
TBQ(σ): Improving Efficiency of Trace Utilization
for Off-Policy Reinforcement Learning

Longxiang Shi

College of Computer Science and

Technology, Zhejiang University

Hangzhou, Zhejiang Province, China

shilongxiang@zju.edu.cn

Shijian Li
∗

College of Computer Science and

Technology, Zhejiang University

Hangzhou, Zhejiang Province, China

shijianli@zju.edu.cn

Longbing Cao

Advanced Analytics Institute

University of Technology Sydney

Sydney, NSW, Australia

longbing.cao@uts.edu.au

Long Yang

College of Computer Science and

Technology, Zhejiang University

Hangzhou, Zhejiang Province, China

yanglong@zju.edu.cn

Gang Pan

College of Computer Science and

Technology, Zhejiang University

Hangzhou, Zhejiang Province, China

gpan@zju.edu.cn

ABSTRACT
Off-policy reinforcement learning with eligibility traces faces is

challenging because of the discrepancy between target policy and

behavior policy. One common approach is to measure the difference

between two policies in a probabilistic way, such as importance

sampling and tree-backup. However, existing off-policy learning

methods based on probabilistic policy measurement are inefficient

when utilizing traces under a greedy target policy, which is inef-

fective for control problems. The traces are cut immediately when

a non-greedy action is taken, which may lose the advantage of

eligibility traces and slow down the learning process. Alternatively,

some non-probabilistic measurement methods such as General Q(λ)
and Naive Q(λ) never cut traces, but face convergence problems in

practice. To address the above issues, this paper introduces a new

method named TBQ(σ), which effectively unifies the tree-backup

algorithm and Naive Q(λ). By introducing a new parameter σ to

illustrate the degree of utilizing traces, TBQ(σ) creates an effec-

tive integration of TB(λ) and Naive Q(λ) and continuous role shift

between them. The contraction property of TB(σ) is theoretically
analyzed for both policy evaluation and control settings. We also

derive the online version of TBQ(σ) and give the convergence proof.
We empirically show that, for ϵ ∈ (0, 1] in ϵ-greedy policies, there

exists some degree of utilizing traces for λ ∈ [0, 1], which can im-

prove the efficiency in trace utilization for off-policy reinforcement

learning, to both accelerate the learning process and improve the

performance.

KEYWORDS
Reinforcement learning; Eligibility traces; Deep learning

ACM Reference Format:
Longxiang Shi, Shijian Li, Longbing Cao, Long Yang, and Gang Pan. 2019.

TBQ(σ): Improving Efficiency of Trace Utilization for Off-Policy Reinforce-

ment Learning. In Proc. of the 18th International Conference on Autonomous

∗
Corresponding author.

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

Agents and Multiagent Systems (AAMAS 2019), Montreal, Canada, May 13–17,
2019, IFAAMAS, 8 pages.

1 INTRODUCTION
As a basic mechanism in reinforcement learning (RL), eligibility

traces [18] unify and generalize temporal-difference (TD) andMonte

Carlo methods [20]. As a temporary record of an event (e.g., taking

an action or visiting a state) in RL, eligibility traces mark the mem-

ory parameters associated with the event as eligible for undergoing

changes [19]. The eligible traces are then used to assign credit to the

current TD-error which leads the learning of policies. With traces,

credit is passed through multiple preceding states and therefore

learning is often significantly faster [16].

With the on-policy TD learning with traces (e.g., TD(λ), Sarsa(λ)),
the assignment of credit to previous states decays exponentially

according to the parameter λ ∈ [0, 1]. If λ = 0, the traces are set to

zero immediately and the on-policy TD learning algorithm with

traces is equal to one-step TD learning. If λ = 1, the traces fade

away slowly and no bootstrapping is made, and thus producing

the Monte Carlo algorithm with online update [17]. Moreover, the

intermediate value of λ makes the learning algorithm to perform

better than the method at either extreme.

In the off-policy case, when the samples generated from a be-

havior policy is used to learn a different target policy, the usual

approach is to measure the difference of the two policies in a prob-

abilistic way. For example, Per-Decision Importance Sampling [5]

weights returns based on themismatch between target and behavior

probabilities of the related actions. Alternatively, Tree-backup (TB)

algorithm [5] combines the value estimates for the actions along

the traces according to their probabilities of target policy. More

recently, Retrace(λ) [13] combines Naive Q(λ) with importance

sampling, and offers a safe (whatever the behavior policy is) and

efficient (can learn from full returns) way for off-policy reinforce-

ment learning. However, existing off-policy learning methods based

on state-action probability are inefficient when utilizing the traces

for off-policy learning, especially when the target policy is deter-

ministic, which is quite obvious in control problems. If the target

policy is deterministic, the probability of target policy is zero when

an exploratory action is taken. In this setting, importance sampling

Session 4A: Learning Agent Capabilities AAMAS 2019, May 13-17, 2019, Montréal, Canada

1025

always involves a large variance since the importance ratio may be

greater than 1 and is rarely used in practice. Retrace(λ) and TB(λ)
is identical to Watkins’ Q(λ) [23] and the traces are cut when an

exploratory action is taken. This may cause to lose the advantage

of eligibility traces and slow down the learning process [19]. Peng’s

Q(λ) [14] tried to solve this problem, but fails to converge to the

optimal value.

