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ABSTRACT
Observational learning is a type of learning that occurs as a func-
tion of observing, retaining and possibly imitating the behaviour
of another agent. It is a core mechanism appearing in various in-
stances of social learning and has been found to be employed in
several intelligent species, including humans. In this paper, we in-
vestigate to what extent the explicit modelling of other agents is
necessary to achieve observational learning through machine learn-
ing. Especially, we argue that observational learning can emerge
from pure Reinforcement Learning (RL), potentially coupled with
memory. Through simple scenarios, we demonstrate that an RL
agent can leverage the information provided by the observations
of an other agent performing a task in a shared environment. The
other agent is only observed through the e�ect of its actions on the
environment and never explicitly modeled. Two key aspects are
borrowed from observational learning: i) the observer behaviour
needs to change as a result of viewing a ’teacher’ (another agent)
and ii) the observer needs to be motivated somehow to engage in
making use of the other agent’s behaviour. The later is naturally
modeled by RL, by correlating the learning agent’s reward with the
teacher agent’s behaviour.
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1 INTRODUCTION
Humans have evolved to live in societies and a major bene�t of
that is the ability to leverage the knowledge of parents, ancestries
or peers to aid their understanding of the world and more rapidly
develop skills deemed crucial for survival. Most of this learning
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is done by observing the behaviour of the other agents with core
learning mechanisms emerging such as role modeling, imitation or
observational learning. In this paper, we are particularly interested
in the latter. We de�ne observational learning as an agent’s ability
to modify its behavior or to acquire information from purely from
observing another agent, that happens to share its environment,
without explicitly modeling it as an agent.

In the machine learning literature, one of the most popular
and successful ways of modeling goal-motivated learning agents
is via Reinforcement Learning (RL) [20, 32]. In the recent years,
combining RL with the increased representational power of deep
learning [16] and the memory capabilities of recurrent models
(LSTMs/GRUs) [7, 12] has lead to a string of impressive successes
ranging from video-game playing [20] to 3D navigation tasks [18,
19] and robotics [17]. Motivated in part by these, here we want to
study if observational learning can naturally emerge in DeepRL
agents empowered with memory. Thus the main questions we
would want to answer are: is (deep) RL coupled with memory enough
to successfully tackle observational learning? Will the RL agent learn
to ignore or leverage the teacher? Is the RL signal enough for the
emergence of more complex behaviour like imitation, goal emula-
tion or information seeking? In other words, we want to understand
to what extent other agents have to explicitly be modeled as such by
a learning agent. Is the combination of perception (deep nets), mem-
ory (recurrent nets) and motivation (RL) enough to learn from the
sole observation of other agents’ e�ects on a shared environment?

It is worth noting that similar questions have been investigated
in the cognitive and behaviour science community. In their work,
Bandura and Walters [4, 5] proposed and coined the term ’observa-
tional learning’ or social learning. According to them, observational
learning di�ers from imitative learning in that it does not strictly re-
quire a duplication of the behavior exhibited by the teacher. Heyes
[9] distinguished imitation and non-imitative social learning in
the following way: imitation occurs when animals learn about be-
havior from observing conspeci�cs, whereas non-imitative social
learning occurs when animals learn about the environment from
observing others. Meaning that one can learn about the dynam-
ics of its environment only by observing others evolving in this
environment.

Learning with the help of a teacher or demonstrator is by no
means a new idea in machine learning neither. Imitation learning
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has a long standing in the machine learning literature [2, 30]. In
this body of work, one can distinguish two major ideas: i) behaviour
cloning, where we are regressing directly onto the policy of another
agent/teacher [26, 27], or ii) inverse RL, where we are trying to
infer a reward function from the behaviour of other agents [22, 29]
and then use this, in conjunction with RL techniques, to optimize
this inferred function – this is closer to goal emulation. Imitation
learning has also been combined to RL in recent works [6, 8, 13, 24].
While these methods have been successfully applied to a variety
of tasks [3, 10, 11, 15, 21, 25, 26, 28, 34], one problematic aspect of
all these scenarios is that they almost always need to provide the
learning agent with the teacher trajectories in the same state-action
space as the learner. Otherwise, some explicit mapping between
the learner and the teacher state space has to be discovered [31].
As previously argued/recognized in [31], these are somewhat re-
strictive and unrealistic requirements. Furthermore, in inverse RL
one has to explicitly model the behaviour/trajectories coming from
another agent and infer the reward signal. For this problem to be-
come tractable, most of the time we need to make some structural
assumptions about this reward signal – like linearity in a given
feature space, or smoothness [1, 14, 24]. These assumptions might
not hold for the true reward signal and minor approximation errors
can be easily ampli�ed when planning onto this faulty signal [23].

