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ABSTRACT
Preferences play a key role in decision making by both single indi-

viduals and/or groups. In a multi-agent context, it is also important

to know how to aggregate preferences to reach a collective deci-

sion. Moreover, being able to measure the distance between the

preference of two individuals is important to identify the amount

of disagreement and possibly reach consensus. In this paper we

define a notion of distance between CP-nets, a formalism that can

compactly encode conditional qualitative preferences. We consider

the Kendall-tau distance between the partial orders induced by CP-

nets, and we define two tractable approximations of that distance,

which can be computed in time polynomial in the number of fea-

tures of the CP-nets. We then perform experiments to demonstrate

the quality of these approximations compared to the Kendall-tau

distance. We also relate our two notions of distance to the distance

rationalizability of sequential plurality voting for CP-nets.
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1 INTRODUCTION
Preferences are ubiquitous in real-life, and are central to decision

making, whether the decision is made by a single individual or

by a group. The study of preferences in computer science has led

to important theoretical and practical results across a range of

areas where decisions need to be made [17, 34]. CP-nets provide

an effective compact way to qualitatively model and reason with

preferences over outcomes when the preferences have a combina-

torial structure [7]. Moreover, CP-nets provide a way to model not

only subjective preferences, but also priorities and optimization

criteria, thus allowing for a homogeneous modeling and reasoning

framework where a seamless integration of several optimization

and preference reasoning modalities are supported [35].

Besides modeling, learning, reasoning with, and aggregating

preferences, it is often useful to be able to measure the distance
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between the preferences of two individuals, or between a group

and an individual, in order to measure the amount of disagreement

and possibly get closer to a consensus. A notion of distance can

also be useful in the presence of exogenous priorities in addition to

the subjective preferences of the decision maker. These priorities

can be derived from ethical principles, feasibility constraints, or

business values [6, 14, 37, 38]. When preferences and certain ex-

ternal priorities are in conflict, the priorities should override the

subjective preferences of the decision maker. For example, in a hir-

ing scenario, the preferences of the hiring committee members over

the candidates should be measured against guidelines and laws e.g.,

ensuring gender and minority diversity. Therefore, it is essential

to have principled ways to evaluate if preferences are compatible

with a set of priorities, and to measure any deviations. Hence, the

ability to precisely quantify the distance between preferences and

external priorities provides a way to detect deviations, and possibly

suggest more compliant decisions [27, 28].

In this paper we define a notion of distance (formally a distance

function or metric) between CP-nets. CP-nets are a compact repre-

sentation of a partial order over outcomes, so the ideal notion of

distance would be a distance between the underlying partial orders

of the CP-net. We generalize the classic Kendall’s τ distance (KTD)

[23], which counts the number of inverted pairs between two com-

plete, strict linear orders. We add a penalty parameter p defined for

partial rankings as in Fagin et al. [21], and use KTD as a baseline to

compare partial orders. However, the size of the induced orders is

exponential w.r.t. the CP-net, and we conjecture that computing a

distance directly between the induced partial orders is intractable

because of this possibly exponential expansion.

To achieve tractability, we define two distances between CP-

nets, that we call O-Legal CP-net Distance (O-CPD) and Induced
CP-net Distance (I-CPD) that do not require enumerating the entire

partial orders of the underlying CP-nets but rather analyzes the

dependency structure of the CP-nets and their CP-tables in order to

compute the distance. These notions of distance are an approxima-

tion of the KTD, i.e., the true distance, between the induced partial

orders of the CP-net. Our measures leverage the compact represen-

tation of the partial orders induced by the CP-net to achieve this

approximation. O-CPD performs a little better in scenarios where

CP-nets are O-legal [24], i.e., when the CP-nets share a topological

ordering of their underlying features, while I-CPD does not require

this assumption over the structure of the CP-nets.

An important and interesting property of both O-CPD and I-

CPD is that when the KDT between two CP-nets is equal to zero
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then both of our distance measures are also zero. This only happens

when the two CP-nets have the same dependency structure and

CP-tables and thus induce the same partial order. We achieve the

same results when the (normalized) KDT is equal to one, i.e., when

the two CP-nets have the same structure but completely reversed

CP-statements. This conditionmeans that the induced partial orders

are inverted and hence KTD = 1. Unfortunately, when KTD is not

equal to zero or one, then both O-CPD and I-CPD can be larger or

smaller than the true value of KTD. In the case of O-CPD, errors
are accumulated relative to the number of incomparable pairs in

the induced partial order. When a pair is incomparable in either of

the two CP-nets, or incomparable in one or not the other. Likewise,

for I-CPD errors are only introduced due to incomparable pairs as

we do not fully expand these parts of the induced partial order.

Hence, to provide bounds on the error of both O-CPD and I-CPD

we quantify the number of incomparable pairs that can occur in

a CP-net. We prove that it is polynomial to compute the number

of incomparable pairs of outcomes in a separable CP-net. Non-

separable CP-nets have fewer incomparable pairs of outcomes,

since each dependency link eliminates at least one incomparable

pair. However, these theoretical bounds are very loose. For this

reason, we also perform an experimental analysis of the relationship

between the two distance functions and KTD, which shows that

the average error is never more than 10%.

