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ABSTRACT
We focus on the refugee matching problem—a general “two-sided

matching under preferences” model with multi-dimensional fea-

sibility constraints. We propose a taxonomy of stability concepts

for the problem; identify relations between them; and show that

even for two natural weakenings of the standard stability concept,

non-existence and NP-hardness results persist. We then identify

several natural weaker stability concepts for which we present a

polynomial-time and strategy-proof algorithm that returns a sta-

ble matching. We also examine the complexity of computing and

testing Pareto optimal matchings.
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1 INTRODUCTION
Centralized matching markets based on the preferences of the con-

cerned agents have been one of the successful stories of algorithmic

economics. These approaches have been successfully deployed in

school admissions, placement of hospital-resident, and centralized

kidney markets (see e.g., [1, 16, 17, 23]).

In recent years, one of the most pressing issues is the safe and

timely placement of refugees in places that can host them. Often,

this placement is done in an ad hoc manner where neither the

preferences of the refugees nor the hosts is taken into account. For

example, the host locality may prefer people who speak the same

language and a refugee family may prefer a country with which

they have some affinity. This calls for a centralized matching market

approach to the refugee allocation problem (see e.g., [13, 19]).

Delacrétaz et al. [7] formalized refugee allocation as a centralized

matching market design problem. The problem is more general than

the traditional school choice or hospital-resident setting [1] because

unlike a school seat that accommodates a single student, a family
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can only be hosted by a locality, if it can satisfy a multi-dimensional

requirement of the family that could involve services such as hos-

pital beds, children’s day care, special medical services, etc. Thus

the refugee allocation problem is a generalisation of the traditional

two-sided matching problem by considering multi-dimensional fea-

sibility constraints. Delacrétaz et al. [7] pointed out that for the

refugee allocation problem, the standard stability concept may lead

to non-existence of a stable matching. Hence they focus on a weaker

stability notion called quasi-stability for which they propose algo-

rithms. In another recent work, Andersson and Ehlers [2] focused

on a restricted version of the refugee allocation problem with unidi-

mensional service demands and capacity vectors but with a feature

that captures language compatibility of families and hosts. For this

setting, they present an algorithm that finds a stable maximum

matching.

Although refugee allocation as amatching problem has started re-

ceiving interest both in academia and in practice, several important

aspects of it need further understanding. One fundamental research

question is what is the right stability concept that is weak enough

so as to guarantee existence of a stable computable matching but

strong enough to lead to reasonable and meaningful outcomes?

Secondly, what is the complexity of computing stable matchings

for different notions of stability in this model? Similar questions

also apply to other standard concepts such as Pareto optimality. We

consider these questions in this paper.

Contributions. We first focus on stability in refugee allocation.

We present a clear taxonomy of stability concepts for the refugee al-

location problem. Two of the concepts (stability and quasi-stability)
have been studied in prior work [7] whereas the others (strong sta-
bility, weak stability, stability by demand, weak stability by demand)
are natural variants of the original two that we propose in this

paper. Whereas stability is too stringent to guarantee the existence

of a stable matching, quasi-stability is a very weak concept since an

empty matching satisfies it. We prove the logical relations between

the stability concepts to unify the discussion on stability in refugee

allocation (see Figure 1).

We start from stability and weaken it in two orthogonal direc-

tions: (1) a deviating family can replace at most one other family,

and (2) if a family replaces a set of families, then at most the same

number of units of each service are used by the new family as the

set of families that are replaced. For each of the weakening opera-

tions, the resulting stability notions weak stability and stability by

demand still do not guarantee the existence of a stable matching.
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We additionally show that the problems of checking whether such

matchings exist are NP-complete. Based on these negative results,

we focus on the stability notion weak stability by demand which is

obtained from stability by applying both weakening operations (1)

and (2). This notion seems to have some merit over quasi-stability.

We show that a weakly stable matching by demand is guaranteed to

exist. We also propose a polynomial-time, strategy-proof algorithm

for computing a matching that is weakly stable by demand.

We also present two stability concepts that are based on the

master list principle that defines a global priority over the families

and could be based on factors such as the education level of the

families or the urgency of their resettlement. Our main algorithm

(Hierarchical Family Proposing Deferred Acceptance (HFPDA)) also
achieves stability based on the master list principle.

Since tailor-made algorithms for stability concepts cannot easily

be extended to satisfy other feasibility constraints or objectives

such as maximizing the number of refugees hosted, we take an in-

teger/constraint programming approach to the problem. This type

of approach has only recently gained traction for more restricted

settings such as hospital-resident matching with couples [4]. We

propose constraint programming formulations for finding stable

matchings in this general setting. Our formulations provide a gen-

eral framework where additional constraints can easily be placed.

The constraints also provide simple algorithms for testing stability.

We also focus on Pareto optimal allocations from the families’

perspective and show that testing weak Pareto optimality of a given

matching as well as Pareto optimality is coNP-complete even for

unidimensional constraints. Our results provide a formal justifica-

tion to the comment by Delacrétaz et al. [7] that finding a Pareto

improvement appears to be a challenging task.

Most of our computational results are summarized in Table 1.

Before we proceed further, we note that although the model we ex-

amine and the terminology we use is inspired by refugee allocation,

the model is a very general matching model with multi-dimensional

constraints. Hence the results can have other interpretations de-

pending on the application domain.

Complexity Complexity Existence

of Testing of Computing Guaranteed

Stability in P
1

NP-c
2

No
1

Weak Stability in P NP-c No

Stability by demand in P NP-c No

Weak stability by demand in P in P Yes

Quasi-Stability in P
1

in P
1

Yes
1

Pareto optimality coNP-c NP-h Yes

Weak Pareto optimality coNP-c NP-h Yes

1
Delacrétaz et al. [7]

2
McDermid and Manlove [18]

Table 1: Summary of results.