Given these increased complexities, we propose to study the sim-
pler, yet more natural alternative of observational learning, moving
away from the traditional setup of learning from teachers. We do
not claim we can address all of the problems tackled by the imita-
tion learning literature. We are merely arguing that there might be
scenarios where this level of modelling is not required and the RL
agent can learn directly through pure observations. In this context,
our main contribution is to exhibit scenarios where observational
learning is emerging from a standard DeepRL algorithm (A3C [19])
when combined or not with memory. In all scenarios we will look
at, the A3C agent (learner) shares its environment with another
agent (teacher) that has a better knowledge of the task to solve. The
learner observes the teacher through its sole perception of the envi-
ronment. It is only rewarded for performing the task and does not
receive any incentive to follow, imitate or interact with the teacher.
The teacher is not aware that it is watched by the learner and is not
meant to teach or provide extra information to the learner neither. It
is only performing its own task independently from the presence of
the learner. By building tasks of increasing di�culty, we show that
complex behaviours such as imitative and non-imitative learning
emerge without explicit modeling of the teacher. In addition, we
provide some theoretical insights to explain why these behaviours
are possible.

In the next section, we describe our experimental design. Sec-
tion 3 provides the general background of RL and the theoretical
foundations of this work. In Section 4 we provide our experimental
results before concluding in Section 5.

2 EXPERIMENTAL DESIGN
As explained in the introduction, we are primarily interested to
see if an RL agent can learn to leverage the behaviour of a teacher,
based solely on 1) external reward (from the environment), ii) its
ability to observe the consequences of the teacher’s actions in the

environment. The learner does not have a notion of the agency of
the teacher. This additional agent is simply part of the learner’s
environment and it can choose to ignore the presence of the teacher
if it deems this signal unimportant. Note that we call the teacher
"agent" as it is an entity that acts in the environment. It has its own
task and its own algorithm to solve the task. This information is
hidden to the learner and not modeled by it. So it cannot only be
considered as some additional hint introduced in the environment
to help the learner. It rather simulates the presence of other goal-
directed entities in the environment. It is also worth noting that in
all our case studies, the presence of the teacher does not impact the
dynamics nor rewards of the learner. This is a necessary assumption
that will be formalized in Sec. 3.

The� rst question we want to answer is whether the teacher’s
presence has any impact on the learner. For this we look at two
scenarios: 1) the learner has perfect information and can learn an
optimal behaviour on its own, 2) the learner has only partial infor-
mation about the environment/task, but the teacher’s behaviour
can provide additional information by showing a demonstration of
the desired behaviour. In the� rst case, we do not expect a di�erence
between the learnt policies with or without the teacher. Neverthe-
less, when adding the teacher in the same environment, we are
e�ectively expanding the observation space of the learner. Thus, on
top of the RL policy, now the learner also needs to learn to ignore
this extra signal in its observation space. In the second scenario
however, the teacher’s behaviour contains crucial information for
improving the learner’s policy. In this case, by ignoring the teacher,
the learner can still complete the task at hand, but can only do so,
sub-optimally. Now, there is a real incentive for the learning agent
to pay attention to the teacher. Nevertheless, the learner’s own
reward signal is still the one coming directly from the environment
(which it would experience even without the other agent), but now
our agent needs to somehow correlate this (potentially sparse) re-
ward signal with the behaviour exhibited by the teacher. This is a
highly non-trivial association the learner needs to make and then
learn to exploit it, in order to improve its policy.