On the other hand, some existing methods do not depend on

target policy probabilities and can learn from full returns without

cutting traces under the greedy target policy. Unfortunately, some

of them may face limitations in convergence. For instance, Naive

Q(λ) [19] never cuts traces thus provides a way to use full returns

when performing off-policy RL with eligibility traces, which can

sometimes achieve a better performance over Watkins’ Q(λ) [9].
A more recent work by [6] shows that Naive Q(λ) for control can
converge to the optimal value under some conditions. An open

question is: how about the intermediate condition between target

policy probabilities-based and non-target policy probabilities-based

methods?

To address the above question, in this paper we propose a TBQ(σ)
algorithm, which unifies TB(λ) (cutting traces immediately) and

Naive Q(λ) (never cutting traces). By introducing a new param-

eter σ to illustrate the degree of utilizing traces, TBQ(σ) creates
a continuous integration and role shift between TB(λ) and Naive

Q(λ). If σ = 1 then TBQ(σ) is converted to the Naive Q(λ) that
never cuts traces; and if σ = 0 then TBQ(σ) is transformed to the

Watkins’ Q(λ). We then theoretically analyze the contraction prop-

erty of TB(σ) for both policy evaluation and control settings. We

also derive the online version of TBQ(σ) and give the convergence

proof. Compared to TB(λ), TBQ(σ) is efficient in trace utilization

with the greedy target policy. Compared to Naive Q(λ), TBQ(σ) can
achieve convergence by adjusting a suitable σ . We empirically show

that, for ϵ ∈ (0, 1] in ϵ-greedy policies, there exists some degree of

utilizing traces for λ ∈ [0, 1], which can improve the efficiency in

trace utilization, therefore accelerating the learning process and

improving the performance as well.

2 PRELIMINARIES AND PROBLEM SETTINGS
Here, we introduce some basic concepts, our target problems, nota-

tions, and related work.

2.1 Preliminaries and Problem Settings
A reinforcement learning problem can be formulated as a Mar-

kovian Decision Process (MDP) (S,A,γ , P , r), where S is a finite

state space, A is the action space, γ∈[0, 1] is the discount factor

and P is the mapping of transition function for each state-action

pair (s,a)∈(S,A) to a distribution over S . A policy π is a probability

distribution over the set (S×A).
The state-action value Q is a mapping on S×A to R, which indi-

cates the expected discounted future reward when taking action a
at state s under policy π :

Q(s,a) := Eπ (r1 + γr2 + ... + γ
T−1rT |s0 = s,a0 = a) (1)

where T is the time of termination. For each policy π , we define
the operator Pπ [6]:

(PπQ)(s,a) :=
∑
s ′∈S

∑
a′∈A

P(s ′ |s,a)π (a′ |s ′)Q(s ′,a′)

For an arbitrary policy π we use Qπ
to describe the unique

Q-function corresponding to π :

Qπ
:=

∑
t ≥0

γ t (Pπ)t r

The Bellman operator T π
for a policy π is defined as:

T πQ := r + γPπQ (2)

Obviously, T π
has a unique fixed point Qπ

:

T πQπ = Qπ = (I − γPπ)−1r (3)

The Bellman optimality operator T introduces a maximization over

a set of policies and is defined as:

TQ := r + γ max

π
PπQ (4)

Its unique fixed point is Q∗ := supπ Qπ
.

The Bellman equation can also be extended using the exponen-

tially weighted sum of n-step returns [18]:

T π
λ := (1 − λ)

∑
n≥0

λn [(T π)nQ]

= Q + (I − λγPπ)−1(T πQ −Q)

(5)

In this λ-return version of Bellman equation, the fixed point

of T π
λ is also Qπ

. By varying the parameter λ from 0 to 1, T π
λ

provides a continuous connection and role shift between one-step

TD learning and Monte Carlo methods.

In this paper, we consider two types of RL problems, and mainly

focus on action-value case under the off-policy setting. That is, in a

policy evaluation problem, we wish to estimateQπ
of a fixed policy

π under the samples drawn from a different behavior policy µ; in a

control problem, we seek to approximate Q∗ based on the iteration

of Q-values. We specially focus on the learning scenario that the

target policy is greedy, which is obvious in the control setting. Our

main challenge is to improve the efficiency of trace utilization as

well as ensure learning convergence during the off-policy learning

process.

2.2 Related Work
Based on the usage of target policy probability when calculating

the λ-return, existing works can be divided into 2 categories:

2.2.1 Target policy probability-based methods. The n-step meth-

ods face challenges when involving off-policy, which has triggered

to produce many methods to solve those challenges. The most

common approach is to measure the two policies in a probabilistic

sense[11]. Based on the work in [13], several off-policy return-based

methods based on target policy probability: importance sampling

(IS), tree-backup and Retrace(λ) can be expressed in a unified oper-

ator R as follows:

RQ(s,a) := Q(s,a) + Eµ [
∑
t ≥0

γ t (
t∏
i=1

ci)δt]

δt = rt + γEπQ(st+1, ·) −Q(st ,at)

(6)

Session 4A: Learning Agent Capabilities AAMAS 2019, May 13-17, 2019, Montréal, Canada

1026

Importance sampling: ci =
π (ai |si)
µ(ai |si)

. The IS methods correct

the difference between target policy and behavior policy by their

division of probabilities [20]. For example, Per-Decision Importance

Sampling (PDIS) [5] incorporates eligibility traces with importance

sampling. Since the estimation value contains a cumulative produc-

tion of importance rations (cs) which may exceeds 1, IS methods

suffer from large variance and are seldom used in practice. In addi-

tion, weighted importance sampling [15] can reduce the variance

of IS, but leads to a biased estimation.