Contribution.We define two novel distance functions between

CP-nets that generalizes the Kendall τ distance between the un-

derlying partial orders. We conjecture that this distance is hard

to compute and define two approximation of this distance which

can be computed in polynomial time. We provide bounds on this

approximation based on the number of incomparable pairs in a

CP-net and perform empirical experiments to show that our ap-

proximation is never more than 10% away from the true distance,

i.e., the Kendall-tau distance between the induced partial orders.

We also show an interesting link between our novel metrics and

distance rationalizability for voting rules defined over CP-nets.

2 PRELIMINARIES
Our preferences may apply to one or more of the individual compo-

nents, rather than to an entire decision. For example, if we need to

choose a car, we may prefer certain colors over others, and we may

prefer certain brands over others. We may also have conditional

preferences, such as in preferring red cars if the car is a convertible.

For these scenarios, the CP-net formalism [7] is a convenient and

expressive way to model preferences [15, 22, 35]. CP-nets indeed

provide an effective compact way to qualitatively model preferences

over outcomes (that is, decisions) with a combinatorial structure.

The CP-net formalism is intuitively easy to understand and provides

efficient optimization reasoning [1, 12]. Moreover, in a collective

decision making scenario, several CP-nets can be aggregated, e.g.,

using voting rules [13, 16, 29], to find compromises and reach con-

sensus among decision makers.

2.1 CP-nets
CP-nets [7] (for Conditional Preference networks) are a graphi-

cal model for compactly representing conditional and qualitative

preference relations. They are sets of ceteris paribus preference state-
ments (cp-statements). For instance, the cp-statement “I prefer red
wine to white wine if meat is served." asserts that, given two meals

that differ only in the kind of wine served and both containing

meat, the meal with red wine is preferable to the meal with white

wine. Formally, a CP-net has a set of features (often called variables)

F = {X1, . . . ,Xn } with finite domainsD (X1), . . . ,D (Xn ). We useXi
to denote a feature and xi to denote the literal assigned to feature

i . For each feature Xi , we are given a set of parent features Pa(Xi )
that can affect the preferences over the values of Xi . This defines a
dependency graph in which each feature Xi has Pa(Xi ) as its imme-

diate predecessors. Consequently, for each featureXi we also define
a set of successor features Succ (Xi ) which is the set of features that

directly depend on Xi . An acyclic CP-net is one in which the depen-

dency graph is acyclic. Given this structural information, one needs

to specify the preference over the values of each feature Xi for each
complete assignment on Pa(Xi ). This preference is assumed to take

the form of a total or partial order over D (Xi ). A cp-statement has

the general form x1 = v1, . . . ,xn = vn : xi = a1 ≻ . . . ≻ x1 = am ,

where Pa(Xi ) = {x1, . . . ,xn }, D (Xi ) = {a1, . . . ,am } , and ≻ is a

total order over such a domain. The set of cp-statements regarding

a certain feature Xi is called the cp-table for Xi .
Consider a CP-net whose features areA, B,C , and D, with binary

domains containing f and f if F is the name of the feature, and

with the cp-statements as follows: a ≻ a, b ≻ b, (a ∧ b) : c ≻ c ,

(a ∧ b) : c ≻ c , (a ∧ b) : c ≻ c , (a ∧ b) : c ≻ c , c : d ≻ d , c : d ≻ d .
Here, statement a ≻ a represents the unconditional preference for

A = a over A = a, while statement c : d ≻ d states that D = d is

preferred to D = d , given that C = c .
A worsening flip is a change in the value of a feature to a less

preferred value according to the cp-statement for that feature. For

example, in the CP-net above, passing from abcd to abcd is a wors-

ening flip since c is better than c given a and b. One outcome α is

better than another outcome β (written α ≻ β) if and only if there

is a chain of worsening flips from α to β . This induces a preorder
over the outcomes, which is a partial order if the CP-net is acyclic.

In general, finding the optimal outcome of a CP-net is NP-hard [7].

However, in acyclic CP-nets, there is only one optimal outcome and

this can be found in linear time by sweeping through the CP-net,

assigning the most preferred values in the cp-tables. For instance,

in the CP-net above, we would choose A = a and B = b, thenC = c ,
and then D = d . In the general case, the optimal outcomes coin-

cide with the solutions of a set of constraints obtained replacing

each cp-statement with a constraint [9]: from the cp-statement

x1 = v1, . . . ,xn = vn : x1 = a1 ≻ . . . ≻ x1 = am we get the con-

straint v1, . . . ,vn ⇒ a1. For example, the following cp-statement

(of the example above) (a ∧ b) : c ≻ c would be replaced by the

constraint (a ∧ b) ⇒ c .

2.2 O-legality and Linearization
When CP-nets are used for collective decision making we are typi-

cally given a collection of CP-nets, P , called a profile in the voting

literature, overm common features with binary domains. A popular

restriction for a collection of CP-nets is the assumption ofO-legality

[24]. For a collection of CP-nets to be O-legal, there must exist a

total order O over them features in P . Hence, for every CP-net in
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P , each feature Xi in all the CP-nets is independent with respect to

features that follow it inO . Given a featureXi the function f lw (Xi )
returns the number of features following Xi in O .