If both the teacher and the learner have the same reward struc-
ture, a good strategy for the learner would be to imitate, if possible,
the teacher’s behaviour. This, in principle, is a much easier and safer
policy than attempting to randomly explore the environment on
its own. The learner would only need to solve the local problem of
following the teacher, but would not need to worry about the global
task - the global planning that is now done by the teacher. Although
this might not be optimal, this kind of behaviour is transferable
between tasks and/or environments and could potentially provide
the learner with a better initial policy for exploring an unfamil-
iar environment. This could lead to a more principled/guided way
to explore and could have a major impact on the speed at which
the agent discovers areas of interest, especially in a sparse reward
setting.

We are also interested in showing that the learner can become
autonomous and still perform the task optimally in the absence of
the teacher after learning from observations. Indeed, the� nal goal
of a learning agent is to solve tasks on its own and it should still be
able to reach that goal after having learned optimal policies from a
teacher.
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To support our claims, we perform additional experiments in
environments where the teacher and the learner don’t share the
same state or action space. In addition, we use environments of
di�erent complexities going from a grid world to a continuous
control problem within a simulated physical environment [33] so
as to show the genericity and scalability of the framework.

3 LEARNING BY OBSERVING A TEACHER
In this section, we formalize the experimental design described in
Sec. 2. More precisely, the primary goal is to show that an agent
(the learner) can still learn via an RL algorithm in an environment
where a teacher is added. The environment is modelled by a Markov
Decision Process (MDP) where the dynamics is one step Markovian
and stationary. The Markovian and stationary properties are essen-
tial to allow the agent to learn properly as they guarantee that the
environment is stable and predictable. Therefore, after introducing
some notations in Sec. 3.1, we show, in Sec. 3.2, how an MDP where
a teacher agent is introduced still remains an MDP. Then, we pro-
vide a formal setup where the experimental design is formalized
and we show how this setup can still be seen as an MDP even when
a teacher is added. Finally, we show how adding a teacher in an
environment can improve the global policy of the learner.

3.1 Notation
An MDP is a tuple hS,A,P,R,� i where S is a set of states, A
is the set of actions available to the agent, P is the transitional
kernel modelling the one-step Markovian dynamics and gives, for
each state and action, a probability distribution over next states,
R : S ⇥ A ! R is a reward function that represents the local
bene�t of doing action a in state s and � 2 [0, 1] is a discount factor.

A stochastic policy � maps each state to a probability distribu-
tion over actions � (·|s) and gives the probability � (a |s) of choosing
action a in state s . Given such a policy � , the value function V � (s)
is the expected cumulative discounted reward associated with fol-
lowing this policy:

V � (s) = E�
⇥Õ+1

t=0 �
tR(st ,at )

⇤
,

where E� is the expectation over the distribution of admissible
trajectories (s0,a0, s1,a1, . . . ) obtained by executing the policy �
starting from s0 = s and a0 ⇠ � (·|s0). In RL, we are interested in
�nding an optimal policy �⇤ that results in the maximum value
function V ⇤ = V � ⇤

= max� V � .

3.2 MDP with a teacher agent
By introducing the teacher (following policy �e ) in the learner’s
environment and making it visible in the observational state of
the learner, we change the learner’s MDP. The resulting MDP can
be parameterised as follows: M̃ = hS̃,A, P̃,R,� i, where now
the state space consists of: i) a part of the state space that can
be directly in�uenced by the learner, we will refer to this part
of the state space as the controllable part of the state space Sc
and ii) a part of state space that the learner does not have any
direct control over, but this is still part of its observational state
and includes useful information, S¬c . In our case, S¬c will include
observations corresponding to the presence of the teacher. Given
this factorization, s̃ = (sc , s¬c ) 2 Sc ⇥ S¬c , we assume that the

transition dynamics P̃ factorizes as follows:

P̃((s 0c , s 0¬c )|(sc , s¬c ),a) =P(s 0c |sc ,a)P�e (s 0¬c |s¬c ),
where P�e (s 0¬c |s¬c ) is the probability to reach s 0¬c starting from
s¬c and following the teacher. This assumption simply means that
the controllable part of the next state depends only on the con-
trollable part of the state and the action of the agent, and that the
non-controllable part of the next state depends only on the non-
controllable part of the state and the teacher policy. In addition, if
the teacher has a stationary behaviour (w.r.t. the non-controllable
part of the state) then this implies that P̃ is a well de�ned transi-
tional kernel. Therefore M̃ is a well-de�ned MDP.