2 MODEL
Let there be a set of refugee families F and a set of localities L. Each
family f has a preference ordering ≿f over the set of localities L

and the option of being unmatched, denoted by ∅. ℓ ≿f ℓ
′
means

Quasi-stability

Strong stability

Stability

Stability by demand Weak stability

Weak stability by demand

Non-wastefulness

Figure 1: Logical relations between stability concepts. An ar-
row from (A) to (B) denotes that stability concept (A) implies
stability concept (B). The solution concepts in bold guaran-
tee the existence of a corresponding stable matching.

that f prefers ℓ to ℓ′ or f is indifferent between ℓ and ℓ′. Each

locality ℓ also has a priority ordering ≿ℓ over the set of families

F ∪ {∅}. A locality ℓ is acceptable to f if ℓ ≿f ∅ and a family f is

acceptable to ℓ if f ≿ℓ ∅. Let ≿ denote the preference and priority

profile of all families and all localities.

Unlike classical two-sided matching problems, different types

of services or multidimensional constraints need to be taken into

account, e.g., each family may require several units of house rooms,

school seats and job vacancies. Let S denote a set of services and

let the matrix d denote the service demands of all families. Each

row vector df corresponds to the demand of family f and each

element dsf specifies the demand for service s of family f . Let the

matrix c denote the service capacities of all localities. Each row

vector cℓ corresponds to the capacity of locality ℓ and each element

cs
ℓ
specifies the locality ℓ’s capacity of service s .
A refugee allocation instance consists of a tuple µ = (F ,L,≿

, S,d, c ). A contract x = ( f , ℓ) is a family-locality pair which im-

plies f and ℓ are matched to each other. An outcome of a refugee

allocation instance is a set of contracts X ⊆ F × (L ∪ {∅}) in which

every family gets a contract. Let Lf (X ) denote the assignment to

family f which is a subset of L ∪ {∅} and let Fℓ (X ) be the set of
families matched to ℓ under X . Denote F (X ) = ∪ℓ∈LFℓ (X ) and

L(X ) = ∪f ∈F Lf (X ). Let F
≻f
ℓ

(X ) = { f ′ : f ′ ∈ Fℓ , f
′ ≻ℓ f } be the

set of families that are matched to ℓ with higher priority than f

and F
≺f
ℓ

(X ) = { f ′ : f ′ ∈ Fℓ , f ≻ℓ f ′} be the set of families that

are matched to ℓ with lower priority than f .
We assume demand or capacity vectors can be compared in this

way: For any two vectors ω = (ω1, ...,ωk ),ω
′ = (ω ′

1
, ...,ω ′k ), we

write ω ≤ ω ′ if for each i ∈ [1,k], ωi ≤ ω ′i . In other words, a vector

ω is smaller or equal to ω ′ if each element of ω is smaller or equal

to the counterpart ofω ′. We also writeω < ω ′ if and only ifω ≤ ω ′

and ω ′ ≰ ω.
An outcome X is feasible if (i) for each f ∈ F (X ), |Lf (X ) |=1

and (ii) for each ℓ ∈ L(X ),
∑
f ∈Fℓ (X ) df ≤ cℓ . In other words, an

outcome is feasible if each family is matched with one locality

or remains unmatched and each locality is matched with a set

of families whose demands do not exceed its capacity. A feasible

outcome X is individually rational if (i) for each f ∈ F , Lf (X ) ≿f ∅,
and (ii) for each ℓ ∈ L and for each f ′ ∈ Fℓ (X ), we have that f ′ ≿ℓ ∅.
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That is, no family is matched with an unacceptable locality and no

locality is matched with any unacceptable family.

A feasible outcome X is Pareto optimal if there is no feasible out-
comeX ′ such that∀f ∈ F ,Lf (X

′) ≿f Lf (X ) and∃f ∈ F ,Lf (X
′) ≻f

Lf (X ). A feasible outcome X is weakly Pareto optimal if there is no
feasible outcome X ′ such that ∀f ∈ F ,Lf (X

′) ≻f Lf (X ). Note that
we have defined the Pareto optimality notions from the point of

view of the families since they have real preferences whereas the

localities can be viewed as having priorities. Our main results con-

cerning these concepts are computational hardness results. Hence

they even apply if the localities have preferences (in the form of

complete indifference among the families).

Amechanism is a function that maps refugee allocation instances

to outcomes. Amechanism is feasible if it always produces a feasible

outcome for any instance and a mechanism is strategy-proof if

no family can achieve a more preferred outcome if it misreports

its preference. The reason why we consider strategy-proofness

only from the view of one side is that it is well-known that there

is no stable matching mechanism that is strategy-proof for both

sides [1, 21].

3 TAXONOMY OF STABILITY
In this section, we describe a taxonomy of stability concepts and

show which concepts can guarantee the existence of stable out-

comes. The logical relation of all concepts is summarized in Figure 1.

3.1 Quasi-stability and Strong Stability
The first notion is quasi-stability proposed by Delacrétaz et al. [7]

which is an extension of fairness studied in the literature of school

choice to the setting of refugee allocation.

Definition 3.1 (Quasi-stability). A feasible outcome X is quasi-
stable if for each locality ℓ ∈ L, for each locality ℓ′ ∈ L \ {ℓ}, and
for each family f ′ ∈ Fℓ′ (X ), either ℓ′ ≻f ′ ℓ or f ≻ℓ f ′ for all
f ∈ Fℓ (X ).

This notion captures the idea that any family and locality pair

cannot block an outcome if the family would have the lowest prior-

ity in the new locality, even though the new locality can provide

sufficient services to accommodate it.