Every acyclic CP-net is satisfiable, i.e., it is possible to produce a

linearization of the partial order such that each cp-statement in the

CP-net is satisfied [7]. One could compute a distance between two

CP-nets by comparing a linearization of the partial orders induced

by the two CP-nets, provided we use the same algorithm to linearize

the partial order. However, this intuitively simple method is likely

intractable, we can use it as a starting point.

We only consider linearization generated using Algorithm 1 [7].

This algorithm works as follows: Given an acyclic CP-net A over n
features and a ordering O to which the CP-net A is O-legal, then
there is at least one feature with no parents. If more than one feature

has no parents, then choose the one that comes first in the ordering

O ; letX be such a feature. Let x1 ≻ x2 be the ordering over Dom(X )
dictated by the cp-table of X . For each xi ∈ Dom(X ), construct a
CP-net, Ni , with the n − 1 features V − X by removing X from the

initial CP-net, and for each feature Y that is a child of X , revising
its CPT by restricting each row to X = xi . We can construct a

preference ordering ≻i for each of the reduced CP-nets Ni . For

each Ni recursively identify the feature Xi with no parents and

construct a CP-net for each value in Dom(Xi ) following the same

algorithm until a CP-net has no features. We construct a preference

ordering for A by ranking every outcome with X = xi as preferred
to any outcome with X = x j if xi ≻ x j in CPT(X).

Algorithm 1 Linearization of a Partial Order induced by CP-net A

1: function LexO(A,O,Lin = [],o = None) ▷Where A is a

CP-net, O is the O-legal order on A, Lin is the (initially empty)

linearization computed by the function, and o is an outcome

(initially none).

2: if O = Null then
3: Lin.append (o)
4: return Lin
5: end if
6: v = pop (O )
7: for value ∈ CPTA,o (v ) do
8: temp = o +value (set value in outcome o)
9: Lin = LexO (A,O,Lin, temp)
10: end for
11: return Lin
12: end function

In Algorithm 1, CPTA,o (v ) returns the ordered values of feature

v in CP-net A, given a partial assignment o to a subset of features.

This linearization, LexO (A,O ), where A is a CP-net and O an O-

legal order over the features of A, enforces that ordered pairs in the

induced partial order are ordered the same in the linearization and

that incomparable pairs are linearized using the cp-tables.

3 METRIC SPACES
A metric space is a pair (M,d ), where M is a set of elements and

d is a function (called distance or metric) d : M ×M → R, which
satisfies the following properties:

(1) d (A,B) ≥ 0;

(2) d (A,B) = d (B,A);
(3) d (A,B) ≤ d (A,C ) + d (C,B).
(4) d (A,B) = 0 if and only if A = B;

Throughout our work we assume that M is a set of CP-nets and

we focus on defining distance functions between the elements of

M . We assume that all CP-nets are acyclic and in minimal (non-

degenerate) form, i.e., all arcs in the dependency graph have a

real dependency expressed in the cp-statements, see the extended

discussion by Allen et al. [2, 3]. In Definition 3.1 extend the Kendall

τ (KT) distance [23] with a penalty parameter p defined for partial

rankings by Fagin et al. [21] to the case of partial orders.

Definition 3.1. Given two CP-netsA andB inducing partial orders

P and Q over the same unordered set of outcomes U :

KTD (A,B) = KT (P ,Q ) =
∑

∀i, j ∈U ,i,j
K
p
i, j (P ,Q ) (1)

where i and j are two outcomes with i , j (i.e., iterate over all

unique pairs), we have:

(1) K
p
i, j (P ,Q ) = 0 if i, j are ordered in the same way or they are

incomparable in both P and Q ;

(2) K
p
i, j (P ,Q ) = 1 if i, j are ordered inversely in P and Q ;

(3) K
p
i, j (P ,Q ) = p, 0.5 ≤ p < 1 if i, j are ordered in P (resp. Q)

and incomparable in Q (resp. P ).

KTD as defined in Definition 3.1 is a count, hence CP-nets with

different numbers of features will have different possible maximum

and minimum values. In order to make it scale invariant and thus

comparable across CP-net pairs, we project it into [0, 1] by nor-

malizing: we divide the KTD value by the total number of pairs of

outcomes which can increase the distance, i.e. the total number of

pairs where outcomes are comparable in at least one CP-net.

In Definition 3.1 we must set 0.5 ≤ p < 1 to make KTD (A,B) a
distance function, indeed if p < 0.5 the distance does not satisfy the

triangle inequality, as shown by Fagin et al. [21]. We also exclude

p = 1 so that there is a penalty for two outcomes being considered

incomparable in one and ordered in another CP-net. This allows us,

assuming O-legality [24] of the CP-nets, to define for each CP-net

a unique most distant CP-net.

An important question is the complexity of computing the dis-

tance between two CP-nets. We can extend a result from Santhanam

et al. [36] to show that in general, the question is hard.

Proposition 3.2. Given two CP-netsA andB deciding ifKTD (A,B) =
0 cannot be computed in polynomial time unless P = NP .