3.3 Formal setup
In this section, we will show formally that at least two of the de-
sired behaviours are made possible in the context of observational
reinforcement learning: imitation and active task identi�cation
(a.k.a. information seeking). We consider a set of MDPs that share
states, actions, transition dynamics and discount factor, but di�er
in the reward function G = {Mt |Mt = hS,A,P,Rt ,� i}. Let us
consider uniformly sampling one of these MDPsMt ⇠ U (G) and
unrolling one episode given this choice. Once the episode has termi-
nated, we re-sample fromG and repeat this process. Please note that
this procedure, de�nes another MDPM = hS,A,P,R,� i where
R = EMt [Rt ]1. This holds only when the transitional dynamics
P is shared across the candidate MDPs. We are interested in the
policy �⇤ that performs well, in expectation across this family of
MDPs:

�⇤ 2 argmax
�

⇣
EMt⇠U (G)[V �

Mt
]
⌘

Introducing a teacher into the formal setup. Once a teacher is
introduced, the set ofMDPs becomes G̃ = {M̃t |M̃t = hS̃,A, P̃,Rt ,� i}
where M̃t is the augmented MDP relative toMt (as seen in Sec.3.2).
We are interested in the policy �̃⇤ that performs well, in expectation
across G̃:

�̃⇤ 2 argmax
�

⇣
EM̃t⇠U (G̃)[V

�
M̃t

]
⌘
.

Now, we would like to know if it is possible to do better than the
stationary policy �⇤, when placing the learner in the augmented
setup G̃. More precisely we want to know if EM̃t⇠U (G̃)[V

�̃ ⇤

M̃t
] �

EMt⇠U (G)[V � ⇤
Mt

]. The answer is yes. Indeed, a direct consequence
of moving fromMt to M̃t is an augmentation in the state space,
which results in an expansion of the policy space. Since the set of
possible policies in M̃t is a superset of the policies inMt , it is easy
to see that the optimal policy in the augmented space is at least as
good as the optimal policy in the original MDP.

This means that the learner can leverage the behaviour of the
teacher in order to learn a policy � (a |sc , s¬c ) that is better than
� (a |sc ). Given this setup, let us take a closer look at two particular
case studies, where this might occur:

1Note:

EMt [V
�
Mt

] =EMt

h
Rt (s, a) + �Es0⇠P (. |s,a)V �

Mt
(s 0)

i
,

=EMt [Rt (s, a)] + �Es0⇠P (. |s,a)
h
EMt [V

�
Mt

(s 0)]
i
.
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i) Imitation. Let us consider the case where A = Ae , where
Ae is the action-space of the teacher. Let us assume the teacher’s
policy is better than the stationary policy de�ned in eq. (3.3), �⇤ –
otherwise there is no incentive to deviate from �⇤. If s¬c includes
the actions taken by the teacher, then imitation can trivially take
place, by just reading o� the desired action from s¬c : � (a |sc , s¬c ) :=
� (ae |sc , s¬c )2. It is actually a known result that observing teacher’s
actions is mandatory to achieve actual imitation [10]. In a purely
observational setting though, the learner would not have access
directly to the teacher’s actions. Nevertheless, we also know that in
a deterministic environment, observing the e�ects of one’s actions
in the environment is enough to infer the action that was performed.
To learn this mapping we need to ’remember’ or keep track of at
least two consecutive observations of the teacher’s behaviour. Thus,
if imitation is to emerge, it can only do so in a system able to distill
this information from the observational state. For this our agents
will need memory or augmentation of the state space to include
several time steps.

ii) Information seeking behaviour. If the learner knows the
task (i.e. the MDP (Mt ) is identi�ed), then its policy can become
independent of the teacher as it can optimally perform the task
without any input from the teacher. We thus study here the case
where the teacher’s behavior can help in identifying the task. We
denote �⇤

Mt
the optimal policy inMt . We will make the additional

assumption that, given t , the optimal policy in the MDP Mt with
or without the teacher is the same. Formally, �⇤