One drawback of this concept is that it allows a family f who

cannot be matched to ℓ under any feasible outcome to actually

block some outcome with ℓ. Consider one locality ℓ with capacity

vector cℓ = (1) and two families f1, f2 with demand vectors df1 =
(2),df2 = (1). If both families consider ℓ acceptable and ℓ prefers f1
to f2, then the only non-empty feasible outcome, X = ( f2, ℓ), is not
quasi-stable. In addition, quasi-stability can be wasteful since even

an empty outcome satisfies it. Wastefulness might be intolerable in

practice and it is desirable to accommodate more refugee families

rather than fewer or none.

Definition 3.2 (Non-wastefulness). A feasible matching X is non-
wasteful if there is no pair ( f , ℓ) with f ∈ F and ℓ ∈ L such that (i)

f ≻ℓ ∅, ℓ ≻f Lf (X ) and (ii) X ∪ {( f , ℓ)}\{( f ,Lf (X ))} is feasible.

A feasible matching is non-wasteful if there does not exist any

family f and locality ℓ such that f prefers ℓ to its assignment Lf (X )
and ℓ still has enough services to accommodate f without removing

any matched family at ℓ.

In contrast to quasi-stability, we consider non-wastefulness as

an important part of stability and integrate it into the definition of

blocking pairs. The following notion of strong blocking pairs is de-

rived by combining the idea of quasi-stability and non-wastefulness.

Definition 3.3 (Strong Stability). For a feasible outcome X , a fam-

ily f ∈ F and a locality ℓ ∈ L, the pair ( f , ℓ) is called a weakly block-
ing pair if ( f , ℓ) < X , ℓ ≻f Lf (X ) and either i) ∃f ′ ∈ Fℓ (X ), f ≻ℓ
f ′ or ii) X ∪ {( f , ℓ)}\{( f ,Lf (X ))} is feasible. A feasible outcome X
is strongly stable if it is individually rational and admits no weakly

blocking pair.

We do not advocate strong stability since it inherits the drawback

from quasi-stability where a family that cannot be accommodated

can block other families, and it is not hard to show that the set of

strongly stable outcomes can be empty. This concept serves as the

connection between quasi-stability and other stability concepts.

3.2 Stability and Weak Stability
Next we extend the traditional stability concept in the two-sided

matching problem to the model with multi-dimensional constraints.

Definition 3.4 (Stability). For a feasible outcomeX , a family f ∈ F
and a locality ℓ ∈ L, the pair ( f , ℓ) is a blocking pair if there is a
feasible outcome X ′ with ( f , ℓ) ∈ X ′ \X such that ℓ ≻f Lf (X ) and

for each f ′ ∈ Fℓ (X ) \ Fℓ (X
′), f ≻ℓ f ′. A feasible outcome X is

stable if it is individually rational and admits no blocking pair.
1

In words, f and ℓ form a blocking pair if f prefers ℓ to its cur-

rent assigned locality and ℓ can accommodate f by (optionally)

removing families matched to ℓ with lower priority than f . When

there are only unidimensional demands / capacities and each family

only consumes one unit, the definition coincides with the classical

stability concept.

If we impose a restriction that ℓ can accommodate f by removing

exactly one family f ′ matched to ℓ with lower priority than f , then
we derive the following weak stability concept.

Definition 3.5 (Weak Stability). For a feasible outcomeX , a family

f ∈ F and a locality ℓ ∈ L, the pair ( f , ℓ) is a strongly blocking
pair if there is a feasible outcome X ′ with ( f , ℓ) ∈ X ′ \ X and

|Fℓ (X ) \ Fℓ (X
′) | ≤ 1 such that ℓ ≻f Lf (X ) and for each f ′ ∈

Fℓ (X ) \ Fℓ (X
′), f ≻ℓ f ′. A feasible outcome X is weakly stable if it

is individually rational and admits no strongly blocking pair.
2

Next we show that the set of weakly stable outcomes can be

empty. We can also derive the same conclusion for strong stability

and stability due to their logicical relations.

Proposition 3.6. The set of weakly stable outcomes can be empty
even if preferences and priorities are strict and there are only unidi-
mensional demands and capacities.

Proof. Consider the following instance.
3
We adhere to the con-

vention throughout the paper that only acceptable agents are ranked

in the preference/priority profile.

1
We define stability in the same way as Delacrétaz et al. [7], except we also consider

individual rationality.

2
Strong stability and weak stability are different from their namesakes in [17].

3
This counterexample was also considered by McDermid and Manlove [2010]

and Delacrétaz et al. [2016].
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F = { f1, f2, f3} L = {ℓ1, ℓ2}
df1 = df2 = cℓ2 = (1) df3 = cℓ1 = (2)

ℓ2 ≻f1 ℓ1 f1 ≻ℓ1 f3 ≻ℓ1 f2
ℓ1 ≻f2 ℓ2 f2 ≻ℓ2 f1 ≻ℓ2 f3
ℓ1 ≻f3 ℓ2

Suppose that there exists a weakly stable outcomeX . If ( f3, ℓ1) ∈
X , then f1 must be matched to ℓ2 or else f1 and ℓ1 will form a

blocking pair. However, this outcome will be blocked by ( f2, ℓ2),
which leads to a contradiction. Hence ( f3, ℓ1) < X . Then X =
{( f2, ℓ1), ( f1, ℓ2)}, otherwise ( f2, ℓ1) or ( f1, ℓ2) will form a blocking

pair. However,X is blocked by ( f3, ℓ1), which is a contradiction. □

3.3 Stability by Demand
In an attempt to overcome the negative results in the previous

section, we weaken stability in an orthogonal manner. A natural

idea is that a family f , which prefers to be matched with a better

locality ℓ but requires more resources than a set of families matched

to ℓ with lower priority than f , cannot form a blocking pair with ℓ.