Tree-backup: ci = λπ (ai |si). The TB(λ) algorithm [5] pro-

vides an alternative way for off-policy learning without IS. In con-

trol problems, if the target policy is greedy, then TB(λ) produces
Watkins’ Q(λ) [22]. In this case, TB(λ) is not efficient as it cuts traces

when encountered an exploratory action and is not able to learn

from the full returns.

Retrace(λ): ci = λmin(1,
π (ai |si)
µ(ai |si)

), was proposed in [13]. Com-

paring to IS methods, this method truncates the importance ration

by 1 to reduce the variance in IS. It is proved to convergence un-

der any behavior policy and can learn from full returns when the

behavior and target policies are near. However, in the control case

when the target policy is greedy, Retrace(λ) is identical to TB(λ)
and is not efficient in utilizing traces.

2.2.2 Non-target policy probability-based methods. In addition,

there are also some methods that does not depend on target policy

probability, and can make full use of the traces:

General Q(λ): General Q(λ) [21][7] generalizes the on-policy
Sarsa(λ) using the following update equation:

Q(st ,at) ←Q(st ,at) + α[
T∑
i≥t
(λγ)i−tδt + EπQ(st+1, ·)

−Q(st ,at)]

δt =rt + γEπQ(st+1, ·) − EπQ(st ,at)

In control case, when target policy is greedy, General Q(λ) is iden-
tical to Peng’s Q(λ) [14]. It does not cut traces so much as Watkins’

Q(λ). However, When learning is off-policy, General Q(λ) lead to a

biased estimation and does not converge to Qπ
.

Q(λ) with off policy corrections [6]: it is an off-policy correc-

tion method based on a Q-baseline. Their proposed operator R
π ,µ
λ

is the same as R if ci = λ in (6). Their algorithms, namedQπ (λ) and
Q∗(λ) for policy evaluation and control, respectively. If the distance

d = max

s
∥π (·|s) − µ(·|s)∥ between target policy π and behavior

policy µ is small, i.e., d <
1−γ
γ , Qπ (λ) converges to its fixed point

Qπ
. In control scenarios, Q∗(λ) is equal to Naive Q(λ) [19] and is

guaranteed to converge to Q∗ under λ <
1−γ
2γ . Besides, they also

empirically show that in fact there exists some trade-off between

d and λ beyond the convergence guarantee, which can make the

learning faster and better. In addition, Qπ (σ , λ) is proposed in [24]

to combine Sarsa(λ) and Q
π (λ), and inherit the similar properties

with Q
π
(λ).

In conclusion, existing off-policy learning methods based on

target policy probability are inefficient when utilizing eligibility

traces, especially when target policy is greedy. In this scenario,

The traces are cut immediately when encountered an exploratory

action and thus may lose the advantage of eligibility traces and

slow down the learning process. In addition, existing non-target

policy probability based methods can make full use of the traces,

but may face limitations in convergence. In this paper, we try to

solve this dilemma by create a hybridization of those two different

methods.

3 TBQ(σ): DEGREE OF TRACES UTILIZATION
In the RL literature, unifying different algorithmic ideas to leverage

the pros and cons in each idea and to produce better algorithms has

been a pragmatic approach [4]. This also applies to several policy

learning methods, e.g., TD(λ) to unify TD-learning andMonte Carlo

methods, Q(σ) [4] to fuse multi-step tree-backup and Sarsa, and

Q(σ ,λ) [24] to integrate Qπ (σ) and Sarsa(λ). Such hybridization

is useful for balancing the capabilities of different trace-cutting

methods discussed above. Accordingly, in this paper, we introduce a

new parameter σ into trace-cutting to enable the degree of utilizing

traces. The proposed method, TBQ(σ), unifies TB(λ) (cutting traces

immediately) and Naive Q(λ) (never cutting traces).
We first give the definition of operator that used for the update

equation of TBQ(σ):

Definition 3.1. The proposed operator Rσ is a map on R |S |× |A |

to R |S |× |A | , ∀s∈S,a∈A,σ ∈ [0, 1] :

Rσ :R |S |× |A | ← R |S |× |A |

Q(s,a) := Q(s,a) + Eµ [
∑
t ≥0

γ t (
t∏
i=1

ci)δt]
(7)

where

ci = λ[σ + (1 − σ)π (ai |si)]

δt = rt + γEπQ(st+1, ·) −Q(st ,at)

TBQ(σ) linearly combines TB(λ) and Naive Q(λ) by using the de-

gree parameter σ . When σ = 0 then TBQ(σ) is converted to TB(λ),
and σ = 1 TBQ(σ) is transformed to Naive Q(λ). By exploratory

adjusting the parameter σ from 0 to 1 we can produce a continuous

integration and role shift between cutting the traces immediately

and never cutting traces. We then analyze the contraction prop-

erty of Rσ in policy evaluation. We here use ∥·∥ to represent the

supremum norm.