Mt
= �⇤

M̃t
. Thus,

if the identity t of the task is known, the optimal behaviour of the
agent would be to just switch between these optimal policies given
the context t : �̃ (a |s̃, t) = �⇤

Mt
(a |sc ). This policy is optimal for each

of the sampled MDPs and results in an optimal behaviour in M̃,
provided the context t is known. If this information can be distilled
from the observation of the other teacher, the learner can improve
over the stationary policy de�ned in eq. (3.3). Thus if 9� : Sl ! NT
s.t. t = �(s¬c ), then 9 a stationary policy in the augmented state
space S̃ that (can) outperfom �⇤

M :

�̃ (a |s̃) = �̃ (a |s̃,�(s¬c )) = �⇤
Mt

(a |sc )

Note that � can take into account in its computation, a series of
observations of the teacher (several steps of its trajectory). This can
be practically implemented by stacking several recent observations
in our current state, or relying on a memory/recurrent model to
distill temporal information as part of its hidden state and infer the
current context.

4 EXPERIMENTS
For our experiments, we choose a widely used DeepRL algorithm:
the Asynchronous Advantage Actor-Critic (A3C) algorithm [19].
This learns both a policy (the actor), ��� (at |st ) and value function
(the critic) V�V (st ) given a state observation st . The two approx-
imations share the intermediate representation and only diverge
in the� nal fully-connected layer. The policy is given by a softmax

2We assume the two agents have the same starting position, but this is can relaxed, by
�rst employing a policy that gets the learning agent close enough to the teacher, after
which the mimicking behaviour can occur. We assume the learner to always be one
step behind the teacher, but longer time di�erence can be negotiated via a memory
component.

(a) Level 1 (b) Level 2 (c) Level 3

Figure 1: Environment snapshots

over actions. The setup closely follows [19] including the entropy
regularization and the addition of an LSTM layer to incorporate
memory.We use both a simple feed-forward and a recurrent version
in our experiments. For further details, we refer the reader to the
original paper.

As scenarios, we consider a series of simple navigation tasks.
We� rst start with a two-room layout (Fig. 1a) and place the two
agents in this environment. Possible goal locations considered are
the corners of each room (8 in total). At the start of each episode, we
sample uniformly the location of the goal andmake this information
available to the teacher at all times. For the learning agent, we
consider both including and occluding the goal in its observational
space. In the second version of this task, the learner does not know
which goal is activated at this point in time. It can only learn that
the possible positions of the reward are the 8 corners. If it ignores
the teacher’s behaviour the optimal stationary policy would be
to visit all of these locations in the minimum time possible. On
the other hand, the teacher has access to the goal and can seek it
directly. By observing its behaviour, the learner could potentially
disentangle which corner is active, or at least narrow down the
correct room, and use this information to improve its performance.

4.1 Global view: task identity occluded, but
perfect information otherwise.

We provide the learner with a top-view representation of the envi-
ronment. We use a one-hot encoding for each element present in
the environment: a channel for the layout (L), one for the position
of the agent (A), one for the position of the teacher (T), one for the
position of the goal (G). We implement four variations of this obser-
vational space: LA, LAG, LAT, LAGT. Once the teacher reaches the
goal, it will respawn in a random position in the environment and
re-demonstrate the task. This gives the learner multiple chances of
seeing the teacher and witness demonstrations from various parts
of the environment. This is particularly important in the partially
observable setting, as the learner might lose track of the teacher
especially in the beginning.

We run this experiment with an A3C agent with two small con-
volutional layers, followed by a fully connected layer. The results
are displayed in Fig. 2a (Feed-forward network), 2b (LSTM with 32
units). The� rst thing to notice is that, with perfect information, the
learned policies with or without the teacher have the same asymp-
totic performance. Moreover the speed at which this is reached is
not negatively impacted by the expansion of the state space. Thus,
for this experiment we conclude that the presence or absence of
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Figure 2: Level 1: Performance during training as measured
by the number of steps to the goal. Red curves: learning
agent alone in the environment. Green curves: learning
agent shares the environment with a teacher. Blue curves:
learning from scratch. Bold coloured curves: the goal is
present (LAGT, LAG). Light coloured curves: the goal is oc-
cluded (LA, LAT).

the teacher does not have an impact on the learning process – this
is observed across multiple experiments.

