
PLOTS: Procedure Learning from Observations using Subtask
Structure

Tong Mu

Department of Electrical Engineering

Stanford University

tongm@stanford.edu

Karan Goel

Department of Computer Science

Stanford University

kgoel@cs.stanford.edu

Emma Brunskill

Department of Computer Science

Stanford University

ebrun@cs.stanford.edu

ABSTRACT

In many cases an intelligent agent may want to learn how to mimic

a single observed demonstrated trajectory. In this work we con-

sider how to perform such procedural learning from observation,

which could help to enable agents to better use the enormous set

of video data on observation sequences. Our approach exploits the

properties of this setting to incrementally build an open loop action

plan that can yield the desired subsequence, and can be used in

both Markov and partially observable Markov domains. In addi-

tion, procedures commonly involve repeated extended temporal

action subsequences. Our method optimistically explores actions to

leverage potential repeated structure in the procedure. In compar-

ing to some state-of-the-art approaches we find that our explicit

procedural learning from observation method is about 100 times

faster than policy-gradient based approaches that learn a stochastic

policy and is faster than model based approaches as well. We also

find that performing optimistic action selection yields substantial

speed ups when latent dynamical structure is present.

KEYWORDS

Reinforcement Learning; Learning from Demonstration; Behavior

Cloning; Hierarchy

ACM Reference Format:

Tong Mu, Karan Goel, and Emma Brunskill. 2019. PLOTS: Procedure Learn-

ing from Observations using Subtask Structure. In Proc. of the 18th Interna-
tional Conference on Autonomous Agents and Multiagent Systems (AAMAS
2019), Montreal, Canada, May 13–17, 2019, IFAAMAS, 9 pages.

1 INTRODUCTION

An incredible feature of human intelligence is our ability to im-

itate behavior, such as a procedure, simply by observing it. Whether

watching someone performCPR or observing a chef cook an omelette,

people can learn to mimic such demonstrations with relative ease.

While there has been extensive interest in learning from demonstra-

tion, particularly for robotics, this work typically assumes access

to the demonstrator’s actions and resulting impacts on the environ-

ment (observations). In contrast, there exists orders of magnitudes

more demonstration data that only contains the observation trajec-

tories but not the actions – we see the result of the motor commands

when cracking an egg, but not the motor commands themselves.

In this paper we focus on how an agent can efficiently learn

to match a single observation sequence, which we call procedure

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

learning from observation. The agent has access to a simulator of the

environment, and must efficiently learn to match the demonstrated

behavior. For this to be possible, the dynamics of the underlying

domain must be deterministic, at least at the level of the observation

sequence
1
. There are many cases in which we would like an agent

to perform such procedure learning from a single demonstration

– e.g. to learn a recipe, play a musical piece, swing a golf club or

fold a shirt. Often, such procedures themselves involve repeated

substructure in the necessary action sequence, where subsequences

of actions are repeated several times. Cracking a series of eggs to

make an omelette or performing multiple rounds of chest compres-

sions during CPR are examples of this. Our algorithm leverages the

structure of such settings to improve the data-efficiency of an agent

learning to mimic the desired observation sequence.

Procedure learning from a single demonstrated observation tra-

jectory relates to two recent research threads. The prior work on

learning from observations [13, 18, 22, 25] has focused on learning

generalizable conditional policies. In contrast we focus on building

an open-loop action plan (which must be sufficient to enable opti-

mal behavior in procedural imitation), and find this can drastically

reduce the amount of experience needed for an agent to learn. Other

work has sought to leverage provided policy sketches [4], weak

supervision of structure in the decision policy, in order to speed

and/or improve learning in the multi-task reinforcement learning

and imitation learning (with provided actions) setting [4, 23]. In

this work we consider how similar policy sketches can be used in

the observational learning setting, and, unlike prior related work,

our focus is particularly on inferring or assuming such structure

in order to speed learning of the procedure. Unlike some related

work [25], our work does not assume the observation space is

Markov and it can be applied to domains with perceptual aliasing

in the observation space.

Our two key ideas are to learn a plan rather than a policy, and

to opportunistically drive action selection to leverage potential re-

peated structure in the procedure. To do so we introduce a method

loosely inspired by backtracking beam search. Our method incre-

mentally constructs a partial plan to yield observations that match

the first part of the demonstrated observation sequence. To achieve

this, it maintains a set of possible clusterings or alignments of the

actions in that plan, using these to guide exploration to mimic the

remaining part of the demonstration.

We find that our algorithm learns substantially faster than policy

gradient approaches in both Markov and non-Markov simulated,

deterministic domains. We find additional benefits from leveraging

1
In other words, there must exist at least one single sequence that can deterministically

achieve the demonstrated observation trajectory.

Session 4A: Learning Agent Capabilities AAMAS 2019, May 13-17, 2019, Montréal, Canada

1007

additional information in the form of input policy sketches. Inter-

estingly we also find that these benefits can be obtained even when

such policy sketches are not provided, by a variant of our algorithm
that opportunistically biases exploration towards potential repeated

action sub-sequences. We conclude with a brief investigation of

how our approach may be useful in a continuous domain, and a

discussion of limitations and future directions.

2 RELATEDWORK

Procedure learning from observation is related to many ideas, draw-

ing on insights from the extensive learning from demonstration

literature and hierarchical learning.

2.1 Learning from Observation

Inspired by human learning from direction observation (without ac-

cess to the actions), learning by observation has attracted increasing

interest in the last few years [9, 13, 18, 22, 24, 25, 27]. Observational

learning has the potential to allow humans or artificial agents to

learn directly from raw video demonstrations. Due to the wealth

of such recorded videos, successful observational learning could

enable important advances in agent learning. Observational learn-

ing can potentially enable a learner to achieve the task with an

entirely different set of actions than the original demonstrator (e.g.
robotic manipulator vs human hands) and to translate shifts in the

observation space between the demonstrator and the learner (a new

viewpoint, a different background, etc). Several papers have focused
on robotic learning from third-person demonstrations, particularly

where the viewpoint of the demonstrator is different from the tar-

get context [9, 24]. Unlike such work we focus on the simpler case

where the agent’s observation space matches the demonstrator’s

observation space; at least on the subset of features required to spec-

ify the reward (e.g. for playing the piano, the visual features might

not match but the audio features must). However, our work also

tackles the harder case of learning from only a single demonstration.