Definition 3.7 (Stability by demand). For a feasible outcome X , a

family f ∈ F and a locality ℓ ∈ L, the pair ( f , ℓ) is a blocking pair
by demand if there is a feasible outcome X ′ with ( f , ℓ) ∈ X ′ \ X
such that ℓ ≻f Lf (X ), for each f ′ ∈ Fℓ (X ) \ Fℓ (X

′) we have that

f ≻ℓ f ′, and df ≤
∑
f ′∈Fℓ (X )\Fℓ (X ′) df ′ . A feasible outcome X is

stable by demand if it is individually rational, non-wasteful and

admits no blocking pair by demand.

The family f and locality ℓ form a blocking pair by demand if f
prefers ℓ to its current assigned locality and ℓ can accommodate

f without removing any family matched to ℓ with higher priority

than f and f ’s demand vector is smaller or equal to the sum of the

demand vectors of the removed families. Thus, f cannot replace

a subset of families that have lower priority if f requires more

services than them. Note that we are not overriding or ignoring the

actual priorities of localities. We are using a natural requirement

that if a family f has higher priority and requires less resources

than a set of families, then it has some justification over the set.

However, it turns out that the set of stable outcomes by demand

can be empty.

Proposition 3.8. The set of stable outcomes by demand can be
empty even if preferences and priorities are strict and all families and
localities are acceptable to each other.

Proof. To prove the impossibility result, it is sufficient to show

that for a particular instance, every feasible, individually rational

and non-wasteful outcome is blocked by some family-locality pair,

since all other feasible outcomes are either individually irrational or

wasteful, which cannot be stable by demand. Consider the following

instance.

L = {ℓ1, ℓ2} F = { f1, f2, f3, f4}
ℓ1 ≻f1 ℓ2 df3 = cℓ1 = (2)

ℓ1 ≻f2 ℓ2 df1 = df2 = df4 = cℓ2 = (1)

ℓ1 ≻f3 ℓ2 f4 ≻ℓ1 f3 ≻ℓ1 f1 ≻ℓ1 f2
ℓ2 ≻f4 ℓ1 f1 ≻ℓ2 f4 ≻ℓ2 f2 ≻ℓ2 f3

First we find all feasible, individually rational and non-wasteful

outcomes. Suppose f3 is unmatched, then we can match any two

families from { f1, f2, f4} with ℓ1 and the remaining one with ℓ2.

The corresponding outcomes are X1,X2,X3. Suppose f3 is matched,

then f3 needs to bematched with ℓ1, since only ℓ1 can accommodate

it. Then ℓ2 can be matched with any family from { f1, f2, f4}. The
corresponding outcomes are X4,X5,X6.

X1 = {( f1, ℓ1), ( f2, ℓ1), ( f4, ℓ2)} X4 = {( f3, ℓ1), ( f4, ℓ2)}
X2 = {( f1, ℓ1), ( f4, ℓ1), ( f2, ℓ2)} X5 = {( f3, ℓ1), ( f1, ℓ2)}
X3 = {( f2, ℓ1), ( f4, ℓ1), ( f1, ℓ2)} X6 = {( f3, ℓ1), ( f2, ℓ2)}

However, for each of these outcomes, we can exhibit a blocking pair

by demand: X1 is blocked by ( f3, l1) viaX4;X2 is blocked by ( f4, l2)
via X1; X3 is blocked by ( f1, l1) via X2; X4 is blocked by ( f1, l2) via
X5; X5 is blocked by ( f4, l1) via X3; X6 is blocked by ( f1, l2) via
X5. □

Next, we weaken stability by demand to obtain weak stability by

demand. Weak stability by demand is also implied by weak stability.

Definition 3.9 (Weak stability by demand). For a feasible out-

come X , a family f ∈ F , and a locality ℓ ∈ L, the pair ( f , ℓ)
is a strongly blocking pair by demand if there is a feasible out-

come X ′ with ( f , ℓ) ∈ X ′ \ X and |Fℓ (X ) \ Fℓ (X
′) | ≤ 1 such that

ℓ ≻f Lf (X ), for each f ′ ∈ Fℓ (X ) \ Fℓ (X
′) we have that f ≻ℓ f ′,

and df ≤
∑
f ′∈Fℓ (X )\Fℓ (X ′) df ′ . A feasible outcome X is weakly

stable by demand if it is individually rational, non-wasteful and

admits no weakly blocking pair by demand.

The distinction from stability by demand is that a strongly block-

ing pair by demand requires that the family f can replace a less

preferred family f ′ at locality ℓ without using more services.

Contrary to the non-existence result for stability by demand, the

weaker variant can guarantee the existence of desirable outcomes.

Proposition 3.10. The set of weakly stable outcomes by demand
is non-empty.

To prove this proposition we will present an algorithm that

always yields a weakly stable outcome by demand, that will be

shown in next section.

4 HIERARCHICAL FAMILY-PROPOSING
DEFERRED ACCEPTANCE ALGORITHM

In this section, we present the hierarchical family-proposing de-

ferred acceptance (HFPDA) algorithm that is strategy-proof for

families, polynomial-time and returns a matching that is weakly

stable by demand. Before we proceed to the HFPDA algorithm,

we first describe the family-proposing deferred acceptance (FPDA)

algorithm that only applies to the case where all families have the

same demand, which is formally specified as Algorithm 1.

When indifferences arise in the preference / priority profile,

the stable matching will still exist [22]. In our FPDA algorithm,

indifferences are allowed. When they appear, we break all ties

lexicographically.

