x⋆

1
, x⋆

2
, . . . , x⋆

d−1 ← arдmaxx1, . . .,xd−1 {R(d, x1, x2, . . . , xd−1) :
x1, x2, . . . , xd−1 ∈ C′1 ×C

′
2
× . . . ×C′d−1 }

9: for t = d → T do
10: x⋆

t ← S (t, x⋆
t−d+1, x

⋆
t−d+2, . . . , x

⋆
t−1)

11: end for
return x⋆

1
, x⋆

2
, . . . , x⋆

T

Sketch of proof. R(t ,x1, . . . ,xd−1) computes the optimal rev-

enue that the monopolist can earn from day t to day T given that

x1, . . . ,xd−1 are prices on d −1 previous days. This is done by back-
wards induction. First, we have R(T +1,x1,x2, . . . ,xd−1) to zero for
any x1, . . . ,xd−1 and second, in the for loop when t = T , it finds
R(T ,x1, . . . ,xd−1) for any given x1, . . . ,xd−1 by going through all

possible prices using xd variable for day T . The algorithm checks

howmany units consumer will buy to consume on dayT with given

prices x1, . . . ,xd by calculating q′t (x1, . . . ,xd−1,xd ) and then com-

putes how much the monopolist will earn per unit by calculating

p′t (x1, . . . ,xd−1,xd ); thus, taking the max of their multiplication is

the maximum total amount of money that the monopolist makes

for day T consumption. We keep the knowledge of the price we

chose using S .
For the induction step, for any dayk and any possiblex1, . . . ,xd−1,

we assume that we computed R(t ,x1, . . . ,xd−1) for all days k <
t ≤ T , then given x1, . . . ,xd−1, we compute the obtainable revenue

from day t to T for all possible xd . Then we find the maximum of

these values as R(k,x1, . . . ,xd−1).
Finally, we compute the best prices for firstd−1 days, by checking

all possible prices for those days and computing the maximum rev-

enue. Therefore, by using first d −1 prices and S(t ,x1,x2, . . . ,xd−1)
we can find the optimal prices for all days. □

Observation 5.3. The running time of the dynamic program is
O((NT )ddT ).

6 EMPIRICAL EXAMINATION OF d-DAY
SHELF-LIFE

We designed a set of simulations so as to more carefully examine the

connections between prices, buyers’ utilities, storage costs and shelf

life. As we wish to understand these relations in realistic settings,

we chose buyer valuation functions corresponding to a consumer

product. We did this by first choosing for each buyer i their “base
value” vi for one unit of an item (e.g., how much does one like

apples), using a normal distribution with a fairly large variance (we

used one with mean 30 and variance 10). However, if each buyer’s

valuation was fixed the pricing problem would simply be a matter

of finding the optimal price for a single day. Hence, as in real life,

one’s daily valuation is close to, but not exactly, their “base value”

but not exactly it (e.g., some days one can be busier, without time for

a snack). Therefore, we specify a buyers’ valuation distribution as

a normal distribution with its mean being its base value, vi , and its

variance being either 5 or 2 (we chose to see the different behavior

when valuations change more or less significantly each day). We

ran this experiment with N = 5 buyers and time-horizon T = 20.

What is the impact of rising storage costs on prices, profit and

utility? The seller can respond to rising storage cost by increasing

or decreasing prices (or not respond at all) so as to obtain optimal

revenue. Increasing prices can benefit profit in an obviousway if one

does not drive out too many buyers on any given day. Decreasing

prices can result in more profit by allowing more buyers to make

a purchase if the increased participation offsets the lower prices.

We recall the critical observation in Berbeglia et al. [4] that there

is no need for storage with optimal prices when there is unlimited

shelf-life. Hence, it follows that increasing storage costs cannot
decrease profit in the unlimited shelf-life model, since any

buyer who did not store before (even at cost 0) will surely not want

to store at a higher storage cost. This allows the seller to increase

or decrease prices so as to achieve optimal revenue by determining

the tradeoff between the increase in price per item sold to buyers

who continue to buy and the loss due to buyers who will not buy

on a given day.

However, as shown by Theorem 4.3 and illustrated in Table 1, in
the limited shelf-life model, storage is sometimes necessary,
and profits can actually decrease when storage costs rise. To
what extent does this happen in the reasonably realistic scenario

given by our distribution on buyer values? Clearly, the smaller the
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Figure 1: Effects on profit when changing storage cost, with different graphs according to shelf-life duration and variance of
distribution from which utility valuations were taken (“Ber”’ indicates [4]’s model of infinite shelf-life).

variation in each buyers valuation, the closer we are to simple iden-

tical pricing for every day without any anomalies and conversely,

we may expect that pricing becomes more subtle as the variation

increases. Similarly, the longer the shelf-life duration d , the closer
we are the unlimited shelf-life model.

Figure 1 demonstrates the impact of rising storage costs on the

sellers optimal revenue. Note the various graphs with variance 2

are always above their equivalent with variance 5. We observe that

the two curves (for variance 2 and 5) for unlimited shelf-life are

indeed monotonically increasing with cost. In contrast, even for

small variance, the curves for limited duration are not monotonic

and that this phenomena is more accentuated with higher variance

although the curves do becomemonotonic as the duration increases.