Theorem 3.2. The proposed operator Rσ has a unique fixed point
Qπ . If the behavior policy and target policy are near, i.e.,

d = max

x
∥π (·|x) − µ(·|x)∥ < (1 − γ)[1

γ λ + 1 − σ], then ∥RσQ −

Qπ ∥ = O(ηk).

Proof. Unfolding the operator:

RσQ −Q
π = σ (R

π ,µ
λ Q −Qπ) + (1 − σ)(RQ −Qπ)

Taking the supremum norm:

∥RσQ −Q
π ∥ = ∥σ (R

π ,µ
λ Q −Qπ) + (1 − σ)(RQ −Qπ)∥

≤ σ ∥R
π ,µ
λ Q −Qπ ∥ + (1 − σ)∥RQ −Qπ ∥

Per Lemma 1 in [6] we have:

∥R
π ,µ
λ Q −Qπ ∥ ≤

γ (1 − λ + λd)

1 − λγ
∥Q −Qπ ∥

where d is the distance between π and µ:

Session 4A: Learning Agent Capabilities AAMAS 2019, May 13-17, 2019, Montréal, Canada

1027

max

x
∥π (·|x) − µ(·|x)∥ ≤ d

Per Theorem 1 in [13] we have:

∥RQ −Qπ ∥ ≤ γ ∥Q −Qπ ∥

Adding the above two items we have:

∥RσQ −Q
π ∥ ≤ η∥Q −Qπ ∥

where η =
γ−λγ 2+λσγ 2+σγ λd−σγ λ

1−γ λ .

Further, for d < (1 − γ)[1

γ λ + 1 − σ], η < 1, we have

∥RσQ −Q
π ∥ = O(ηk)

□

Theorem 3.2 indicates that, for any λ ∈ [0, 1], if the distance be-
tween two policies are near with regard to σ , thenQk converges to

Qπ
. Comparing toQπ (λ) [6], our algorithm derives a wider conver-

gence range w.r.t σ . We provide a hybridization of utilizing traces

based on TB(λ) and Naive Q(λ). In practice, the convergence condi-

tion can be satisfied by adjusting the parameter σ under different

situations.

4 TBQ(σ) FOR CONTROL
In control problems, we want to estimateQ∗ by iteratively applying
policy evaluation and policy improvement processes, which is re-

ferred to generalized policy iteration (GPI) [19]. Denoting (Qk ,πk)
as the Q-value and the corresponding target policy in the iteration

process under the arbitrary behavior policy µk at step k , then πk+1
can be retrieved by our operator R

π ,µ
σ by using the following steps:

• Policy evaluation step:

Qk+1 = R
πk ,µk
σ Qk

• Policy improvement step:

πk+1 = дreedy(Qk+1)

We here use the notion дreedy(Qk) to represent πk , which is

greedy with respect to Qk . Based on GPI, the TBQ(σ) algorithm for

control problems is depicted in Algorithm 1 with an online forward

view, i.e., TBQ
F
(σ). Note that I{(st ,at) = (s,a)} is the indicator

function.

To analyze the convergence of Algorithm 1, we first consider

off-line version of the TBQ(σ) algorithm. The following lemma

states that, if σ satisfies some condition with regard to λ, then the

off-line version of TBQ(σ) is guaranteed to converge.

Lemma 4.1. Considering the sequence {(Qk ,πk)}k≥0 generated
by the operator Rσ under a greedy target policy πk and an arbitrary
behavior policy µ, we have:

∥Qk+1 −Q
∗∥≤η∥Qk −Q

∗∥

where η = σγ+σλγ
1−λγ + (1 − σ)γ .

Specifically, if λ ≤ 1−γ
σγ+σγ 2+γ−γ 2

, then the sequence {Qk }k≥1

converges to Q∗ exponentially fast.

Proof. Unfolding the operator:

∥Qk+1 −Q
∗∥ = ∥RσQk −Q

∗∥

≤ σ ∥R
π ,µ
λ Qk −Q

∗∥ + (1 − σ)∥RQk −Q
∗∥

based on [6] and [13], we have:

∥R
π ,µ
λ Qk −Q

∗∥ ≤
γ + λγ

1 − λγ
∥Qk −Q

∗∥

∥RQk −Q
∗∥ ≤ γ ∥Qk −Q

∗∥

As a consequence, we deduce the result:

∥Qk+1 −Q
∗∥ = ∥RσQk −Q

∗∥

≤ σ ∥R
π ,µ
λ Qk −Q

∗∥ + (1 − σ)∥RQk −Q
∗∥

≤ σ
γ + λγ

1 − λγ
∥Qk −Q

∗∥ + (1 − σ)γ ∥Qk −Q
∗∥

= [
σγ + σγλ

1 − λγ
+ (1 − σ)γ]∥Qk −Q

∗∥

□

Lemma 4.1 states that, for any d , if λ ≤
1−γ

σγ+σγ 2+γ−γ 2
then the

off-line control algorithm is guaranteed to converge. However, sim-

ilar to Q∗(λ) [6], in practice, there exist some trade-offs between λ
and σ under different d values, which goes beyond the convergence

guarantee. By introducing a new parameter σ , we can alleviate λ−d
relationship through adjusting a suitable σ . The traces can also be

utilized when an exploratory action is taken. In addition, comparing

to Naive Q(λ), we derive a wider convergence range by tuning σ .
Although we have not give a detail theoretical analyze of λ − d
relationship under different σ , in the experiment part we will show

that for any λ ∈ [0, 1] and ϵ ∈ [0, 1] in ϵ − дreedy policies, there

exist some degree of utilizing traces σ , which can accelerate the

learning process and yield a better performance through utilizing

the full returns as well.