Proof. Santhanam et al. [36] show that it is NP-complete to

verify equivalence for two CP-nets, i.e., deciding if two CP-nets

induce the same ordering, can be reduced to the problem of checking

if their KTD distance is 0. Hence, if we had a polynomial time

algorithm for deciding if KTD (A,B) = 0 then we could decide the

equivalence problem for acyclic CP-nets. □

We know from Boutilier et al. [7] that dominance testing for max-

δ -connected CP-nets, i.e., CP-nets where the maximum number of

paths between two features is polynomially bounded in the size

of the CP-net is NP-complete. We know that O-legal, acyclic CP-
nets are a class of max-δ -connected CP-nets because the O-legality
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constraint means that there are only a maximum of n − 2 paths

between two nodes. Hence, it seems reasonable to conjecture that

the same result holds also forO-legal CP-nets, though this question

remains open.

3.1 Metric Spaces for O-Legal CP-nets
Due to the likely intractability of KTD we define a new distance

for CP-nets which can be computed efficiently directly from the

CP-nets without having to explicitly compute the induced partial

orders. This new distance is defined as the Kendal Tau distance of

the two LexO linearization (Algorithm 1) of the partial orders.

Definition 3.3. Given two O-legal CP-nets A and B, withm fea-

tures, we define:

O-CPD(A,B) =
KT (LexO (A),LexO (B))

2
m−1 (2m − 1)

(2)

where 2
m−1 (2m − 1) represents the maximum KT distance between

two total orders over 2
m

outcomes.

Definition 3.3 requires a linearization but not necessarily the one

provided in Algorithm 1. Observe that depending on the particular

orderingO used, O-CPD can return a different distance value since

the ensuing linearization may vary from ordering to ordering. We

show that O-CPD is a distance over O-legal CP-nets.

Theorem 3.4. Function O-CPD(A,B) is a metric.

Proof. Properties 1-3 are directly derived from the fact that

KTD is a distance function over total orders. Let us now focus on

property 4. In our context, A = B if and only if they induce the

same partial order. Thus, if A = B then O-CPD(A,B) = 0 since

LexO (A) = LexO (B). Let us now assume that A , B, i.e., A and B
induce different partial orders. In principle, what could happen is

that one partial order is a subset of the other. In such a case they

would have the same LexO linearizations and it would be the case

that O-CPD(A,B) = 0, despite them being different. We need to

show that this cannot be the case if A and B areO-legal. Let us first

assume thatA and B have the same dependency graph but that they

differ in at least one ordering in one CP-table. It is easy to see that

in such a case there is at least one pair of outcomes that are ordered

in the opposite way in the two induced partial orders. Assume that

A and B have a different dependency graph. Due to O-legality it

must be that there is a least an edge which is present, say, in A and

missing B. In this case by adding a non-redundant dependency we

are reversing the order of at least two outcomes. □

We will now show how O-CPD(A,B) can be directly computed

from CP-netsA and B, without having to compute the linearizations.

The computation comprises of two steps. The first step, which we

call, normalization, modifies A and B so that each feature will have

the same set of parents in both CP-nets. Thismeans that each feature

will have, in both normalized CP-nets, a CP-table with exactly

the same number of rows corresponding to the same assignment

to its parents. The second step, broadly speaking, computes the

contribution to the distance of each difference in these CP-table

entries. We describe each step in turn.

Step 1: Normalization: Consider two CP-nets, A and B over m
features V = {X1, . . . ,Xm } each with binary domains. We assume

the two CP-nets are O-legal with respect to a total order O = X1 <

X2 < · · · < Xm−1 < Xm . We note that O-legality implies that the

Xi can only depend on a subset of {X1, . . . ,Xi−1}
Each feature Xi has a set of parents PaA (Xi ) (resp. PaB (Xi )) in

A (resp. in B), and is annotated with a conditional preference table

in each CP-net, denoted CPTA (Xi ) and CPTB (Xi ).
We note that, in general we will have that PaA (Xi ) , PaB (Xi ).

However, it is easy to extend the two CP-nets so that in both Xi
will have the same set of parents PaA (Xi ) ∪ PaB (Xi ). This is done
by adding redundant information to the CP-tables, which does not

alter the induced ordering.

For example, let us consider CPTA (Xi ), then we will add 2
q −

2
PaA (Xi )

(where q = PaA (Xi ) ∪ PaB (Xi )) copies of each original

row to CPTA (Xi ), that is, one for each assignment to the features

on which Xi depends in B but not inA. After this process is applied
to all the features in both CP-nets, each feature will have the same

parents in both CP-nets and its CP-tables will have the same number

of rows in both CP-nets. We denote withA′ and B′ the resulting CP-
nets. We note that normalization can be seen as the reverse process

of CP-net reduction [4] which eliminates redundant dependencies

in a CP-net.

Step 2: Distance Calculation: Given two normalized CP-nets A
and B, let di f f (A,B) be the set of CP-table entries of B which

are different in A and let var (i ) = j if CP-table entry i refers to
feature X j . Letm = |V | and f lw (X ) denote the number of features

following X in order O . We define the two following quantities

(expanded in Example 3.6):

nSwap (A, B ) =
∑

j∈dif f (A,B )

2
f lw (var (j ))+(m−1)−|PaB (var (j )) |

(3)

which counts the number of inversions that are caused by each

different table entry and sums them up, and

maxSwap (A) = 2
(m−1) ·

∑
X ∈V

2
f lw (X )

(4)

which counts the number of total possible swaps, that is equal to

having a CP-net that states the exact opposite of A. Observe that
maxSwap is only dependent on the O-legal order, since it counts

the number of swaps to get a complete inversion of a linearization.