Proposition 4.1. The HFPDA algorithm returns a weakly stable
outcome by demand.

Proof. To prove the outcome is weakly stable by demand, first

we need to show it satisfies individual rationality. Since each family

only proposes to acceptable localities and localities only temporarily
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Input: A refugee allocation instance µ = (F , L, ≿, S, d, c ) where all fami-

lies in F have the same demand vector.

Output: A stable outcome X .

1 For each ℓ ∈ L, let q (ℓ) denote the maximum number of families in F
that ℓ can host.

2 Consider the hospital-resident instance (F , L, ≿, q ) where F corre-

sponds to the set of residents, L corresponds to the set of hospitals, the

size of each family is considered to be 1 and the quota of each locality

ℓ is q (ℓ).
3 If members of F or L have ties in their preferences, break ties lexico-

graphically and update ≿ accordingly.

4 Run the classical DA (Deferred Acceptance) algorithm on the hospital-

resident instance (F , L, ≿, q ). Let the outcome of DA be the matching

X .

5 return X .

Algorithm 1: FPDA Algorithm

Input: A refugee allocation instance µ = (F , L, ≿, S, d, c )
Output: A weakly stable outcome X by demand

1 c′ ←− c % capacities will be modified

2 Find an ordered partition H = (H1, . . . , H |H | ) of the families in F
such that

• Any two families f , f ′ ∈ F are in the same set if and only if

df = df ′
• If df < df ′ , then f ∈ Hi and f ′ ∈ Hj for some i < j .

% The order can be found as follows. Construct a partial order G over

H in which Hi points to Hj if df < df ′ for f ∈ Hi and f ′ ∈ Hj . Use

topological sort to order the elements in H .

3 for k = 1, 2, ..., |H | do
4 Run the FPDA algorithm on families in Hk and all localities in L

while considering the current capacities c′. Let the outcome of

FPDA for problem (Hk , L, ≿, S, d, c′) be Xk .
5 Update the corresponding capacities of each locality ℓ as follows

c′ℓ ←− c
′
ℓ −

∑
f ∈Fℓ (Xk )

df

6 return X =
⋃|H |
k=1 Xk

Algorithm 2: Hierarchical Family Proposing Deferred
Acceptance (HFPDA)

accommodate acceptable families, the outcome must be individual

rational.

Then we show the outcome admits no weakly blocking pair

by demand. For the sake of contradiction, assume there exists a

weakly blocking pair by demand ( f , ℓ) ∈ X ′ \X and another family

f ′ ∈ Fℓ (X ) such that f ≻ℓ f ′ and df ≤ df ′ . Since f has a weakly

smaller demand vector than f ′, it must propose to l no later than

f ′. Locality ℓ would be matched with f if ℓ had enough capacity,

which contradicts the fact that f ′ can be matched to ℓ with a weakly

larger demand vector. □

We note that HFPDA runs in polynomial time since the DA

algorithm runs in polynomial time.

Proposition 4.2. The HFPDA algorithm has running timeO ( |F |2 ·
|S | + |F | · |L|).

The algorithm takes time O ( |F |2 · |S |) to construct the ordered

permutation and O ( |F | × |L|) for the part where FPDA is run on

the families. The overall running time is O ( |F |2 · |S | + |F | · |L|).

Proposition 4.3. The HFPDA algorithm is strategy-proof with
respect to the families.

Proof. The proof is by induction on the groups of families

H1, . . . ,H |H | .We first establish that the algorithm is strategy-proof

for the families in H1. Note that the matches of families in H1 are

not changed in subsequent rounds of the for loop in HFPDA. In

group H1, if we modify the demand vectors to a unidimensional

vector with one unit of demand and set the capacity of each locality

to the maximum number of families that the locality can accom-

modate, then we have a one-to-one mapping from matching of

families inH1 to a hospital-resident problem (HR) [20] in which the

families in H1 correspond to the residents and localities correspond

to hospitals with preferences / priorities being unchanged.

The families in H1 have no incentive to misreport their prefer-

ences since the DA algorithm is strategy-proof for residents in the

corresponding HR problem under strict preferences [21]. It follows

that when all the ties in the preferences are broken lexicographi-

cally, and DA is run on the resultant preferences, the mechanism

remains strategy-proof for the families in H1. Suppose for contra-

diction that some family in H1 can misreport its preferences and

get a better locality. This implies that a corresponding resident can

misreport by reporting some other strict preference and get a better

hospital which contradicts the fact that resident proposing DA is

strategy-proof for the residents.

Since the matches of families in H1 are irrevocable, the same

argument can be applied inductively to the subsequent groups of

families. So none of the families have an incentive to misreport. □

We note here that there cannot exist a weakly stable by demand

matching algorithm that is strategyproof for the localities. This fol-

lows from well-known results in school choice / hospital-resident

matching that there is no stable matching algorithm that is strate-

gyproof for the hospitals [1, 21].

5 COMPLEXITY OF STABILITY
We have discussed how to find a weakly stable outcome by demand

in polynomial-time. In this section we present a complete picture of

the complexity of testing whether an outcome is stable with respect

to different definitions as well as finding such a stable outcome.

5.1 Deciding whether a stable matching exists
McDermid andManlove [18] proved that, evenwith unidimensional

demands and capacities consisting of 1’s and 2’s and preference

lists of length at most 3, it is NP-complete to decide whether a

stable matching exists (Theorem 3.7). Hence it follows that checking

whether there exists a stablematching for the refugee problem is NP-

complete. For unidimensional demand, refugee allocation is similar

to stable matching problem with sizes [5, 6] and stable matching

problem with budget constraints [10, 15]. However, the authors

do not consider complexity issues concerning weak stability and

stability by demand. Next, we present complexity results on these

two stability concepts and for several of our computational hardness

results we reduce from the following NP-complete problem.
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3-Partition

Input: A finite set E = {e1, . . . , e3n } of 3n elements,

a boundW and integer weight w (ej ) for each

ej ∈ E such that
W
4
< w (ej ) <

W
2
and w (E) =∑

3n
j=1w (ej ) = nW .