Algorithm 1 TBQF
(σ): The online forward view version of TBQ(σ)

algorithm

Input: discounting factor γ , degree of utilizing traces σ , boot-
strapping parameter λ, and stepsize αk
Initialization: Q0(s,a) arbitrary
for Episode k from 1 to n do
Qk+1(s,a) ← Qk (s,a) ∀(s,a)
e(s,a) ← 0 ∀(s,a)
Sample a trajectory s0,a0, r0, ...,xTk from µk
for Sample t from 0 to Tk − 1 do
δ
πk
t ← rt + γ max

a′
Qk+1(st+1,a

′) −Qk+1(st ,at)

ct =

{
1 t = 0

σ + (1 − σ)π (at |st) t , 0

e(s,a) ← λγcte(s,a) + I{(st ,at) = (s,a)} ∀(s,a)
Qk+1 ← Qk+1 + αδ

πk
t e(s,a) ∀(s,a)

end for
end for

Session 4A: Learning Agent Capabilities AAMAS 2019, May 13-17, 2019, Montréal, Canada

1028

4.1 Convergence Analysis of TBQ(σ) Algorithm
We now consider the convergence proof of TBQ(σ) described in

Algorithm 1. First, we make some assumptions similar to [6] [13].

Assumption 1. For bounded stepsize αk :
∑
k≥0

αk (s,a) = ∞,∑
k≥0

αk (s,a) < ∞.

Assumption 2. Minimum visit frequency: all (s,a) pairs are vis-
ited infinitely often:

∑
t ≥0

P{(st ,at) = (s,a)} ≥ D > 0.

Assumption 3. Finite sample trajectories: Eµk (T
2

k) < ∞, Tk de-
notes the length of sample trajectories.

Under those assumptions, Algorithm 1 can converge to Q∗ with
probability 1 as stated below:

Theorem 4.2. Considering the sequence of Q-functions {(Qk ,πk)}k≥0
generated fromAlgorithm 1, where πk is the greedy policy with respect
to Qk , if λ ≤

1−γ
σγ+σγ 2+γ−γ 2

, then under Assumptions 1-3, Qk → Q∗

with probability 1.

Proof. For reading convenience, we first define some notations:

Let k denote the kth iteration, t denote the length of the trajectory,

l denote the lth sample of current trajectory, then the accumulating

trace [19] zkl,t can be written as:

zkl,t =
t∑

j=k

γ t−j (
t∏

i=j+1
ci)I{(sj ,aj) = (sl ,al)} (8)

We useQo
k (sl ,al) to emphasize the online setting, then Equation

(7) can be written as:

Qo
k+1(sl ,al) ← Qo

k (sl ,al) + αk (sl ,al)
∑
t ≥l

σ
πk
t zkl,t (9)

δ
πk
t = rt + γEπkQ

o
k (st+1, ·) −Q

o
k (st ,at) (10)

Since ci = λ[σ + (1 − σ)π (ai |si)] ≤ 1, based on Assumption 3,

we have:

E[
∑
t ≥l

zkl,t] < E[T
2

k] < ∞ (11)

Therefore, the total update is bounded based on Equation (11).

Further, we can rewrite the update Equation (9) as:

Qo
k+1(sl ,al) ← (1 − Dkαk)Q

o
k (sl ,al) + Dkαk (R

πk
σ Qo

k (sl ,al)

+wk (sl ,al) +vk (sl ,al))

wk (sl ,al) := (Dk)
−1[

∑
t ≥l

δ
πk
t zkl,t − Eµk (

∑
t ≥l

δ
πk
t zkl,t)]

vk (sl ,al) := (Dkαk)
−1(Qo

k+1(sl ,al) −Qk+1(sl ,al))

Dk := Dk (sl ,al) =
∑
t ≥l

P{(st ,at) = (sl ,al)}

Based on Assumptions 1 and 2, the new stepsize (Dkαk) satisfies
Assumption (a) of Proposition 4.5 in [2]. Lemma 4.1 states that

the operator Rσ is a contraction, which satisfies Assumption (c)

of Proposition 4.5 in [2]. Based on Equation (7) and the bounded

reward function, the variance noise termwk is bounded, thus As-

sumption (b) of Proposition 4.5 in [2] is satisfied. The noise term

vk can also be shown to satisfy Assumption (d) of Proposition 4.5

in [2], based on Proposition 5.2 in [2]. Finally, we are able to apply

Proposition 4.5 [2] to conclude that the sequence Qo
k converges to

Q∗ with probability 1. □

4.2 Online Backward Version of TBQ(σ)
Since the online forward view algorithm described in Algorithm

1 needs extra memory to store the trajectories, we here also pro-

vide an online backward version of TBQ(σ): TBQB
(σ). Based on

the equivalence between forward view and backward view of the

eligibility traces [19], the online backward view version of TBQ(σ)
can be implemented as in Algorithm 2. The online backward view

version TBQ
B
(σ) provides a more concise and efficient form and it

is more efficient in executing the TBQ(σ) algorithm.