Prior work that operates on a single observational demonstration

typically assumes some additional experience or training – such as

prior experience used to learn a dynamics model for the learner’s

environment [25], a set of expert demonstrations in different con-

texts [18], a batch of prior paired expert demonstrations and robot

demonstrations (complete with the robot actions) [27] – that can

then speed agent learning given a new observation sequence. Such

learning of transferable (dynamics or policy) models is often framed

as a form of meta-learning or transfer learning [11], and has led to

exciting successes for one-shot imitation learning in new tasks.

In contrast, our focus in this paper is in enabling fast procedure

learning from a single observation trajectory – learning to exactly

mimic the trajectory as performed by the demonstrator. If the do-

main has stochastic dynamics, this is in general impossible, so we

focus on the case where the dynamics are deterministic,at least at

the level of the observations. We highlight this point because the

observations may already be provided at some level of perceptual

abstraction rather than low-level sensor readings. For example, the

motion of a robot may be slightly jittery, but we can define extended

temporal action sequences that can deterministically transition be-

tween high-level, abstract observations, like whether the agent is

inside or outside a building.

2.2 Leveraging Weak Hierarchy Supervision

A number of papers have considered hierarchical imitation learn-

ing. The majority of such work assumes the agent has access to

demonstrated state-action trajectories, where behavioral cloning

could be applied, but no additional supervision (though exceptions

which leverage additional expert interactions exist e.g. [3]). The
agent performs unsupervised segmentation or sub-policy discovery

from the observed demonstration trajectories [10, 21] using (for

example) changepoint detection [15], latent temporal variable mod-

eling (e.g. [19]), expectation-gradient approaches (e.g. [7, 8, 16]) or

mixture-of-experts modeling [2]. Such methods often leverage para-

metric assumptions about the underlying domain to help guide the

discovery of hierarchical structure. Often, the learned sub-policies

have been shown to accelerate the learner on the same tasks (as

demonstrated) and/or benefit transfer learning to related tasks. A

related idea involves inferring a sequence of abstracted actions

(named a workflow) consistent with a demonstration: there can be

multiple potential workflows per demonstration [17]. The workflow

structures are used to prioritize exploration for related webpage

tasks, and show promising improvements, but the workflow infer-

ence presupposes particular properties of webpage tasks. In contrast

to such unsupervised option discovery, recent work [23] shows that

if the demonstrated state-action trajectories are weakly labeled with

the sequence of subtasks required to complete the task (inspired by

the labels provided in modular policy sketches [4]), this can yield

performance almost as strong as if full supervision of the sub-policy

segmentation is provided, though the authors did not compare to

unsupervised option-discovery methods.

Our work also seeks to leverage such policy sketches in imitation

learning, but, to the best of our knowledge, in contrast to the above

hierarchical imitation learning research, our work is the first to

consider hierarchical learning from observation.

2.3 Additional Related Work

Procedural learning from observations is possible when the do-

main is deterministic. Prior work has shown stronger performance

guarantees when the decision process is deterministic [26] com-

pared to more general, stochastic decision processes. Intuitively,

deterministic domains imply that an open loop action or plan is

optimal, compared to a state-dependent policy. We find similar per-

formance benefits in our setting. Many tasks are deterministic or

can be approximated as such by employing the right observation

abstraction.

Our technical approach for performing procedural learning by

observation is related to backtracking beam search [29]. Backtrack-

ing beam search is a strategy for exploring graphs efficiently by

only exploring a fixed number b of the most promising next nodes

at each time-step while maintaining a stack of unexplored nodes to

backtrack to, guaranteeing correctness.

3 SETTING

We define the task of procedure learning from observation as: given

a single fixed input observation sequence Z∗ = (z∗
1
, z∗

2
, . . . , z∗H) ,

the agent must learn an action plan a∗
1:H = (a

∗
1
,a∗

2
, . . . ,a∗H) that,

when executed, yields the same observation sequenceZ∗. Specifi-

cally we assume the agent is acting in a stationary, deterministic,

Session 4A: Learning Agent Capabilities AAMAS 2019, May 13-17, 2019, Montréal, Canada

1008

Figure 1: An illustration of

our Piano domain inspired by

Bach’s Prelude in C with the

subtasks labeled. Icons used to

make this image are credited

in [1]

potentially partially observable Markov decision process consist-

ing of a fixed set of actions A, states S and observations Z . The
dynamics model is deterministic: for each (s,a) tuple, P(s ′ |s,a) = 1

for exactly one s ′. If the domain is partially observable, the state

observation mapping is also assumed to be deterministic but may

involve aliasing of two states having the same observation, e.g.

p(z1 |s1,a1) = p(z1 |s3,a1). This implies that executing an action

from a given state will yield a single next observation. The dynam-

ics model is assumed to be unknown to the learning agent.

Note that the learning agent’s observation space must include

the set of distinct observations in the observation demonstration

Z∗ but the action space of the learning agent may not match the

demonstrator’s action space. For example, a series of photos may

show the steps of creating an omelette by a human chef, but a robot

could learn to perform the same task and generate the same photos.

In many situations the observed procedure may itself consist of

multiple subtasks which can repeat multiple times within a task.

Similar to the policy sketch notation [4] we assume that there

is an underlying procedure sketch K∗ = (b1,b2, . . . ,bL) where
each element of the sketch is a label for a particular open-loop

action sequence drawn from a fixed set B, departing slightly from

the original policy sketches work in which each subtask was a

policy. The actual action sequence associated with each element is

unknown. An example of these subtasks in one of our domains is

shown in Figure 1.