In the second case, when the learner has impoverished knowl-
edge of the environment, we can clearly spot a di�erence between
the performance of the learner when sharing in the same environ-
ment with the teacher and acting on its own. For the� rst part of
the training, the agent achieves similar performance, but at some
point, the agent sharing the same environment with the teacher
manages to leverage this extra signal to signi�cantly improve its
policy.

As we observed that the learner is able to exploit the teacher’s
behaviour for its own bene�t, we now want to know if it is a
transferable knowledge across di�erent environments. To test this
out, we constructed two other “levels”, by adding an additional room
each time and thus smoothly increasing the di�culty of the task. A
depiction of these levels can be found in Fig. 1b, 1c. When extending
the environment, we also naturally extend the number of possible
goal locations. The average number of steps to the goal increases
and when the goal location is occluded, the ’blind’ stationary policy
will be quite expensive, thus it becomes more and more crucial for
the agent to leverage the teacher.

We train on these new levels in a curriculum fashion:� rst we
train on level 1, then continue training on level 2, and� nally on
level 3. This is mainly done to speed up training time, but also we
expect the agent to learn the importance of the teacher in level 1
and continue to employ this knowledge in its learning process in

Figure 3: Level 2 and 3: Performance during training as
measured by the number of steps to the goal. Red curves:
learning agent alone in the environment. Green curves:
learning agent shares the environment with a teacher.
Blue curves: learning from scratch (w/o curriculum). Bold
coloured curves: the goal is present (LAGT, LAG). Light
coloured curves: the goal is occluded (LA, LAT). When the
goal is occluded we can see that the agent can do substan-
tially better by leveraging the teacher’s behavior.

the next levels. The speci�cation of the observational state of the
learner is maintained throughout the curriculum: with/without the
teacher, with/without the goal visible. The results are compiled in
Fig. 3a, 3b. For reference, we included the baseline of learning in
these levels starting from a random initialization, with the curricu-
lum. One can see that the curriculum helps the learning process
both when the goal is visible and when it is occluded. The per-
formance is slightly better to begin with and then convergence is
achieved considerably faster. Moreover, the presence of the teacher
consistently improves the policy of the ’blind’ learner across all
levels. It is also worth noting, that for the last level when the goal
is occluded, both the baseline and the lone agent are not always
able to complete the task, whereas the agent leveraging the teacher
can almost instantaneously complete the task at each episode (the
transfer to level 3 is almost zero-shot).

4.2 Local view: agent needs to actively keep
track of the teacher, if useful

We have seen in the previous section that by just using RL on the
same reward signal, we can obtain di�erent policies when envi-
ronment is augmented with the presence of a teacher. Although
occluding the goal might seem like a somewhat arti�cial task, please
keep in mind that this is just a proxy for impoverished or imper-
fect information. A more natural example of this would be partial
observability – when the agent has only a local view of the environ-
ment.We thus simulate this by taking a local window of observation
centered around the agent. The rest of the setup remains the same,
but note that we are changing the nature of the problem quite drasti-
cally. This is especially true if one thinks about the setting in which
the teacher is in the picture. In this new scenario, the learner will
have to actively pursue the teacher if it has any hope of bene�ting
from its presence. If it cannot see the teacher, the learner cannot
learn from it. Because of the increased complexity, we now start
with only one of the two rooms in level 1 and we basically treat
this as pre-training of simple navigation skills with local view. In
this level, the learner can learn to navigate to the goal and visit the
potential locations where the goal is hidden, but we do not observe
any bene�t from having the teacher present. The size of the local
window of observation is the size of the room – if the agent is in
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Figure 4: Local View: Performance during training (aver-
age steps to the goal), in all levels of the curriculum. Green
curves: the learning agent shares the environment with the
teacher. Blue curves: learning from scratch in this environ-
ment. Bold coloured curves: the goal is present (LAGT, LAG).
Light coloured curves: the goal is occluded (LA, LAT). The
teacher’s presence has a signi�cant impact on the perfor-
mance in the training and quality of the end policy. It uni-
versally improving, or at least matching the performance of
the lone agent (level 0).