Theorem 3.5. Given two normalized CP-nets A and B, we have:

O-CPD(A,B) =
nSwap (A,B)

maxSwap (A)
(5)

We provide an example that gives an intuition of how a difference

in a CP-table entry affects the LexO linearization.

Example 3.6. Consider a CP-net with three binary features, A,

B, and C , with domains containing f and f if F is the name of the

feature, and with the cp-statements as follows: a ≻ a, b ≻ b, c ≻ c .
A linearization of the partial order induced by this CP-net can be

obtained by imposing an order over the features, say Let feature

ordering O = A ≻ B ≻ C . The LexO (A) is as follows:

A1Zone︷                        ︸︸                        ︷
B1Zone︷      ︸︸      ︷

abc ≻ abc ≻

B2Zone︷      ︸︸      ︷
abc ≻ abc ≻

A2zone︷                        ︸︸                        ︷
B3zone︷      ︸︸      ︷

abc ≻ abc ≻

B4zone︷      ︸︸      ︷
abc ≻ abc
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Now, consider changing only the cp-statement regarding A to

a ≻ a. Then, the linearization of this new CP-net can be obtained by

the previous one by swapping the first outcome in the A1zone with
the first outcome in the A2zone , the second outcome in the A1zone
with the second outcome in the A2zone and so on. Moreover, the

number of swaps is directly dependent on the number of features

that come after A in the total order.

From Theorem 3.5 we can see that 0 ≤ O-CPD(A,B) ≤ 1, where

m is the number of features. In particular:

• O-CPD(A,B) = 0 when the two CP-nets have the same

dependency graph and cp-tables and so they are representing

the same preferences;

• O-CPD(A,B) = 1 when the two CP-nets have the same

dependency graph but cp-tables with reversed entries, so

they are representing preferences that are opposite to each

other.

Notice that features with different cp-statements in the representa-

tion give more value to the distance if they come first in the total

order: the value decreases as the position in the total order increases.

For instance it is easy to prove that if the cp-statement of the first

feature in the total order differs, than O-CPD ≥ 1

2
.

3.2 Relaxing O-Legality
In the real world, people can have preferences vary wildly and may

not have the same topological ordering over the aspects that they

consider important. Consequently, in some domains the assumption

of O-legality may be too strong or unnatural. Therefore we define

a metric which does not require O-legality.
This distance requires that the CP-nets are normalized using the

process described in Section 3.1. This normalization procedure can

create cycles in the set of CP-nets due to the induced dependencies

in the graph of the features. However, this is irrelevant for our

purposes as the process does not change the induced partial order.

We merely need to normalize so that there are the same number of

cp-entries in each CP-net.

Each difference in the CP-table corresponds to an inversion of

an edge in the induced partial order, i.e. an inversion of preference

between two outcomes. The distance counts this inversions and it

also considers portions of the transitive closure by computing the

number of pairs which are directly affected by these differences in

the CP-tables.

Formally, the number of pairs of outcomes for which either the

preference is inverted directly or inverted due to the transitive

closure of the induced partial order can be computed as:

nInversion(A,B) =
∑

j ∈dif f (A,B )

2
m−1−|PaB (var (j )) |+ |SuccB (var (j )) |

(6)

The total number of possible inversions that can be directly counted

in such a way is:

maxInversion(A,B) =
∑
X ∈V

2
m−1−|PaB (X ) |+ |SuccB (X ) |

(7)

Definition 3.7. Given two normalized CP-nets A and B, withm
features, we define:

I -CPD(A,B) =
nInversion(A,B)

maxInversion(A,B)
. (8)

The function I -CPD(A,B) is a distance over acyclic CP-nets that
does not require the O-legality assumption. It is also interesting

to notice that I − CPD is independent from the ordering used to

process the features and compute the distance. We can make the

following statement whose proof is similar to that for Theorem 3.4

and we omit it for space.

Theorem 3.8. Function I-CPD(A,B) is a metric.

4 BOUNDING THE ERROR OF O-CPD
The reason for introducing O-CPD is to provide a distance over

CP-nets which can be computed directly from their structures and

which approximates their KTD.
To understand to what extent O-CPD can differ fromKTD, let us

consider two O-legal CP-nets, A and B, with induced partial orders

P and Q , and two outcomes o and o′. From Definitions 3.1 and 3.3

it follows that:

• If o and o′ are ordered in both P and Q then the pair will

contribute in the same way, i.e., either with 0, if they are

ordered in the same way, or 1, if they are ordered in the

opposite way, to both KTD (A,B) and O-CPD(A,B).
• If o and o′ are incomparable in both P andQ then the contri-

bution of the pair to KTD (A,B) is 0, while its contribution
to O-CPD(A,B) can be either 0 or 1 depending if the LexO
linearization has linearized the pair in the same or opposite

way in the two induced orderings.