4 ALGORITHM

We present two versions of our online procedure learning algo-

rithm
2
:

(1) PLOTS-Sketch is given the task sketch and uses it to infer

subtask assignments and alignments.

(2) PLOTS-NoSketch is not given the task sketch and instead

infers and stores possible low level action sequences that

could potentially be subtasks.

There are two main insights to our approach. The first is to

leverage the deterministic structure of the procedure imitation

setting to systematically search for a sequence of actions that will

enable the learner to match the desired observation trajectory. The

second is to strategically use the potential presence of repeated

structure to guide exploration.

2
All code https://github.com/StanfordAI4HI/PLOTS

4.1 Procedure Imitation As Structured Search

Recall the agent’s goal is to learn how to imitate a fixed input se-

quence of observationsZ∗ = z∗
1
, z∗

2
, . . . , z∗H . For this to be possible

we assume that the dynamics of the underlying domain is deter-

ministic, at least in terms of the actions available to the agent in

order to achieve the desired observation sequence. Note that we do
not assume that the observation space is necessarily Markov.

Our algorithm proceeds by incrementally learning a sequence

of actions that yields the observation sequenceZ∗. Notice thatZ∗

provides dense labels/rewards after an action at taken at time step

t , since the agent sees its next observation z̃t and can immediately

identify if z̃t matches the desired observation z∗t . If it matches, then

at is identified as a candidate for the correct action at time step t
and is added to a partial solution action trajectory a∗

1:t . The agent

then continues, trying a new action at+1 to match z∗t+1.
If z̃t does not match the desired observation z∗t , the agent simply

plays random actions until the end of the trajectory H . It is then

reset to the start state, and follows the known partial solution action

trajectory a∗
1:t−1 until it reaches time step t , and then with uniform

probability chooses an action that has not yet been tried for t .
In general, aliasing may occur if the observation space is not

Markov. In such cases, even if an action at yields the desired ob-

servation z∗t , the latent state underlying the agent’s observation zt
may be wrong due to aliasing, preventing the agent frommimicking

the rest of the sequence. This is detectable when an agent reaches

a later time step t ′ for which no actions can yield the specified

observation z∗t ′ . In this case the agent backtracks a∗
1:t−1 one step,

a∗
1:t ′−2 and restarts the process from there to find new actions that

yield the same remaining procedure observation sequence, possibly

backtracking again when necessary. We will refer to the agent that

does this as Backtracking Procedure Search (BPS).

Learning Efficiency of BPS. If the observation space is Markov

given the agent’s actions, then once an action at time step t yields
the specified desired next observation zt , that action never needs to

be revised. For a Markov state at most |A| actions must be explored.

Since each "failed" action attempt requires the agent to act until

the end of the episode and then replay the learned solution action

sequence up to the desired time step t , it can take at mostH |A| time

steps for the agent to learn the right action to take in time step t .
Repeating this for all H time steps yields a total sample complexity

of |A|H2
to learn the procedure. This matches the expected sample

complexity for deterministic tabular Markov decision processes,

since only a single sample is needed to learn each state–action

Session 4A: Learning Agent Capabilities AAMAS 2019, May 13-17, 2019, Montréal, Canada

1009

https://github.com/StanfordAI4HI/PLOTS

dynamics model. Note that if we were to treat this problem as a

policy search problem, the number of possible policies is |A| |S | or
|A|H if each observation is unique in the procedure demonstration.

In general this will be substantially less efficient than our method.

If the observation space is not Markov and aliasing occurs, in

the worst case, the process of backtracking and going forward

may occur repeatedly until all |A|H possible action trajectories

are explored. This matches the potential set of policies considered

by direct policy search algorithms for this domain, that are also

robust to non-Markovian structure. However, in practice we rarely

encounter such cases, and we find that our approach only has to

perform infrequent backtracking.

4.2 Exploration using Sequence Substructure

The BPS algorithm described above is agnostic to and does not uti-

lize the presence of any hierarchical structure . To leverage potential

repeated subsequence structure, we extend BPS by proposing the

PLOTSs – which provide heuristics for action selection resulting in

smarter exploration. Note that accounting for repeated structure

should provide significant speedups if such structure exists, but if

no such structure exists then the PLOTS algorithms should perform

equivalently to BPS.

4.2.1 PLOTS-Sketch. For PLOTS-Sketch, in addition tomain-

taining a search tree to build a potential solution action trajectory

a∗
1:H , our algorithm also maintains a finite set of partial action

sketch instantiation hypotheses. As a concrete example, consider

the observed procedural sequence (z1, z2, z3, z4, z5, z6, z7, z8) and
the associated subtask sketch (b1,b2,b1,b3,b1). Let the agent have
learned that the first 5 actions are a∗

1:5
= (e, f ,д, e, f). Then two po-

tential partial action sketch assignments are M̃1 = [b
1 = e, f ,b2 =

д] M̃2 = [b
1 = e,b2 = f ,д] Both of these partial action sketch

hypotheses are consistent with the learned partial solution action

trajectory a∗
1:5
. Yet they have different implications for the optimal

action sequence in the remainder of the trajectory.

The two primary functions we must address is how to use po-

tential action sketch hypotheses to facilitate faster learning, and

how to update existing and instantiate new hypotheses.

Action Selection Using Partial Action Sketch Hypotheses.

To use these partial action sketch hypotheses for action selection, at

each timestep t , all hypothesis tracked by the agent can potentially

suggest an action to take next using the following guidelines:

• If the hypothesis estimates the current time step t is in a

subtask for which it has an assignment, it will execute the

next action in that subtask.

• Otherwise, the hypothesis returns NULL to the agent, indi-

cating that it does not have any action suggestions.