Figure 3 considers the overall utility of the buyers (i.e. the sum

of utilities for each item unit sold) as a function of storage cost. We

note that in the effects of rising costs described above, only the one

lowering prices has the possibility of increasing the overall utility

while increasing profitability. In order for this to happen, there

needs to be more than a small difference between the valuations

in different days, and the longer the shelf-life, the larger is the

seller’s concern that one could buy the item when it’s cheap and

save it. Hence, the longer the shelf-life, the storage cost needs to be

higher, so it would not be beneficial for a buyer to buy and store. For

the higher variance this subtle interplay is apparent in the figure.

Considering both Figures 1 and 3, we can see that for duration

d = 4, increasing the storage cost from 0 to 1 illustrates that both

the profit and overall utility can decrease. Note also that higher

shelf life duration will allow the buyer to store more often but the

cost of storage tends to lower the overall utility.

The differing variation of the buyers’ utility from day to day

has, as is to be expected, a significant effect on the observed phe-

nomenon. When the variation is smaller, it can be approximated by

the case where the valuations are the same, which are far easier to

analyze (since prices stay fixed throughout). Indeed, as can be seen

in Figure 2, for the low variance case, a higher storage cost goes

hand in hand with lower buyers’ utility, an effect which becomes

more accentuated with the shelf-life duration. However, when the

variance is higher, this clean and orderly structure disappears. As

we have observed before, unlike [4]’s model, higher storage costs

are not necessarily linked with lower utility, and this effect is clearer

when the shelf-life is shorter; the longer it gets, the closer it resem-

bles [4]’s model, in which the shelf-life isT . In particular for shorter

shelf-life, the interaction between prices and storage costs is quite

intricate, resulting in increased profits for the seller, for whom the

storage costs are a guarantee that a lower price on a certain day

would not “propagate” to future days.

7 CONCLUSION AND FUTURE DIRECTIONS
We first studied the d-day shelf-life pricing problem (when items

perish ind days), and then we extended the model so that an item re-

tains a fraction of its value after d-days. We proved tight bounds on

the seller’s profits in these models, which show the profit decreases

linearly as the shelf life grows. For the d-day shelf-life model we

gave an algorithm (polynomial time in N and T but exponential in

the shelf life d) to calculate optimal prices. One immediate question

is whether or not this exponential dependence on the shelf -life d is

necessary. While for many perishable food items one would expect

d to be relatively small (i.e., relative to the overall time frame T for

which decisions are being made), but in other applications, d might

be quite large.

As noted in the introduction, optimal pricing calculations are,

de-facto, finding an allocation mechanism that can be applied in

various settings of limited resources, and our time-sensitive setting
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has applications beyond rotten eggs and out-of-fashion clothing

items. For example, cloud services – the usage of which is growing

significantly – are commonly priced so that users pay for a set of

resources they can only use for a limited time, which is exactly a

limited shelf-life product.

There aremanyways to continue and expand this line of research.

Our setting did not include the presence of consumer budgets, that

is, an overall limit on the expenditure buyers can afford throughout

the whole period T . This is an issue not only in our setting, but

also in Berbeglia et al. [4]. While we have some preliminary results

in this regard (namely a quadratic programming algorithm), the

presence of budgets leads to a substantially more complex pricing

problem, as was shown in different settings to which budgets were

added (e.g., [5]). Naturally, budget considerations will come into

play even more significantly when extending the model to consider

prices for multiple distinct items with one or multiple sellers. If

there is no budget then item pricing may be considered as separate

sales; but with budgets, to what extent would item prices be related?

A further extension of the d-day fractional model is to allow

an item’s value to decrease gradually, so that after dk days (for

k = 1, . . . , t ), the value of the item decreases to a fraction rk of

its initial value until it eventually (after some dt+1 days) loses all
value. An obvious (but mistaken) approach to this would be to

assume Theorems 4.6 and 4.7 can easily be nested. This does not

work, since buyers can always buy a completely new item, and

while we hypothesize the outcome will be a linear relation between

rk and the profits, it requires a different approach than the one

used here. Another fundamental change is moving to an adaptive

pricing model; namely, instead of pre-announcing prices, how will

the market behave when the seller changes prices dynamically as

discussed in Berbeglia et al. [4].

Finally, an additional topic of consideration – not only for our

model, but for [4] and others as well – is one of information. Our

scenario assumes a full information setting where the seller knows

the valuations of buyers for each day. What should a seller do in

the Bayesian setting where the daily valuations are drawn from a

known distribution? Taking the expected valuation for each day is,

of course, not a valid solution (the pricing for an agent that has a

value of 2 or 0 is very different than for agent with value 1). This

problem can be seen as a type of Bayesian Stackelberg game (with

each set of valuations considered as a type of “follower”). However,

in general, finding the optimal strategy in such games is known

to be be NP-hard [6]. But our particular structure (with a known

distribution for each day’s value), may allow for better results.
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