Algorithm 2 TBQ
B
(σ): On-line backward version of TBQ(σ) algo-

rithm

Input: discounting factorγ , degree of cutting traces σ , bootstrap-
ping parameter λ and stepsize α
Initialization: Q(s,a) arbitrary
for k from 1 to n do

Initialize s,a
e(s,a) = 0 ∀(s,a)
repeat

Take action a, observe state s ′ and receive reward r
Choose a′ from s ′ using ϵ-greedy policy µ based on Q(s,a)
a∗ ← argmax

b
Q(s ′,b)

δ ← r + γ max

b
Q(s ′,b) −Q(s,a)

e(s,a) ← e(s,a) + 1
for all s,a do
Q(s,a) ← Q(s,a) + αδe(s,a)
if a∗ = a′ then
e(s,a) ← γλe(s,a)

else
e(s,a) ← σγλe(s,a)

end if
end for
s ← s ′,a ← a′

until s is terminal

end for

5 EXPERIMENTS
In this section, we explore the λ − σ trade-off in the control case

w.r.t. several environments. We empirically find that, for λ ∈ [0, 1]
and ϵ ∈ [0, 1], there exists some degree of utilizing traces σ , which
can improve the efficiency of trace utilization.

5.1 19-State RandomWalk
The 19-state random walk problem is a one-dimensional MDP envi-

ronment which is widely used in RL [20][4]. There are two terminal

states at the two ends of the environment, transition to the left ter-

minal receives a reward 0 and to the right terminal receives 1. The

agent at each state has two actions: left and right. We here apply

the online forward version TBQ
F
(σ) by using an ϵ − дreedy policy

as behavior policy and a greedy policy as target policy. For each

Session 4A: Learning Agent Capabilities AAMAS 2019, May 13-17, 2019, Montréal, Canada

1029

episode, the maximum step is bounded as 100. We then measure the

mean-squared-error (MSE) of the optimal Q-value Q∗ between the

estimated values and the analytically computed values after 10,000

episodes of offline running. We test 3 different ϵ values: 0.1, 0.5, 1.
The corresponding distance d between target policy and behavior

policy is 0.05, 0.25, 0.5, respectively. For each ϵ , we test different λ
values from 0 to 1 with stepsize 0.1. Also, for each λ, we also try

different σ values from 0 to 1 with stepsize 0.1. The learning stepsize

α is tuned to 0.3. All results are averaged across 10 independent

runs with fixed random seed. We compare TBQ(σ) with TB(λ) and
Naive Q(λ). For TBQ(σ), we also mark out the best performance of

σ , with the results shown in Figure 1.

Figure 1(a) shows that ϵ = 0.1 is too small for the agent to

explore the whole environment. The agent can seldom reach the

left terminal. In addition, since the exploratory action is also rarely

taken, the MSEs of TB(λ) between different λ values vary a little.

Naive Q(λ) never cuts traces and enjoys the convergence when

λ ≤ 0.6. When λ > 0.6, the Naive Q(λ) diverges. The MSEs of

TBQ(σ) vary a little when Naive Q(λ) converged. When λ > 0.6,

we can still tune σ to reach a lower MSE. The best σ of TBQ(σ)
decreases as the increase of λ. When ϵ = 0.5 (Figure 1(b)), we

observe results similar to ϵ = 0.1 when λ ≤ 0.6. When Naive

Q(λ) diverges, TBQ(σ) can also benefit from learning from the full

returns by adjusting a suitable σ . The MSE can also be reduced as

well. When ϵ = 1, the behavior policy becomes completely random.

The performance between TB(λ) and Naive Q(λ) is nearly the same

when λ ≤ 0.7. When λ > 0.7 we can also adjust a suitable σ to

ensure the convergence of TBQ(σ).
In this experiment, we observe that when ϵ ∈ [0, 1], λ ∈ [0, 1],

we can adjust a suitable σ in order to learn from the full returns

and avoid cutting traces too often as well. In practice, when λ is

close to 0, σ can be set to 1 to make full use of the traces. When λ
is close to 1, σ can be set to a small number near 0 to improve the

efficiency of traces utilization.

5.2 10×10 Maze Environment
The Maze environment is a 2-dimensional navigation task

1
. The

agent’s goal is to find the shortest path from start to the goal. For

each state, the agent has 4 actions: go up, go down, turn left or

turn right. If the path is blocked, the agent will stay at the current

location. The reward is 1 when the agent reaches the goal, while at

any intermediate state the agent gets reward -0.0001. Each episode

is terminated if the agent reaches the goal, or the step count exceeds

2,000. To ensure adequate exploration and speed up the training

process as well, we here adopt an ϵ − дreedy policy as behavior

policy and linearly decay the parameter ϵ from 1 to 0.1 by 0.02. In

this experiment, we use the on-line backward version of TBQ(σ).
The learning rate α is tuned to 0.05. We here use 6 different σ factors

of TBQ(σ): {0, 0.2, 0.4, 0.6, 0.8, 1}, and measure the average total

steps of each episode. In addition, the results are averaged across

10 independent runs with fixed random seeds.