In practice we found a slight variant of the above score function

and action selection procedure was beneficial. Instead of returning

NULL, the hypothesis makes an optimistic assumption that the

first repeating subtask that has not yet been assigned will repeat

as soon as possible and will have length as long as possible. For

example, consider at timestep t = 4 a new hypothesis M̃3 = [],

which has not yet instantiated any potential mappings of subtasks

to actions. At t = 4 the partial action solution is known to be

e, f ,д, e . The first repeated subtask in this case is known to be b1

and it is also known that b1 aligns with the beginning of the partial

action solution. Due to the non-emptiness of subtasks, we know

the first e found at t = 1 in a∗
1:5

belongs to b1. So we optimistically

assume that b1 is currently repeating and the second e found at

t = 4 is the result of b1 repeating as opposed to belonging to b2. We

also optimistically assume b1 is as long as possible and the f found

at t = 2 also belongs to b1 as opposed to b2. With these optimistic

assumptions, the next action should be f which M̃3 will suggest

instead of suggesting NULL.
With each hypothesis possibly suggesting an action, the agent

must select a hypothesis to follow. To this end, we compute a score

for each hypothesis and use this score to select among them. The

score C(M̃i , t) is the maximum reduction in time needed to learn

the remaining procedure that could result if that hypothesis M̃i
were true and is calculated as:

C(M̃i , t) =
L∑
j=1

Nbj l(M̃i (bj)), (1)

where Nbj is the number of repeats of subtask bj in the remainder

of the procedure given hypothesis M̃i , and l(M̃i (bj)) is the length

of the action subsequence cooresponding to subtask bj in M̃i . Note

that if M̃i does not include a hypothesized assignment for element

bj , then its length is assigned to be 0. Continuing our running

example, consider computing the score for M̃1 after t = 5. Under

this hypothesis, the remaining sketch for the rest of the trajectory

is only (b3,b1) since M̃1 hypothesizes that (b
1,b2,b1) have already

been observed. Therefore,

C(M̃1, t = 5) =

L∑
j=

Nbj l(M̃i (bj))

= N (b1)l(e, f) + N (b3)l() = 1 ∗ 2 = 2

(2)

since M̃1 does not include an instantiation for b3 so l(M̃1(b
3)) = 0

and b1 = e, f under this hypothesis.

To use this score to select a hypothesis, recall that in discrete

domains, at each timestep t the agent learns the correct action

by trying actions until the correct one is found and the observed

next state z̃t+1 matches the correct state at t + 1, z∗t+1. Let A
′
t be

the set of all incorrect actions the agent has tried at t . Let HA′,t
represent the set of hypotheses tracked by the agent at time t that
are not suggesting an action in A′t and that are not suggesting

NULL. After all scores are computed for the tracked hypothesis,

the partial sketch M̃∗ = argmaxM̃i ∈HA′,t
C(M̃i , t) with the highest

score is selected. The agent then follows the action suggested by

this hypothesis.

HypothesisCreation andUpdating.Whenever the agent reaches

a time step t on which it adds a new partial solution action trajec-

tory element at that is a repeat of a previously encountered action

in the current solution trajectory, new subtask action hypotheses

can be introduced. To reduce computational complexity, the agent

only reasons about assignments for one subtask at a time and ad-

ditional subtasks get assigned only if the assignment of the main

subtask immediately implies it. To reduce the memory complexity

of enumerating and storing all possibilities, we only create hypothe-

ses for subtasks assignments we have consistent evidence to be true

in the sense that we have seen a consistent alignment where that

Session 4A: Learning Agent Capabilities AAMAS 2019, May 13-17, 2019, Montréal, Canada

1010

subtask assignment has already repeated at least one. To continue

with our example, consider again the timestep t = 4 and M̃3, the

hypothesis which has not yet instantiated any mappings. For this

hypothesis, the first new item is b1 so the main hypothesis it is

trying to find an assignment for is b1. At t = 4, the partial action

solution is a∗
1:5
= e, f ,д, e , and from M̃3 the agent can instantiate

M̃2 = [b
1 = e,b2 = f ,д] because we have consistent evidence in a∗

of b1 = e , meaning, we have seen e repeat at least once in a∗ and
assigning b1 = e is consistent with the assumptions made about

the subtask structure. By assigning b1 = e , it immediately applies

b2 = f ,д in this hypothesis so we also make an assignment for

b2. However, we do not instantiate M̃1 = [b
1 = e, f ,b2 = д] or

other hypotheses that would assign b1 = e, f ,д or b1 = e, f ,д, e ,
etc. because at t = 4, we have not yet seen those sequences for b1

repeating in a consistent manner. We also continue to track M̃3

which has not yet instantiated any mappings but we will name it

M̃4 for clarity. Now consider moving forward to the next timestep

after discovering the next correct action is f . Now the agent is at

t = 5, and a∗
1:6
= e, f ,д, e, f . At this point from M̃4, we can branch

and instantiate M̃2 = [b
1 = e, f ,b2 = д] because we have now seen

the sequence e, f repeat in a consistent manner.

From this example, we can notice that we only need to find

instantiations for the main hypothesis where the repeats match

at the end of a∗. For example at t = 5, M̃4 even though we have

consistent evidence for b1 = e , we do not need to re-instantiate

that because we have already instantiated that hypothesis at t = 4.

Computational Tractability. Like in beam search, for computa-

tional tractability we maintain only a finite set of subtask action

hypotheses. As previously mentioned, whenever the agent finds

a new partial solution action element at for a time step t , new
subtask action hypotheses can be introduced. Each existing hy-

pothesis can generate at most H/2 new hypotheses on a given

time step t . To see this, we deviate from our running example and

present a new example. Consider the situation where the subtask

sequence is b3,b1,b2,b1, ... and the agent is at timestep t = 8 with

a a∗
1:8
= e, f ,д,h, i, f ,д,h. Let one of the hypothesis the agent is

tracking be M̃5 = [], one that has no hypothesized subtask assign-

ments. At this timestep, we instantiate the following assignments

for b1 (and by immediate implication also make assignments for

b2 and b3) all of which we have consistent evidence for: M̃6 =

[b1 = h,b2 = i,b3 = e, f ,д], M̃7 = [b
1 = д,h,b2 = i,b3 = e, f],

M̃6 = [b
1 = f ,д,h,b2 = i,b3 = e]. Because we only instantiate a

hypothesis once we see repeats, the greatest number of branching

we can have at each step is at most H/2. Though each individual

hypothesis will only generate at most a polynomial number of ad-

ditional hypotheses at each time step, repeating this across many

time steps can yield an exponential growth. Therefore we maintain

a finite set of N1 potential hypotheses which we actively update

and we do not the update the rest. This is done via two mecha-

nisms. First, hypotheses are ranked according to the score function

(Equation 1) and only the top N1 are kept active. We will refer to

the hypotheses not in the top N1 that we are not tracking as frozen.