• If o and o′ are ordered in, say, P and incomparable in Q
then the contribution of this pair to KTD (A,B) is p while its

contribution to O-CPD(A,B) is either 0 or 1.
Summarizing, for each pair O-CPD can overestimate of at most

1 and under-estimate of at most p only if the pair is incomparable

in at least one of the orderings. Thus, an absolute upperbound

to the error that O-CPD makes can be estimated by counting the

maximum number of incomparable pairs in an ordering induced

by a CP-net. We will now compute this number.

Let us consider a separable CP-net S , that is, a CP-net over a set
ofm featuresV with binary domains and no dependencies between

the features. Let P be the partial order induced by S over the set

of outcomes U . A chain is a subset U ′ ⊆ U such that for each

(x ,y) ∈ U ′ × U ′,x > y or x < y. We recall that the height of a
partial order P , denoted h(P ), is the number of elements in the

longest chain. We call incomp (P ) the set of all the incomparable

pairs of outcomes in P . In the following section we will call ob the

best outcome and ow the worst outcome in P .
We start by observing that the height of a partial order induced by

an acyclic CP-net corresponds to the length of the longest path from

the best outcome to the worst outcome. This is a direct consequence

of the fact that a CP-net induces a lattice.

Proposition 4.1. The height h(P ) of a partial order P induced by
an acyclic CP-net coincides with the length of the longest path from
ob to ow .

We now observe that the number of incomparable pairs in a

partial order is connected to its height. In fact, Mirsky’s theorem
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states that the height of a partial order equals the cardinality of

the minimum antichains partition that cover the partial order [33].

This result can be extended to partial orders induced by CP-nets.

Theorem 4.2. Given two partial orders P and Q induced by two
O-legal acyclic CP-nets defined over the same set of features V , if
h(P ) > h(Q ) then incomp (P ) < incomp (Q ).

Given Proposition 4.1 and Theorem 4.2 we can prove that sepa-

rable CP-nets are indeed inducing partial orders with the maximal

set of incomparables with respect to all other O-legal CP-nets.

Theorem 4.3. A separable CP-net S induces a partial order P
where the number of incomparable pairs of outcomes is maximal with
respect of all the possible acyclic O-legal CP-nets over the same set of
features.

We provide the intuition behind the proof. Let’s start by com-

puting the partial order induced by the CP-net, starting from the

best outcome ob . We can now build the next level of outcomes by

changing just one assignment for each feature, let’s call var (oi, j )
the subset of features for which we change the value in the j − th
outcome of the i − th level with respect to ob . We get a subset

of outcomes that differ for just one value from ob . In the induced

partial order all these outcomes are worst than ob by definition.

The cardinality of this subset is

(n
1

)
. For each outcome we can now

compute the subset of outcomes of the next level by changing the

assignment of just one feature except the ones in var (oi, j ). Each
outcome in level i + 1 derived from oi, j is worst than it. For each

level i the number of outcomes is

(n
i

)
. In such a way there does not

exist an outcome o′ in level i ′ which is better than another outcome

o′′ in level i ′′, with i ′ > i ′′. Roughly speaking, we have shown

that level partitioning is minimal and any other CP-net structure

leads to an increment of height of the induced partial order. But due

to Theorem 4.2, a completely separable CP-net has the maximal

number of incomparable pairs with respect to any other CP-net.

This reasoning allows us to make the following statement.

Theorem 4.4. The total number of incomparable pairs in any
completely separable CP-net is:

m−1∑
i=1

(
m

i

)
· (
1

2

(

(
m

i

)
− 1) +

i∑
l=1

(
i

l

) m−1∑
j=l+1

(
m − 1

j

)
) (9)

In fact, starting from the best outcome we can flip the value of a

single feature to have a new outcome which is directly comparable

with the best outcome. This can be done

(m
i

)
times (with i = 1) to

have all the possible outcomes that are directly comparable with the

best outcome in the induced partial order. All the outcomes com-

puted in such a way are incomparable with respect to each other

since the CP-net is separable and since each outcome differs on

two values from any other outcome at the same level (let’s denote

a level with the value of index i). So the number of incomparable

pairs is

(m
i

)
· ( 1

2
(
(m
i

)
− 1). Iterating this computation by increasing

the index i we have the number of incomparable pairs for each

level. We now need to compute the number of incomparable pairs

due to the transitive closure. At each level, the index i also repre-
sents the number of features with a different values with respect to

the best outcome, we call F ⊂ V the subset of such features. Let’s

consider two outcomes o at level i and o′ at level j, with j = i + 1.
The two outcomes are incomparable if at least one feature in F
and at least one more features not in F have different values. The

proof is straightforward, if all the features in F for o and o′ have
the same values, then a single feature is changing from o to o′ that

makes the two outcomes comparable. We can choose

(i
l

)
different

combinations for the features in F and

(m−1
j

)
of different combina-

tions for features not in F . Iterating this process by increasing the

index j allows us to compute the number of outcomes which are

incomparable to o.
The number of incomparable pairs can be used to bound the

error of O-CPD. It is easy to see that each non-fake arc added to

the dependency graph of a CP-net reverses at least one arc in the

induced partial order. This reduces of at least 1 the number of

incomparable pairs, since we connect two outcomes of the same

level in the induced partial order.