The result is illustrated in Figure 2. Since the shortest path of the

maze is deterministic, TBQ(σ) gradually accelerates the learning

process when σ varies from 0 to 0.8. However, Naive Q(λ) diverges

1
We here use this version of gym-Maze environment:

https://github.com/MattChanTK/gym-maze.

Figure 1: λ − σ relationship under different ϵ values

and cannot find the shortest path. The convergence speed of TBQ(σ)
reaches fastest at σ = 0.8. The result shows that, in practice, we can

accelerate the learning process by adjusting a suitable parameter σ
based on the TBQ(σ) algorithm.

Session 4A: Learning Agent Capabilities AAMAS 2019, May 13-17, 2019, Montréal, Canada

1030

Figure 2: Averaged total steps of the Maze environment.
TBQ(σ) gradually accelerates the learning process when σ
varies from 0 to 0.8. However, Naive Q(λ) diverges and can-
not find the shortest path.

5.3 TBQ(σ) with Function Approximator
We also evaluate TBQ(σ) algorithm using neural networks as func-

tion approximator. With the help of deep Q-neworks (DQN) [12],

the offline version with a function approximator can be easily im-

plemented. We here adopt online forward view for updating the

parameters in the neural network. Unlike traditional DQN, we re-

play 4 consecutive sequences of samples with length of 8 for each

update. We here evaluate TBQ(σ) on CartPole problem [1], and

adopt the OpenAI Gym as the evaluation platform
2
[3]. In this

setting, a pole is attached by an un-actuated joint to a cart, which

can move along the track. The agent’s goal is to prevent the pole

from falling over with two actions controlling the cart: move left or

right. Since the observation space is continuous, we adopt a two-

layer neural network with 64 nodes in each layer to approximate

the Q-value for the state action pairs. We use ϵ − дreedy policy as

behavior policy and exponentially decay the parameter ϵ from 1 to

0.1 by 0.995 to ensure adequate exploration. In addition, the target

network parameters θ are updated using soft replacement [10] ac-

cording to the evaluation network parameter θ ′: θ ← τθ + (1−τ)θ ′.
In this setting, in the beginning of the learning process the dis-

tance between target policy and behavior policy reach the max-

imum. When ϵ fades to 0.1, the two policy then become close.

Therefore, to ensure convergence we here adopt a dynamic σ lin-

early increase from 0.1 to 1 by stepsize 0.01. Other main learning

parameters are listed in Table 1. the results are averaged across 5

independent runs with fixed random seeds. The result is showed

in Figure 3. We also smooth the results with a right-centred mov-

ing average of 50 successive episodes. With a dynamic suitable σ ,
TBQ(σ) outperforms TB(λ) and Naive Q(λ) in the CartPole problem.

The result indicates that in practice, we can improve the learning

by adjusting a suitable parameter σ using TBQ(σ) algorithm.

2
http: gym.openai.com

Figure 3: TBQ(σ) with function approximator in CartPole
environment. The exploring parameter ϵ of ϵ- greedy pol-
icy decays from 1 to 0.1. To efficient utilize the traces under
dynamic ϵ , σ is linearly decayed from 1 to 0.1 by step size
0.01. The result show that TBQ(σ) outperforms both TB(λ)
and Naive Q(λ).

Parameter Value

Discount factor 0.99

Initial exploration 1

Final exploration 0.1

Optimizer Adam[8]

Initial learning rate 0.001

Replay memory size 20000

Replay start episode 100

λ 1

τ 0.001

Table 1: Learning parameters for the neural network

6 DISCUSSION AND CONCLUSION
In this paper, we propose a new method off-policy learning method

called TBQ(σ) to define the degree of utilizing the off-policy traces.

TBQ(σ) unifies TB(λ) and Naive Q(λ). Theoretical analysis shows
the contraction property of TBQ(σ) in both policy evaluation and

control. In addition, its convergence is proved for control setting.

We also provide two versions of TBQ(σ) control algorithm: online

forward version TBQ
F
(σ) and online backward version TBQ

B
(σ).

Comparing to TB(λ), the proposed algorithm improves the effi-

ciency of trace utilization when target policy is greedy. Comparing

to Naive Q(λ), our algorithm has relatively loose convergence re-

quirement. Since the coefficient c in our algorithm is less than 1,

the variance of our algorithm is bounded [13]. Although we are

not able to give further theoretical analysis between bootstrapping

parameter λ and degree of cutting traces σ on convergence, we

empirically show that the existing off-policy learning algorithms

with eligibility traces can be improved and accelerated by adjusting

Session 4A: Learning Agent Capabilities AAMAS 2019, May 13-17, 2019, Montréal, Canada

1031

a suitable trace-cutting degree parameter σ . The theoretical rela-
tionship between bootstrapping parameter λ and σ is remained for

the future work.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for their

valuable comments and suggestions. This work is partly supported

by National Key Research and Development Plan under Grant No.