Question: Can E can be partitioned into n disjoint sets

E1, . . . ,En with weight w (Ei ) = W for all i ∈
[n]?

Proposition 5.1. Checking whether a weakly stable matching
exists is NP-complete if indifferences are allowed, even when there are
only unidimensional demands and capacities.

Proof. To show that deciding whether a weakly stable matching

exists is in NP, we can guess an outcome X as a certificate and then

check whether X is weakly stable in polynomial time as shown

briefly in the next section.

To show it is NP-hard, we reduce from 3-Partition and con-

struct a refugee allocation instance. For each element ei , create a
corresponding gadget consisting of three families and two localities

such that each family / locality prefers the localities / families from

the same gadget to localities / families from other gadgets. The

gadget is based on the proof of Proposition 3.6 where we showed

that a weakly stable matching may not exist.

The preference/priority profiles for each gadget are as follows:

df1 = df2 = cl2 = w (ei ) df3 = cl1 = 2w (ei )

l2 ≻f1 l1 l1 ≻f2 l2 l1 ≻f3 ∅

f2 ≻l2 f1 f1 ≻l1 f3 ≻l1 f2

There are n new localities k1, ...,kn , each of capacityW . For each

gadget, f1 prefers these new localities to l1 and the other families

have the least preference for the new localities. Each new locality

prefers the families of type f1 to the families of other types and they

are completely indifferent among all f1 families. The construction

can be done in polynomial time.

We can then show that there exists a stable matching if and only

if the 3-Partition instance is a yes-instance. □

Next we prove a similar a result for stability by demand.

Proposition 5.2. Checking whether a stable matching by demand
exists is NP-complete if indifferences are allowed, even when there are
only unidimensional demands and capacities.

Proof. We can prove this proposition by a analogous reduction

algorithm from 3-Partition, but with a different a gadget for each

element as followed:

df1 = df2 = df4 = cl2 = w (ei ) df3 = cl1 = 2w (ei )

l1 ≻f1 l2 l1 ≻f2 l2 l1 ≻f3 l2 l2 ≻f4 l1

f4 ≻l1 f3 ≻l1 f1 ≻l1 f2 f1 ≻l2 f4 ≻l2 f2 ≻l2 f3

There are n new localities k1, ...,kn , each of capacityW . For each

gadget, f1 prefers these new localities to l1 and the other families

have the least preference for the new localities. Each new locality

prefers the families of type f1 to the families of other types and

they are completely indifferent among all f1 families. The gadget

is based on the proof of Proposition 3.8 where we showed that a

weakly stable matching may not exist.

We can then show that there exists a stable matching if and only

if the 3-Partition instance is a yes-instance. □

The complexity of checking whether a weakly stable matching

or stable matching by demand exists under strict preferences is still

open.

5.2 Capturing Stability by Constraints
We present constraints capturing feasibility, individual rationality,

and different stability concepts. The constraints not only help us

obtain polynomial-time algorithm to test stability but also lead

to compact integer or constraint programs that help find a stable

matching whenever it exists. Capturing stability requirements via

constraints is useful for several reasons including (1) Providing

simple algorithms for testing stability of an outcome; (2) Allowing to

use ready-made and optimized integer programming and constraint

programming tools to our advantage, and (3) Ease of adding more

constraints and objectives while requiring stability. The constraints

also help in our mathematical understanding of stability concepts

and provide alternative formulations of stability requirements.

Let x ( f , ℓ) denote the function such that x ( f , ℓ) = 1 if f is

matched to ℓ and otherwise x ( f , ℓ) = 0. Formula 1 is the constraint

for feasible and individual rational outcomes.∑
f ∈F

dsf x ( f , ℓ) ≤ csℓ ∀s ∈ S, ∀ℓ ∈ L

∑
ℓ∈L

x ( f , ℓ) ≤ 1 ∀f ∈ F

x ( f , ℓ) ∈ {0, 1} ∀f ∈ F , ∀ℓ ∈ L

x ( f , ℓ) = 0 if ∅ ≻f ℓ or ∅ ≻ℓ f

(1)

Below we formulate inequalities capturing non-wastefulness and

different forms of blocking pair with respect to stability concepts.

Non-wastefulness For each ( f , ℓ), the following constraint is sat-

isfied for at least one service s:∑
ℓ′≿f ℓ

x ( f , ℓ′) × csℓ +
∑
f ′∈F

x ( f ′, ℓ) × dsf ′ + d
s
f > csℓ . (2)

Stability For each ( f , ℓ), the following constraint is satisfied for

at least one service s:∑
ℓ′≿f ℓ

x ( f , ℓ′) × csℓ +
∑
f ′≻ℓ f

x ( f ′, ℓ) × dsf ′ + d
s
f > csℓ . (3)

If f is not matched with a weakly better locality than ℓ, then f
cannot coexist with all families that are matched to ℓ with higher

priority than f .
Weak stability For each ( f , ℓ) and any f ′′ ∈ F such that f ≻l f ′′,
the following constraint is satisfied for at least one service s:∑

ℓ′≿f ℓ

x ( f , ℓ′) × csℓ +
∑
f ′∈F

x ( f ′, ℓ) × dsf ′

− x ( f ′′, ℓ) × dsf ′′ + d
s
f > csℓ . (4)