5 DISTANCE RATIONALIZABILITY
In this section we describe how a notion of distance between CP-

nets can be used to inform preference aggregation. Multi-agent

systems face the problem of finding a common outcome, which sat-

isfies either a majority or all of a set of agents. In general, research in

preference aggregation studies rules that synthesize the preferences

of the agents into one or more selected outcome and characterizes

the rules in terms of the properties they satisfy [11, 35].

In this context, Distance Rationalizability (DR) is a framework

used for studying voting rules [8, 19, 20, 32]: given a consensus

notion, a distance, and a voting rule on preference profiles, the

voting rule is said to be distance rationalizable if it elects the same

winner as the closest profile in the consensus class. Intuitively, this

is a way to “rationalize” (justify) the behavior of the voting rule by

proving that it returns the same winner of a profile in which voters

agree and that is the most similar to the one given in input with

respect to a particular metric.

Most of the results on distance rationalizability, have studied

the case in which voters express their preferences via total orders

[20]. However, when voters express their preference as CP-nets

we face the problem of aggregating partial orders, which has been

shown to be a hard problem [10]. This hardness can be addressed

via Sequential Voting (SV) [25, 26]. Given a profile of O-legal CP-
nets over the same n features, a sequential voting rule is a tuple of

n voting rules. The sequential procedure applies the voting rules to

the features following order O . In particular, in each step, a profile

of total orders over the values of the feature under consideration is

obtained from the CP-tables considering the row corresponding to

the values of the parent features elected in previous steps.

We show that distance functionO-CPD can be used to rationalize

sequential plurality voting under two common consensus classes.

We recall that in plurality voting, ballots consist of the single most

preferred candidate and the candidate with the most votes win

and tie breaking rules may need to be applied. In our context all

features are binary and under sequential voting we select one value

for each feature, hence Plurality is the natural choice to consider.

Under non-sequential or non-binary settings other rules may be

more appropriate. We will now show that distance function O-CPD
can be used to rationalize sequential plurality voting on CP-nets
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with binary features under two common consensus classes. To the

best of our knowledge, these are the first results which extends DR

to voting with preferences represented compactly.

We extend the notion of consensus classes to profiles of CP-nets:

• Strong Unanimity S : consists of profiles of CP-nets where
all individuals have the same CP-net, i.e. all have the same

partial order over the outcomes;

• Unanimity U : consists of profiles of CP-nets where all in-
dividuals have the same best outcome, i.e. they all have a

partial order with the same undominated outcome at the top;

and

• MajorityM : consists of profiles of CP-nets where there is
a majority of CP-nets that have the same best outcome, i.e.

there is a majority of partial orders that have the same best

outcome at the top.

Plurality voting is distance rationalizable with respect to the con-

sensus classes defined on total orders homologous to S andU and

swap distance [18, 32].

The following definition of distance rationalizability is an adap-

tation to CP-nets of the one given in [20]:

Definition 5.1. A Sequential Voting rule (SV) is said to be distance-
rationalizable with respect to a consensus class X ∈ {S,U ,M } if
there is a distance d over the induced orders such that for each pro-

file V of CP-nets, which is O-legal w.r.t. some order O , an outcome

o is the winner under SV applied to V if and only if it is a winner

in a nearest (with respect to d) election in X .

Informally, the distance d over orders is used to define a distance

between profiles (that is, elections) by taking the sum of the dis-

tances between pairs of corresponding orders in the two elections.

So the nearest election to V is the election in the particular con-

sensus class X with smallest distance from V . Given a distance d
over CP-nets, and two profiles of n CP-nets E = (u1, . . . ,un ) and
E ′ = (v1, . . . ,vn ) over the same set of features, we define a distance

over profiles as the sum of the distances between corresponding

pairs of CP-nets, d ′(E,E ′) =
∑n
i=1 d (ui ,vi ).

Theorem 5.2. Sequential plurality voting is O-CPD DR with re-
spect to the strong unanimity consensus class S .

Intuitively, given a profile of CP-nets E, the profile E ′ in the

consensus class S which minimizes O-CPD is the one where all the

CP-nets have the same topology. In detail, for each feature X ′i the
set of parents is the union of the parents of Xi in all the CP-nets

in E. Moreover, the CP-tables associate to each joint assignment

of the parent features the order appearing in the majority of the

corresponding entries in the CP-nets.

Theorem 5.3. Sequential plurality voting is O-CPD DR with re-
spect to the unanimity consensus class U .

In this case, in the consensus profile the CP-nets maintain their

original topology. Let assume that the winner obtained by the

sequential approach is outcome o. Then, to obtain a profile in U ,

only the rows of the CP-tables corresponding to o are changed so

to put its assignment first.

Theorem 5.4. Sequential plurality voting is O-CPD DR with re-
spect to the majority consensus classM .

This is true by design, as the nearest profile inM is E itself.
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Figure 1: Mean time (log scale) to compute distance metrics
for CP-nets with various numbers of features. For a pair of
CP-nets with 9 features it takes ≈32929ms to compute KTD
and only 27ms for O-CPD or I-CPD.

