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ABSTRACT
As AI technologies enter our everyday lives at an ever increasing
pace, there is a greater need for AI systems to work synergistically
with humans. This requires AI systems to exhibit behavior that
is explainable to humans. Synthesizing such behavior requires AI
systems to reason not only with their own models of the task at
hand, but also about the mental models of the human collaborators.
Using several case-studies from our ongoing research, I will discuss
how such multi-model planning forms the basis for explainable
behavior.
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When two humans collaborate to solve a task, both of them will
develop approximate models of the goals and capabilities of each
other (the so called “theory of mind”), and use them to support
fluid team performance. AI agent interacting with humans–be they
embodied or virtual–will also need to take this implicit mental
modeling into account. In order for the AI agent to show behavior
that makes sense to the human, AI agents thus need to go beyond
planning with their own models of the world, and take into account
the mental model of the human in the loop. The mental model here
is not just the goals and capabilities of the humans in the loop, but
includes the human’s model of the AI agent’s goals/capabilities.

LetMR andMH correspond to the actual goal/capability models
of the AI agent and human. To support collaboration, the AI agent
needs an approximation of MH , we will call it M̃H

r , to take into
account the goals and capabilities of the human. The AI agent
also needs to recognize that the human will have a model of it’s
goals/capabilitiesMR

h , and needs an approximation of this, denoted
M̃R
h . Synthesizing explainable behavior then becomes a challenge of

supporting planning in the context of thesemultiple models. (A note
on the model representation. In much of our work, we have used
relational precondition-effect models. We believe however that our
frameworks can be readily adapted to other model representations;
e.g. [14].)
Proactive help: Left to itself, the AI agent will useMR to synthe-
size its behavior. When the agent has access to M̃H

r , we show how
it can use that model to plan behaviors that proactively help the
human user–either by helping them complete their goals (c.f. [1])
or avoiding resource contention with them (c.f. [8]).
Explicability: When the agent has access to M̃R

h , it can use that
model to ensure that its behavior is explainable. We start by looking
at generation of explicable behavior, which requires the AI agent to
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not only consider the constraints of its modelMR , but also ensure
that its behavior is in line with what is expected by the human.
We can formalize this as finding a plan π that trades off the op-
timality with respect to MR and “distance” from the plan π ′ that
would be expected according to M̃R

h . This optmization can be done
either in a model-based fashion, where the distances between π
and π ′ are explicitly estimated (c.f. [10]) or in a model-free fashion,
where the distance is indirectly estimated with the help of a learned
“labeling” function that evaluates how far π is from the expected
plan/behavior (c.f. [18]). Our notion of explicability here has inter-
esting relations to other notions of interpretable robot behavior
considered in AI and robotics communities; we provide a critical
comparison of this landscape in [3].
Explanation: In some cases, M̃R

h might be so different from MR

that it will be too costly or infeasible for the AI agent to conform
to those expectations. In such cases, the agent needs to provide an
explanation to the human (with the aim of making its behavior more
explicable). We view explanation as a process of “model reconcilia-
tion,” specifically the process of helping the human bringMR

h closer
toMR . While a trivial way to accomplish this is to send the whole
ofMR as the explanation, in most realistic tasks, this will be both
costly for the AI agent to communicate, and more importantly, for
the human agent to comprehend. Instead, the explanation should
focus on minimal changes E toMR

h , such that the robot behavior
π is explicable with respect to MR

h + E , thus in essence making
the behavior interpretable to human in light of the explanation. In
[7] we show that computing such explanations can be cast as a
meta search in the space of models spanningMR and M̃R

h (which is
the AI agent’s approximation ofMR

h ). We also provide methods to
make this search more efficient, and discuss a spectrum of expla-
nations with differing properties that can all be computed in this
framework.
Balancing Explicability & Explanation: While the foregoing
presented explicable behavior and presenting explanation as two
different ways of exhibiting explainable behavior, it is possible to
balance the trade-offs between them. In particular, given a scenario
where π∗ would have been the plan that is optimal with respect to
MR , the AI agent can choose to go with a costlier plan π̃ (where π̃ is
still not explicable with respect toMR

h ), and provide an explanation
E ′ such that π̃ is explicable with respect to MR

h + E ′. In [4], we
show how we can synthesize behaviors that have this trade-off.
Model Acquisition: While we focused on the question of reason-
ing with multiple models to synthesize explainable behavior, a
closely related question is that of acquiring the models. In some
cases, such as search and rescue scenarios, the human and AI agent
may well start with the same shared model of the task. Here the AI
agent can assume that as the default mental model. In other cases,
the AI agent may have an incomplete model of the human; in [12],
we provide an approach to handle the incomplete model, viewing
it as a union of complete models. More generally, the AI agent may
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have to learn the model from the past traces of interaction with
the human. In [16, 17], we discuss some efficient approaches for
learning shallow models.
Multiple Humans & Abstraction:: The basic framework above
can be generalized in multiple ways. In [15], we show how we can
handle situations where the human and AI agent have models at
different levels of abstraction. In [15] we consider explanations
in the context of specific “foils” (e.g. “why not this other type of
behavior?”) presented by the humans. In [12], we consider how
the AI agent can handle multiple humans–obviously with different
models (MR

hi
)– in the loop, and develop the notions of “conformant”

vs. “conditional explanations.”
Self-Explaining Behaviors:While the foregoing considered ex-
planations on demand, it is also possible to directly synthesize self
explaining behaviors. In [6], we show how the agent can make
its already synthesized behavior more explicable by inserting ap-
propriate “projection” actions to communicate its intentions, and
also discuss a framework for synthesizing plans that takes ease
of intention projection into account during planning time. In [13],
we show how we can synthesize “self-explaining plans,” where the
plans contain epistemic actions, which aim to shiftMR

h , followed
by domain actions that form an explicable behavior in the shifted
model.
Validity & Evaluation: The explanations computed in our model
reconciliation framework satisfy several desiderata–such as selec-
tivity and contrastiveness that are seen as essential according to
psychological theories. We have applied this framework in the con-
text of human-robot interaction (e.g. [6]) and interaction between
humans and virtual decision support systems (e.g. [11]). We have
also conducted principled human-subject studies. In [5], we show
that people indeed exchange the type of explanations we compute,
and that the need for explanations diminishes when the behavior
is explicable.
Manipulation& Ethical Considerations:Although our primary
focus has been on explainable behavior for human-AI collaboration,
an understanding of this also helps us solve the opposite problem of
generating behavior that is deliberately hard to interpret, something
that could be of use in adversarial scenarios. In [9], we present a
framework for controlled observability planning, and show how it
can be used to synthesize both explicable and obfuscatory behavior.
Finally, use of mental models not only helps collaboration but also
can open the door for manipulation. In principle, the framework of
explanation as model reconciliation allows for the AI agent to tell
white lies by bringingMR

h closer to a model different fromMR . In
[2], we explore the question of whether and when it is reasonable
for AI agents to lie.
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