If f is not matched with a weakly better locality than ℓ, then ℓ

cannot accommodate f by removing any matched family f ′′ that
has lower priority than f .
Stability by demand requires that both non-wastefulness and the
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following constraints are satisfied: For each ( f , ℓ), the following
constraint is satisfied for at least one service s:∑

ℓ′≿f ℓ

x ( f , ℓ′) × csℓ + d
s
f −

∑
f ≻l f ′

x ( f ′, ℓ) × dsf ′ > 0. (5)

If f is not matched with a weakly better locality than ℓ, then the

demand vector of f is not weakly smaller than the sum of demand

vectors of all families that are matched to ℓ with lower priority than

f .
Weak stability by demand requires that both non-wastefulness

and the following constraints are satisfied: For each ( f , ℓ) and each
family f ′ such that f ≻ℓ f ′, the following constraint is satisfied

for at east one service s:∑
ℓ′≿f ℓ

x ( f , ℓ′) × csℓ + d
s
f − d

s
f ′ > 0. (6)

If f is not matched with a weakly better locality than ℓ, then the

demand vector of f is not weakly smaller than the demand vector

of any family f ′ that is matched to ℓ with lower priority than f .

One can establish that the linear constraints presented above

capture the corresponding concepts. We present the argument for

stability. The other arguments work similarly. We need to prove

that an outcome X is stable if and only if it can satisfy formula 3.

First, assume X is stable, then there is no blocking pair. In other

words, for any f and any ℓ, either f is matched with a weakly

better locality than ℓ or ℓ cannot accommodate f with F
≻f
ℓ

(X ). For
both cases, formula 3 holds. Second, assume formula 3 holds. Then

there will be two cases, if x ( f , ℓ′) = 1, then f is not interested in

forming a blocking pair with ℓ. Otherwise, x ( f , ℓ′) = 0 and f is

matched with a locality worse than ℓ. However, there exists at least

one service s such that ℓ cannot accommodate f with F
≻f
ℓ

(X ).
If there is exactly one service, the stability constraints can be

achieved by a polynomial number of IP constraints. If there are

more than one service, one can use a constraint program that re-

quires at least one constraint from each family of constraints to be

satisfied. If we want to write an integer program for any number

of services, then each disjunction of constraints can be modeled by

a logarithmic number of binary variables [25].

6 MASTER LISTS
In addition to the individual priority relations of localities, there

may be some global priority ordering that may also be needed to be

considered while making an allocation. In this section, we discuss

these global priorities over families that have been referred to as

the master list in the literature [12]. The master list can be based

on any given global criterion such as the position in the queue,

educational level of the family, or critical need for health care.

Master lists have been employed in the mechanism design for

matching problemswith couples [3] and distributional constraints [8,

9, 14, 24]. Take hospital-resident problem for example, the idea is

to impose a master list over all residents for all hospitals and both

original priority ordering of each hospital and master list need to

be considered in defining stability. Similar master lists have been

used in practice, for example in the Scottish entry-labor market for

medical school graduates [11].

Input: A refugee allocation instance µ = (F , L, ≿, S, d, c ) and master list

ML over F such that f ∼ML f ′ ⇒ df = df ′ .
Output: A stable byML outcome X .

1 c′ ←− c % capacities will be modified

2 UseML to divide the families into groups H1, . . . , H |H | in the order

ofML where each group Hi forms an indifference equivalence class

with respect toML. % In each group, the families have the same

demand vector.

3 for k = 1, 2, ..., |H | do
4 Run the FPDA algorithm on families in Hk and all localities in L

while considering the current capacities c′. Let the outcome of

FPDA for problem (Hk , L, ≿, S, d, c′) be Xk .
5 Update the corresponding capacities of each locality ℓ as follows

c′ℓ ←− c
′
ℓ −

∑
f ∈Fℓ (Xk )

df

6 return X =
⋃|H |
k=1 Xk

Algorithm 3: Hierarchical Family Proposing Deferred
Acceptance (HFPDA) for Master Lists

In refugee allocation, one possible reason for master list could be

respective the amount of time the families have been in the match-

ing market. Let f ≿ML f ′ denote that f has higherML priority

than f ′ or they have the sameML priority. The difference from

previous work is that our new concepts take multi-dimensional

constraints into account.

Definition 6.1 (Stability byML). Given a feasible matching X
and a master listML, a pair ( f , ℓ) ∈ X ′ \ X is called a blocking
pair byML if ℓ ≻f Lf (X ) and ∀f ′ ∈ Fℓ (X ) \ Fℓ (X

′), f ≻ℓ f ′

and f ≿ML f ′. A feasible outcome X is stable by ML if it is

individually rational, non-wasteful and admits no blocking pair by

ML.

The pair ( f , ℓ) can form a blocking pair byML if ℓ can remove a

subset of matched families with lower preference and lower master

list priority than f to accommodate it. Similarly, we can define

weak stability as follows.

Definition 6.2 (Weak stability byML). Given a feasible matching

X and a master listML, a pair ( f , ℓ) ∈ X ′ \ X is called a weak
blocking pair byML if ℓ ≻f Lf (X ) and∀f ′ ∈ Fℓ (X )\Fℓ (X

′), f ≻ℓ
f ′ and f ≿ML f ′ with |Fℓ (X ) \Fℓ (X

′) | ≤ 1. A feasible outcomeX
is weakly stable byML if it is individually rational, non-wasteful

and admits no weak blocking pair byML.

If all families have the same priority in the master list ML,

then (weak) stability byML is the same as (weak) stability and a

(weakly) stable byML outcome is not guaranteed to exist. There-

fore, we make the following assumption on the master lists through-

out the paper: every two families in the sameML-equivalence

class have the same demand vectors (f ∼ML f ′ ⇒ df = df ′ ). A
special case is when the master list gives a strict priority over the

families.