Second, if the current hypothesis is inconsistent with the observed

procedure and partial action solution trajectory, that hypothesis

is eliminated. This can occur later during the procedure learning

when additional discoveries of elements of a∗ make it clear that

an earlier hypothesis is inconsistent. To maintain the correctness

of our algorithm, if we reach a point in where we have no more

tracked consistent hypotheses, we can unfreeze frozen hypotheses

and continue. Empirically, we have found that in the domains we

considered, our sorting metric works well and if a reasonable num-

ber of hypotheses are tracked, then very little unfreezing needs to

be done. This leads to a memory complexity of O(H2) in terms of

the number of hypotheses stored. Pseudocode for PLOTS-Sketch is

presented in Alg 1.

Algorithm 1 PLOTS-Sketch

1: d (# hypotheses to track),Z∗ (observation sequence)

2: M = ∅, a∗ = // actions yielding partial match ofZ∗

3: Ap = {1 : |A|}, i = 1 // episode number

4: while |a∗ | < H do // haven’t learned full procedure

5: Reset to s0, t = 0

6: Execute a∗ // execute known subprocedure

7: t = |a∗ | + 1,
8: Evaluate score C(M̃, t) for each hypothesisMa
9: at ← Action from argmaxM̃ C(M̃, t)
10: Execute at , observe zi,t+1
11: if zi,t+1 == z∗t+1 then
12: // Found action that yields observation

13: M ← UpdateActiveH

14: a∗← (a∗,at)
15: else ifM == ∅ then

16: No consistent active hypotheses

17: Backtrack to unroll past incorrect actions & resetM

18: end if

19: end while

4.2.2 PLOTS-NoSketch. The PLOTS-NoSketch algorithm is

not given the task sketch and relies on the fact that the task consists

of repeating subtasks. At each timestep, PLOTS-NoSketch looks

into the partial solution action trajectorya∗
1:t for repeated sequences

of low level actions. Repeated low level action sequences, or hypoth-

esized subtasks, are stored along with the number of times they are

repeated. To reduce the computational complexity of this method,

we only add and update the counts of repeated action sequences

that also match at the end of a∗
1:t . This is sufficient because other

repeated action sequences will have been discovered and updated

at previous time steps. To suggest an action, we sort all hypothe-

sized subtasks by the number of times they have repeated. We then

follow in that order the consistent next actions of hypothesized

subtasks until the correct action for time t is found.

5 EXPERIMENTS

We compare our methods against state-of-the-art baselines that

can learn observational procedures and baseline versions of our

method. Our methods are summarized below

(1) PLOTS-Sketch is given the procedure sketch and lever-

ages it to hypothesize about the assignments of low level

actions to subtasks and the alignment of the procedure sketch

to the state sequence to perform smarter exploration.

Session 4A: Learning Agent Capabilities AAMAS 2019, May 13-17, 2019, Montréal, Canada

1011

(a) Island (b) Gem (c) CPR

Figure 2: Illustrations for the domains [1]

.

(2) PLOTS-NoSketch is not given the procedure sketch. It

leverages the fact that the task is made of repeated subtasks

and hypothesizes possible action sequences that could cor-

respond to subtasks to use for smarter exploration.

We compare with baseline version of our method:

(1) BPS is described in section 4.1. It is not given the procedure

sketch and does not infer or leverage any of the repeated

hierarchical structure.

(2) BPS with Oracle Sketch Alignment (BPSOSA) is

given the oracle alignment of the procedure sketch to the

state sequence in addition to the procedure sketch. This agent

is able to learn faster because it does not need to hypothesize

about the alignments and only needs to learn the assignment

of action sequences to subtasks.

We compare against state-of-the-art policy gradient basedmethods
3

(1) Modular [4] leverages the sketch to learn the procedure.

OriginallyModular was used to learn multiple tasks with

sparse rewards using the sketches, but we instead provide

the method with dense per-step rewards for our setting.

(2) Gail [14] is an imitation learning method that learns to im-

itate the given observation sequence by adversarial training.

This method is not able to leverage the sketch.

(3) Policy Gradient (PG) is adapted from Gail [14] and re-

places the discriminator with per-step rewards to result in a

purely policy-gradient approach. We reason that this could

potentially be more efficient than Gail as instead of learning

the reward function (discriminator) we directly provide it.

This method is also not able to leverage the sketch.

These baseline methods all rely on a policy-gradient approach

to learn a stochastic policy, rather than learning an open-loop plan

like PLOTS variants and baselines. Since our procedure is determin-

istic and our methods are specialized to learning in deterministic

domains where open-loop plans are sufficient, we expect these

baselines will all converge more slowly to a locally optimum policy.

However, they do have the additional benefit of being able to lever-

age a deep neural network to internally learn a state abstraction.

Because many deep neural network approaches are sensitive to

hyperparameters, for the results reported for each of the baselines,

we did a basic hyperparameter sweep over 4-6 different sets of

hyperparameters and display the set that performed best.

3
Code for GAIL which we additionally modified to obtain our Policy Gradient

baseline is taken from github.com/openai/baselines andModular from github.com/

jacobandreas/psketch.

We also compare against model-based methods which we modify

to be computationally tractable in our domains which have large

state spaces. As with the policy gradient based approaches we also

provide dense, one step rewards signaling whether the agent has

found the correct action to perform the procedure.

(1) RMax+ [6] a tabular model based algorithm that initial-

izes the values of all states optimistically. For computational

tractability, we build up the Q-value, reward, and transition

tables as we see new states and group all states that were

not on the demonstration trajectory as the termination state.