2016YFB1001203, Zhejiang Provincial Natural Science Foundation

of China (LR15F020001).

REFERENCES
[1] Andrew G Barto, Richard S Sutton, and Charles W Anderson. 1983. Neuron-

like adaptive elements that can solve difficult learning control problems. IEEE
transactions on systems, man, and cybernetics 5 (1983), 834–846.

[2] Dimitry P. Bertsekas and John N. Tsitsiklis. 1996. Neuro-Dynamic Programming.
Athena Scientific.

[3] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-

man, Jie Tang, and Wojciech Zaremba. 2016. Openai gym. arXiv preprint
arXiv:1606.01540 (2016).

[4] Kristopher De Asis, J Fernando Hernandez-Garcia, G Zacharias Holland, and

Richard S Sutton. 2017. Multi-step reinforcement learning: A unifying algorithm.

AAAI Conference on Artificial Intelligence (2017).
[5] Satinder Singh Doina Precup, Richard S. Sutton. 2000. Eligibility traces for off-

policy policy evaluation. In Proceedings of the Seventeenth International Conference
on Machine Learning, 2000. Morgan Kaufmann, 759–766.

[6] Anna Harutyunyan, Marc G Bellemare, Tom Stepleton, and Rémi Munos. 2016.

Q(λ) with Off-Policy Corrections. In International Conference on Algorithmic
Learning Theory. Springer, 305–320.

[7] H Hasselt. 2011. Insights in reinforcement learning: formal analysis and empir-
ical evaluation of temporal-difference learning algorithms. Ph.D. Dissertation.

Universiteit Utrecht.

[8] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980 (2014).
[9] Jinsong Leng, Colin Fyfe, and Lakhmi C Jain. 2009. Experimental analysis on

Sarsa (λ) and Q (λ) with different eligibility traces strategies. Journal of Intelligent
& Fuzzy Systems 20, 1, 2 (2009), 73–82.

[10] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,

Yuval Tassa, David Silver, and Daan Wierstra. 2016. Continuous control with

deep reinforcement learning. International Conference on Learning Representa-
tions (ICLR) (2016).

[11] WenjiaMeng, Qian Zheng, Long Yang, Pengfei Li, and Gang Pan. 2018. Qualitative

Measurements of Policy Discrepancy for Return-based Deep Q-Network. arXiv
preprint arXiv:1806.06953 (2018).

[12] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,

Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.

Nature 518, 7540 (2015), 529.
[13] Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. 2016. Safe

and efficient off-policy reinforcement learning. In Advances in Neural Information
Processing Systems. 1054–1062.

[14] Jing Peng and Ronald J Williams. 1994. Incremental multi-step Q-learning. In

Machine Learning Proceedings 1994. Elsevier, 226–232.
[15] Doina Precup. 2000. Temporal abstraction in reinforcement learning. Ph.D. Disser-

tation. University of Massachusetts Amherst.

[16] Satinder Singh and Peter Dayan. 1998. Analytical mean squared error curves for

temporal difference learning. Machine Learning 32, 1 (1998), 5–40.

[17] Rich Sutton, Ashique Rupam Mahmood, Doina Precup, and Hado Hasselt. 2014.

A new Q (lambda) with interim forward view and Monte Carlo equivalence. In

International Conference on Machine Learning. 568–576.
[18] Richard S Sutton. 1988. Learning to predict by themethods of temporal differences.

Machine learning 3, 1 (1988), 9–44.

[19] Richard S Sutton and Andrew G Barto. 1998. Reinforcement learning: An intro-
duction. MIT press.

[20] Richard S Sutton and Andrew G Barto. 2011. Reinforcement learning: An intro-
duction. Cambridge, MA: MIT Press.

[21] Harm Van Seijen, Hado Van Hasselt, ShimonWhiteson, and Marco Wiering. 2009.

A theoretical and empirical analysis of Expected Sarsa. In Adaptive Dynamic
Programming and Reinforcement Learning, 2009. ADPRL’09. IEEE Symposium on.
IEEE, 177–184.

[22] Christopher JCH Watkins and Peter Dayan. 1992. Q-learning. Machine learning
8, 3-4 (1992), 279–292.

[23] Christopher John Cornish Hellaby Watkins. 1989. Learning from delayed rewards.
Ph.D. Dissertation. King’s College, Cambridge.

[24] Long Yang, Minhao Shi, Qian Zheng, Wenjia Meng, and Gang Pan. 2018. A

Unified Approach for Multi-step Temporal-Difference Learning with Eligibility

Traces in Reinforcement Learning. International Joint Conference on Artificial
Intelligence (IJCAI) (2018).

Session 4A: Learning Agent Capabilities AAMAS 2019, May 13-17, 2019, Montréal, Canada

1032

	Abstract
	1 Introduction
	2 Preliminaries and Problem Settings
	2.1 Preliminaries and Problem Settings
	2.2 Related Work

	3 TBQ(): Degree of Traces Utilization
	4 TBQ() for Control
	4.1 Convergence Analysis of TBQ() Algorithm
	4.2 Online Backward Version of TBQ()

	5 Experiments
	5.1 19-State Random Walk
	5.2 1010 Maze Environment
	5.3 TBQ() with Function Approximator

	6 Discussion and Conclusion
	Acknowledgments
	References