Note that HFPDA is an algorithm that is designed to find a weak

stable by demand outcome. We can view HFPDA more generally if

we use some exogenous master list ordering over the families to

partition them into equivalence classes. In this case, a modification

(Algorithm 3) of HFPDA returns a stable byML matching and the
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algorithm is strategyproof. The arguments are almost identical to

those for weak stability by demand. Hence HFPDA can be viewed

more generally as finding an ordered partitioning families with the

earlier sets having priority over the later ones because they have a

higher rank according toML.

7 COMPLEXITY OF PARETO OPTIMALITY
Under strict preferences, computing a Pareto optimal allocation is

easy via serial dictatorship: first set a strict priority ordering over

the families and then let each family take a place in the best possible

locality that can accommodate it. On the other hand, computing a

Pareto optimal allocation is NP-hard if there are indifferences in the

preferences. Since checking whether there exists a matching that

accommodates all the families is NP-hard, it follows that finding

a Pareto optimal matching is NP-hard even if there is complete

indifference in the preferences and priorities.

Proposition 7.1. Computing a Pareto optimal outcome is NP-
hard even if each family is indifferent among localities, each family
is acceptable, and there are unidimensional demands and capacities.

Moreover, finding Pareto improvements over an existing alloca-

tion seems challenging. Delacrétaz et al. [7] presumed that finding

a Pareto improvement was computationally intractable and they de-

scribed an exponential time algorithm for the problem. We formally

prove intractability by reduction from 3-Partition.

Proposition 7.2. Testing weak Pareto optimality is strongly coNP-
complete even if families have strict preferences over localities, each
family is acceptable, and there are unidimensional demands and
capacities.

Proof. To show that the complement of testing weak Pareto

optimality (TWPO) is in NP, for a given outcome X , we can guess

another outcome X ′ as a certificate and check whether all families

strictly prefer X ′ to X in polynomial time.

We nowprove that 3-Partition reduces to TWPO. The reduction

algorithm begins with an instance of 3-Partition. Assume all

families have strict preferences over localities and each family is

acceptable and there is only one type of service. We construct a

refugee allocation instance as follows. Let F = { f ∗, f1, . . . , f3n } be
the set of families and L = {ℓ∗, ℓ′, l1, . . . , ln } be the set of localities.
The family f ∗ requires nW units of service while each fi requires
w (ei ) units. The capacity of both ℓ∗ and ℓ′ is nW and it isW for

each other locality li . The family f ∗ has ℓ∗ as the second most

preferred locality and ℓ′ as the most preferred locality. Each fi has
ℓ′ as the second least preferred locality and ℓ∗ as the least preferred

locality. The allocation X is the one in which f ∗ is matched to ℓ∗

and all the other families are matched to ℓ′. The construction can

be done in polynomial time.

We can then show that E can be partitioned into n disjoint sets

E1, . . . ,En and weightw (Ei ) =W for all i ∈ [n] if and only if X is

not weakly Pareto optimal. □

Proposition 7.3. Testing Pareto optimality is strongly coNP-complete
when each family is indifferent among all localities, each family is
acceptable and there are unidimensional demands and capacities.

Proof. To show that testing Pareto optimality is in coNP, for

a given outcome X , we can guess another outcome X ′ and check

whether all families weakly prefer X ′ to X and at least one family

strictly prefers X ′to X in polynomial time.

To prove NP-hardness, we reduce from 3-Partition and construct

a refugee allocation instance as follows.

F = { f ∗, f1, . . . , f3n } L = {ℓ∗, ℓ′, l1, . . . , ln }

df ∗ = cℓ∗ = cℓ′ = (nW ) dfi = w (ei ) clj = (W )

ℓ′ ≻f ∗ ℓ
∗ ≻f ∗ ℓi ℓj ∼fi ℓj′ ∼fi ℓ

′ ≻fi ℓ
∗

X = {( f ∗, ℓ∗), ( f1, ℓ
′), ..., ( f3n , ℓ

′)}

Note that each fi has ℓ
′
as the second least preferred locality, ℓ∗

as the least preferred locality and are indifferent among all other

localities ℓj We can then show that the 3-Partition instance is a

yes-instance if and only if X is not Pareto optimal. □

We note that our central results concerning Pareto optimality

are computational hardness results. As a corollary we obtain the

same results if we also take into account the preferences of the

localities by assuming that the localities have complete indifference

among the families.

8 DISCUSSION
Delacrétaz et al. [7] presented an Integer Programming (IP) formu-

lation to accommodate the maximum number of refugees and tailor-

made algorithms to find stable / quasi-stable outcomes. The largest

number of refugees can be accommodated by applying the follow-

ing objective to the integer program in feasibility constraints (1):

max

∑
f ∈F
∑

ℓ∈L nf ×x ( f , ℓ) where nf denotes the number of fam-

ily members of f .
We can combine two orthogonal approaches of accommodat-

ing maximum number of refugees and finding stable outcomes

as follows. We make a case that it is desirable to capture stabil-

ity constraints and incorporate them into an integer or constraint

program. By doing so, one can maximize other objectives such as

accommodating a maximum number of refugees while maintaining

some form of stability, especially if the stability constraint does not

affect or significantly affect the number of refugees accommodated.

If a stable matching exists and does not lead to a significant enough

decrease in the number of people hosted, then we can select that

matching. Otherwise, we can gradually replace the constraints for

stronger stability notion by constraints for a weaker stability notion

until we are satisfied with the number of people who are matched.

Such an approach also makes it possible to additionally impose

other feasibility constraints not considered in the paper.
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