(2) UCB+ [5] a bandit algorithm that keeps track of confidence

intervals of the rewards of the arms and chooses the arm

with the highest upper confidence reward. We apply this

by treating each unique state as a separate bandit problem.

Because we are only considering the deterministic case, the

exact reward of a state action pair (s,a) can be learned after

one attempt of the action in the state and the confidence

interval shrinks to zero. For tractability we also build up the

number of bandit problems as we see new states and treat

all states that were not on the demonstration trajectory as

the degenerate bandit where all actions lead to zero rewards.

Note that we do not compare to methods that require the demon-

strator’s actions to be provided, such as behavior cloning and recent

variations on this [12, 23], since we assume we do not have or are

not able to utilize the demonstrator’s actions.

5.1 Environments
4

5.1.1 Craft Domain. A discrete 2D-domain introduced by An-

dres et al [4] to evaluate policy learning using policy sketches in

multitask domains with sparse rewards. In this domain, the agent is

required to complete various tasks by moving and interacting with

objects using 5 deterministic actions: up, down, left, right, use. The

tasks have hierarchical structure so each task has a corresponding

policy sketch. This domain was first proposed to demonstrate the

effectiveness of an algorithm that learned policies in a multitask

setting. Therefore in the original tasks, a single task did not have

any repeated subtasks but the agent could leverage repeated sub-

tasks across multiple tasks to speed learning. This differs from our

setting, since we are primarily interested in the single task setting

where there is repeated structure within a task. Therefore to eval-

uate our method, we create a new task that involves collecting

multiple wood objects, forming them into planks, and using them

to building a raft to reach an island (Island, Fig 2a). This procedure

is length H = 67 with a policy sketch of length L = 16 consisting

of |B| = 9 unique subtasks. Additionally, we also use one of the

original tasks from this domain (Gem, Fig 2b) which does not have

repeated subtasks in the task sequence, to evaluate the benefit our

method obtains from being tailored to deterministic domains.

5.1.2 CPR Domain. (Fig 2c) The task of the agent in CPR world

is to follow the correct steps necessary to perform CPR on a patient

based on standard CPR procedures
5
. The agent has 23 actions that

are used in the observation demonstration of length H = 197, with

a policy sketch of length L = 6 consisting of B = 2 unique subtasks.

4
All code and more detailed environment descriptions https://github.com/

StanfordAI4HI/PLOTS

5
https://www.redcross.org/take-a-class/cpr/performing-cpr/cpr-steps.

Session 4A: Learning Agent Capabilities AAMAS 2019, May 13-17, 2019, Montréal, Canada

1012

github.com/openai/baselines
github.com/jacobandreas/psketch
github.com/jacobandreas/psketch
https://github.com/StanfordAI4HI/PLOTS
https://github.com/StanfordAI4HI/PLOTS

(a) (b) (c)

(d) (e) (f)

Figure 3: Comparing PLOTS with policy-gradient based baselines in four discrete domains (a) Piano (b) Island (c) CPR (d) Gem.

A basic hyperparameter sweep was done for the baselines and the best set of hyperparameters were chosen. The Gem domain

(d) did not have any repeated structure and shows the speedup of our method that is specialized to learning procedures over

using more general procedures. Our approach was able to learn 10 - 100 orders of magnitude faster. For the Island domain, we

also show a hyperparameter sweep of our algorithm (e) and for GAIL (f). In all plots, PLOTS refers PLOTS-Sketch and for (e),

the -number refers to the number of hypothesis tracked.

5.1.3 Piano Domain. In the Piano domain an agent learns to

play the right hand component of Bach’s Prelude in C (boxed in

blue in Fig 1) in a simulated piano environment. The observation

sequence has H = 64 notes, with a policy sketch of length L = 24

consisting of |B| = 5 distinct subtasks The agent has a 5 fingered

manipulator and the action space is to press each of 5 fingers down,

move the whole wrist up one note, move the whole wrist down one

note, or move only the thumb down or up one note (with a max

range of 3). This yields a total of 9 actions. The observation space

is the audio of the note and not the hand position. This yields a

partially observable state space since multiple hand positions can

be used to play the same note.

Env

PLOTS-

Sketch

PLOTS-

NoSketch

BPS BPSOSA RMax+ UCB+ GAIL

Island 92 80 137 72 265 265 20198

Gem 43 43 44 43 86 86 9892

Piano 405 392 539 206 30,000+ 30,000+ 18526

CPR 319 286 2005 455 4230 4302 25653

Table 1: Average number of episodes until the procedure is

learned for PLOTS-Sketch and baselines, onlyGAIL is listed

amongst the policy gradient based baselines as it did best.

5.2 Benefits of Procedure Learning

Figures 3a, 3b, 3d, 3c and Table 1 display the results of running

our approach and baselines on the Craftworlds, Piano and CPR

simulation domains. From the figures, in all cases we observe that

our procedural learning from observation action requires at least

100 times less episodes to learn the desired procedure than the

baseline policy learning algorithms. This clearly illustrates the

enormous benefit of leveraging knowledge of the deterministic

dynamics in order to incrementally compute a plan. Note this is

true both in the large state space Markov domains (Craftworlds) as

well as the partially observable Markov domain (Piano).