6 EMPIRICAL ANALYSIS
To support our theoretical results we run a set of experiments to

see how our distances measures behave in practice. Due to the

lack of real world data [30, 31], we generate CP-nets uniformly at

random using the software described by Allen et al. [2, 3]. During

this phase we generate CP-nets overn features with binary domains

and 2 ≤ n ≤ 9 parents. For each value ofnwe generate 1000 CP-nets
using the default software settings: for 2 ≤ n ≤ 6 the maximum

number of parents is n − 1, while for 7 ≤ n ≤ 9 the maximum

number of parents is 5. We use these generated CP-nets to test

different properties of the distance function.

Experiments are developed in Python and were run on a cluster

with 2 Intel E5-2670 CPUS running at 2.60GHz, 128GB of memory,

and a Tesla K20m GPU. For all experiments we set p = 0.5 when

computing KTD. To compare our metrics we built a simple vector

representation of a CP-net. To do this we first, given two CP-nets

A and B, where A is the referee, normalize the two CP-nets to have

the same number of cp-entries. Each cell of the vector representing

A is equal to 1. Each i-th cell in the vector representing B is equal to

1 if the correspondent cp-entry in the two CP-nets are equal, -1 oth-

erwise. Using this vector representation we can compute both the

cosine similarity between the vectors and the Euclidean distance [5].

Using these two well known metrics as distance functions allows

us to compare the performance of O-CPD with simple baselines.

Fig. 1 shows the average time required to compute KTD, O-CPD,
cosine similarity, and the Euclidean distance. While KTD grows

exponentially, the other mean times are all similar to each other.

This suggests that simple distance functions have good performance

on this combinatorial domain. Clearly, for small values of n, the
running time for O-CPD is higher than that of KTD due to the

normalization processing time. However, the mean time for KTD
increases exponentially and is almost 4 orders of magnitude greater

than the mean time of O-CPD when n ≥ 3.
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Figure 2: Percentage of incorrectly clas-
sified O-legal CP-nets versus KTD for
the various distance metrics.
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Figure 3: Mean percentage error of
O-CPD and I-CPD with respect to the
true value of KTD for O-legal CP-nets.
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Figure 4: Percentage of incorrectly clas-
sified non-O-legal CP-nets versus KTD
for the various distance metrics.

In addition to running time, we also checked how many times

O-CPD, I -CPD, cosine similarity and the Euclidean distance are

incorrect w.r.t. KTD. Formally, given a triple of CP-nets (A,B,C )
over the same set of features we compute kt1 = KTD (A,B), kt2 =
KTD (A,C ), l1 = O-CPD(A,B) and l2 = O-CPD(A,C ) (respectively
for the other metrics) and count how many times kt1 >= kt2 but
l1 < l2 or vice-versa. In other words, we count how many times B
is closer to A with respect to C according to KTD, but the various
distance metrics state the opposite.

Fig. 2 shows the percentage of incorrectly classified cases as we

sweep n. We observe that our metrics strictly dominate the perfor-

mance of the vector representations and this result is statistically

significant. The error rates for O-CPD and I -CPD are relatively

stable as we increase n, at about 9% and 13%, respectively. This is

interesting because with a high value of n the number of incom-

parable pairs in the induced partial order increases: incomparable

pairs are the main reason for the over-estimation and the under-

estimation of KTD. Hence, O-CPD and I -CPD show good resilience

to increasing numbers of incomparable pairs.

Looking at O-CPD and I -CPD more closely, we compute the

Mean Percentage Error (MPE) in Fig. 3. The MPE is a scale invariant

measure that gives an idea of how much our metrics vary from

KTD. For each value of n we compute:MPE = 100

t
∑t
i=1

ktdi−cpdi
ktdi

.

Where t is the number of samples drawn randomly, ktdi is the
value of KTD for the i-th sample and cpdi is the value of O-CPD or

I -CPD for the i-th sample. Looking closely at Figure 3 we see that

after n ≥ 3 the error stays relatively constant.

Turning to I -CPD, we ran the same set of experiments on CP-

nets which were not O-legal. The results of these experiments are

show in Figures 4 and 5. We observe that I -CPD performs extremely

well even in cases where there are a high number of incomparable

pairs. In Figure 4 we see I -CPD still out preforms the other metrics

on non-O-legal CP-nets and that the error is relatively stable. In

Figure 5 we see that the MPE for I -CPD is smaller than for O-legal

CP-nets and it actually stabilizes around 7%. In fact, as the number

of features increase, we see a drop in the error rate for I -CPD,
indicating that it works very well across a large number of cases.
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Figure 5:Mean percentage error of I-CPDwith respect to the
true value of KTD for non-O-legal CP-nets.

7 CONCLUSIONS
In this paper we defined two novel notions of distance between

CP-nets. This is, to the best of our knowledge, the first attempt

to define a tractable notion of distance between CP-nets. We give

theoretical bounds and an experimental evaluation, showing that

both are efficient and accurate. Using these metrics we extend the

concept of Distance Rationalizability to partial orders and hence to

Sequential Voting Rules defined for CP-nets, showing that our new

distance can be used to rationalize the sequential plurality voting

rule for CP-nets. There are a number of interesting extensions to

consider for future work including tighter bounds and extending

both metrics to work when CP-nets have different features.
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