Additionally we can see from Table 1 all our algorithms per-

formed significantly better than the model-based baselines. This

improvement results from our method not optimistically explor-

ing all possibilities but instead focusing on finding a single plan

that achieves the desired full sequence. Additionally, model-based

baselines do not perform well in the Piano domain where a Markov

model is history-dependent and requires exploration over an expo-

nential history space of O(|A|H).
It has been recently observed that curriculum learning can speed

reinforcement learning, and indeed the policy sketches algorithm

employed hand-designed curriculum learning across different length

sketches during their multi-task training procedure [4]. One might

wonder if curriculum learning could be applied to improve the

Session 4A: Learning Agent Capabilities AAMAS 2019, May 13-17, 2019, Montréal, Canada

1013

performance of the baselines in these domains, since our own ap-

proaches implicitly perform incremental curriculum learning as

they slowly build up a correct action plan that yields the desired

observation sequence. To mimic this process, one could imagine

first training a policy network to first correctly obtain the first

observation, then train it to correctly obtain the first two obser-

vations, etc. Unfortunately, in partially observable environments,

at some point it is likely that the previously trained policy for an

earlier observation is incorrect. In our approaches this is where

systematic backtracking can be done, to efficiently unroll/unlearn

proposed solution action plans. However, in generic policy training,

this additional guidance about how to start searching for alternate

policies, and which parts to revisit, is entirely unstructured, making

it likely that this could incur a general cost of expanding all prior

|A|H decisions. In contrast, our method typically only backtracks

a small number of times, yielding a final computational cost that

is closest to a linear C3 scale up of the Markovian decision space

C3 |A|H rather than needing to explore the full exponential space.

5.3 Utilizing Substructure Can Speed Learning

Table 1 additionally shows a comparison between the variants of our

method, against our own baselines, illustrating that our algorithm

variants that leverage knowledge of the subtask structure within the

observation demonstration learn with substantially less episodes

than our variant, BPS, which is agnostic to potential substructure.

The Gem example which has no repeated action substructure illus-

trates that if no substructure exists, all of our algorithms perform

similarly, as expected.

Interestingly, note that sometimes our algorithms that do not

receive the ground truth alignment outperform the oracle variant,

BPSOSA. We find that in practice there may be repeated action

subsequences that can’t yet be confidently aligned with particular

observations, but that optimistically assuming such alignments

can yield substantial speedups. Indeed, in many of the problems,

there is additional substructure that is not reflected in the sketches.

For example, in Island, one open loop action subsequence could

be to travel from the workshop to the forest entrance (the place

we term that is around all the wood) using a action sequence that

has one action repeated many times (for example Down, Down,

Down, Down, Down, Down, Left). In this case there is additional

substructure, (Down, Down, Down), that PLOTS-NoSketch is able

to use that can allow it to perform better than PLOTS-Sketch.

However this result is specific to the problem structure where there

is additional substructure within a subtask open loop plan.

The above experiments illustrate the benefit of action substruc-

ture. To better understand the potential impact on agent learning of

strategic action substructure hypothesis generation to inform action

selection, we explored the sensitivity of the PLOTS-Sketch algo-

rithm to the number of tracked hypotheses, our main hyperparam-

eter(Figure3e). We find a significant jump from using at least 2

hypotheses, but more yield minor differences. This illustrates that

being able to strategically suggest potentially beneficial actions

given a small set of hypotheses can be beneficial and computation-

ally tractable (due to the low number of tracked hypotheses).

6 DISCUSSION AND FUTUREWORK

Our experiments show that PLOTS-Sketch and PLOTS-NoSketch are

capable of quickly learning a given procedure, leveraging the sketch

to discover macro-actions that can be reused later on. Our results

show that for learning procedures with deterministic dynamics,

specialized algorithms for learning procedures with deterministic

dynamics, focusing on specialized algorithms can be vastly more

efficient than more general policy-gradient style methods which

are able additionally able to learn stochastic policies. In this work

we focus on discrete domains since many domains are naturally

discrete or near discrete. We have preliminary work in successfully

adapting our algorithm to domains with both continuous state and

action spaces, using gradient descent on the action space in do-

mains where the reward is continuous and convex with respect to

the action. Note that in continuous state spaces, it is impossible

to match the observation state exactly. Thus, we approximately

match observations, with a tolerance on the l2 distance between the

agent and demonstrator observations. Due to this approximation,

we cannot directly apply the learned actions of a subtask as-is, due

to compounding errors, however learning subtask assignments is

still useful in that they provide a favorable initialization for the

action search, allowing the number of episodes needed to find an

approximately correct action to be half of the number episodes

needed with a random initialization when using some gradient

based optimization methods such as COBYLA [20]. Additionally in

this work we do not consider stochastic domains; in such domains,

without additional assumptions, it is impossible for any algorithm

to guarantee that it can find a policy or action sequence to match

the observed procedure. However an area of future exploration is

stochastic domains where the dynamics appear deterministic given

an appropriate state abstraction [28].

7 CONCLUSION

We introduce PLOTS-Sketch and PLOTS-NoSketch, novel ap-

proaches for learning to imitate deterministic procedures in tasks

that have repeated structure in the form of subtasks. PLOTS-Sketch is

able to incorporate additional information in the form of a proce-

dure sketch to help reason about action to subtask assignments

and speed learning. PLOTS-NoSketch inferred possible action

sequences that could correspond to subtasks without the sketch in-

formation. We evaluated the performance of our algorithms in four

different domains, including a domain that is partially observable

in the state space. Our algorithm for learning procedures in dis-

crete deterministic domains vastly outperformed related methods

designed for general classes of problems.

ACKNOWLEDGEMENTS

This material is based upon work supported by the Schmidt Foun-

dation, the NSF CAREER award and the National Physical Science

Consortium fellowship.

REFERENCES

[1] [n. d.]. Icons used in Craft-Island, Craft-Gem Piano, and CPR made by

Freekpik from www.flaticon.com, Piano Sheet music for Bach Prelude in C from

gttps://musescore.com/classicman/scores/210606. ([n. d.]).

[2] 2017. Optiongan: Learning joint reward-policy options using generative adversarial
inverse reinforcement learning.

Session 4A: Learning Agent Capabilities AAMAS 2019, May 13-17, 2019, Montréal, Canada

1014

[3] Nichola Abdo, Henrik Kretzschmar, Luciano Spinello, and Cyrill Stachniss. 2013.

Learning manipulation actions from a few demonstrations. In Robotics and Au-
tomation (ICRA), 2013 IEEE International Conference on. IEEE, 1268–1275.

[4] Jacob Andreas, Dan Klein, and Sergey Levine. 2017. Modular Multitask Rein-

forcement Learning with Policy Sketches. In ICML.
[5] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-time analysis of

the multiarmed bandit problem. Machine learning 47, 2-3 (2002), 235–256.

[6] Ronen I Brafman and Moshe Tennenholtz. 2002. R-max-a general polynomial

time algorithm for near-optimal reinforcement learning. Journal of Machine
Learning Research 3, Oct (2002), 213–231.

[7] Hung Hai Bui, Svetha Venkatesh, and Geoff West. 2002. Policy recognition in

the abstract hidden markov model. Journal of Artificial Intelligence Research 17

(2002), 451–499.

[8] Christian Daniel, Herke Van Hoof, Jan Peters, and Gerhard Neumann. 2016. Prob-

abilistic inference for determining options in reinforcement learning. Machine
Learning 104, 2-3 (2016), 337–357.

[9] Yan Duan, Marcin Andrychowicz, Bradly Stadie, OpenAI Jonathan Ho, Jonas

Schneider, Ilya Sutskever, Pieter Abbeel, and Wojciech Zaremba. 2017. One-

shot imitation learning. In Advances in neural information processing systems.
1087–1098.

[10] Staffan Ekvall and Danica Kragic. 2006. Learning task models from multiple

human demonstrations. In Robot and Human Interactive Communication, 2006.
ROMAN 2006. The 15th IEEE International Symposium on. Citeseer, 358–363.

[11] Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel, and Sergey Levine.

2017. One-shot visual imitation learning via meta-learning. arXiv preprint
arXiv:1709.04905 (2017).

[12] Roy Fox, Sanjay Krishnan, Ion Stoica, and Kenneth Y. Goldberg. 2017. Multi-Level

Discovery of Deep Options. CoRR abs/1703.08294 (2017).

[13] Wonjoon Goo and Scott Niekum. 2018. Learning Multi-Step Robotic Tasks from

Observation. arXiv preprint arXiv:1806.11244 (2018).
[14] JonathanHo and Stefano Ermon. 2016. Generative Adversarial Imitation Learning.

In NIPS.
[15] George Konidaris, Scott Kuindersma, Roderic Grupen, and Andrew Barto. 2012.

Robot learning from demonstration by constructing skill trees. The International
Journal of Robotics Research 31, 3 (2012), 360–375.

[16] Sanjay Krishnan, Roy Fox, Ion Stoica, and Ken Goldberg. 2017. DDCO: Discovery

of Deep Continuous Options for Robot Learning from Demonstrations. In Pro-
ceedings of the 1st Annual Conference on Robot Learning (Proceedings of Machine
Learning Research), Sergey Levine, Vincent Vanhoucke, and Ken Goldberg (Eds.),

Vol. 78. PMLR, 418–437. http://proceedings.mlr.press/v78/krishnan17a.html

[17] Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang.

2018. Reinforcement Learning on Web Interfaces using Workflow-Guided Explo-

ration. In ICLR.
[18] YuXuan Liu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. 2018. Imitation

from Observation: Learning to Imitate Behaviors from Raw Video via Context

Translation. In ICRA.
[19] Scott Niekum, Sarah Osentoski, George Konidaris, Sachin Chitta, Bhaskara

Marthi, and Andrew G Barto. 2015. Learning grounded finite-state representa-

tions from unstructured demonstrations. The International Journal of Robotics
Research 34, 2 (2015), 131–157.

[20] Michael JD Powell. 1994. A direct search optimization method that models

the objective and constraint functions by linear interpolation. In Advances in
optimization and numerical analysis. Springer, 51–67.

[21] Stefan Schaal. 2006. Dynamic movement primitives-a framework for motor

control in humans and humanoid robotics. In Adaptive motion of animals and
machines. Springer, 261–280.

[22] Pierre Sermanet, Kelvin Xu, and Sergey Levine. 2016. Unsupervised perceptual

rewards for imitation learning. arXiv preprint arXiv:1612.06699 (2016).
[23] Kyriacos Shiarlis, Markus Wulfmeier, Sasha Salter, ShimonWhiteson, and Ingmar

Posner. 2018. TACO: Learning Task Decomposition via Temporal Alignment for

Control. In International Conference on Machine Learning.
[24] Bradly C Stadie, Pieter Abbeel, and Ilya Sutskever. 2017. Third Person Imitation

Learning. In ICLR.
[25] Faraz Torabi, Garrett Warnell, and Peter Stone. 2018. Behavioral Cloning from

Observation. In Proceedings of the 27th International Joint Conference on Artificial
Intelligence (IJCAI).

[26] Zheng Wen and Benjamin Van Roy. 2017. Efficient Reinforcement Learning in

Deterministic Systems with Value Function Generalization. Math. Oper. Res. 42,
3 (2017), 762–782. https://doi.org/10.1287/moor.2016.0826

[27] Tianhe Yu, Chelsea Finn, Annie Xie, Sudeep Dasari, Tianhao Zhang, Pieter

Abbeel, and Sergey Levine. 2018. One-Shot Imitation from Observing Humans

via Domain-Adaptive Meta-Learning. In RSS.
[28] Amy Zhang, Adam Lerer, Sainbayar Sukhbaatar, Rob Fergus, and Arthur Szlam.

2018. Composable Planning with Attributes. In International Conference on
Machine Learning.

[29] Rong Zhou and Eric A Hansen. 2005. Beam-Stack Search: Integrating Backtrack-

ing with Beam Search.. In ICAPS. 90–98.

Session 4A: Learning Agent Capabilities AAMAS 2019, May 13-17, 2019, Montréal, Canada

1015

http://proceedings.mlr.press/v78/krishnan17a.html
https://doi.org/10.1287/moor.2016.0826

	Abstract
	1 INTRODUCTION
	2 RELATED WORK
	2.1 Learning from Observation
	2.2 Leveraging Weak Hierarchy Supervision
	2.3 Additional Related Work

	3 SETTING
	4 ALGORITHM
	4.1 Procedure Imitation As Structured Search
	4.2 Exploration using Sequence Substructure

	5 EXPERIMENTS