the middle of the room it can see the whole room. This always
means that the problem of keeping track of the other agent is not
very di�cult in this� rst setting. The learning curves can be found
in Figure 4. Nevertheless, a di�erent story emerges when we look
at the training in level 1. First, we observe that when the goal is
hidden, but the teacher is present, we get an improvement in policy
over the scenario where the agent is alone in the environment. This
is consistent with what we have seen before in the global view.
When the potential bene�t over the ’blind’ stationary policy is big
enough, the learner begins to ’pay’ attention to the teacher and
uses these observations to improve its own policy. This carries on
to levels 2 and 3. Furthermore, at these last levels, we can see that in
the cases where the teacher is present, the asymptotic performance
of the agent matches or slightly outperforms that of the lone agent
with the goal visible. This is remarkable as we are now seeing an
improvement in policy even when the goal is (locally) visible. This
is because in partial observability the trajectory of the teacher still
contains valuable information about where the goal might be. At
each step, the teacher narrows down the possible locations.

4.3 Breaking away from the teacher
The fact that the� nal performance is independent of the goal’s
presence or absence in the state space suggests that the only in-
formation the agent learns to exploit is the behaviour the teacher.
Visual inspection of the� nal policies fully supports this intuition.
The behaviour that emerges is the following: the agent seeks the
teacher and tries to get as close as possible to it, after which it simply
follows it to the goal.3 This is potentially a very useful, transferable

3 Videos of these behaviours can be found at here.

strategy to a di�erent environment. To test this idea, we expand fur-
ther our environment to 9 rooms and without any further learning,
the previously trained agent can successfully negotiate this new
environment with the help of the teacher and succeeds in�nding
new goals it has never seen before. Nevertheless, relying always
on the teacher is somewhat unsatisfactory. In fact, if we do elimi-
nate the teacher, the learning agent is quite lost. It will only reach
for the goals currently visible if any, and otherwise will continue
waiting for the other agent to appear, not even attempting to leave
spawning room. Yet, this is an agent that has previously negotiates
this environment with the help of the teacher, but has not retained
the particularities of this environment, mainly because it did not
need to. In order to break this dependence, we propose a simple
(curriculum) strategy: we mask the presence of the teacher with
some probability that increases over time. When this probability
reaches 1 and the agent becomes completely independent of the
teacher. We start with a masking probability of 0.25, then after 250k
steps, we increase it to 0.5, then 0.75 and�nally 1.0. At the end of
this process we successfully achieved an agent that can tackle the
environment on its own, without the teacher.

4.4 Di�erent action space
We ran a slight modi�cation of the above, to show that the two
agents (the learner and the expert) do not need to share body or
action space. We were able to replicate the previous results with
an slight modi�ed learning agent, which now have four additional
actions (NW, NE, SW and SE) in addition to the four primitive
cardinal directions, shared with the expert. We observe that these
new actions are used quite extensively by the learner – more than
50% of the time – thus the learner does not simply default to copying
the actions of the teacher, but uses its whole actions space as this
often o�er an more e�ective way of navigating the environment.

4.5 Information Seeking
Although the previously setting is quite natural and we see a level
of imitation emerging when the agents share the task, observation
learning can be useful even if the agents do not have the same
task – as long as the behaviour of another agent can inform a
learning agent about the task at hand or its behaviour contains
information that is useful in achieving the task optimally. We will
explore two simple scenarios. Firstly, we consider a scenario where
the two agents have inversely correlated rewards. Consider two
goals (fruits) in the environment – their positions are randomized
each episode, and one give positive reward (+1 to the learner, -1 to
the teacher) and one give negative reward (-1 to the learner, +1 to
the expert). But both of them look the same to the learner. Only the
teacher knows, at each trial, which fruit it should pick up. Because
the rewards of the two agents are inversely correlated, now the
learner, instead of following the teacher, has to infer or observe
which fruit the teacher is going for and head for the opposite fruit.
An agent with memory successfully learns this behavior Fig. 5a.

The second scenario is very similar: two fruits in the environ-
ment, they look the same for both agents now, one give positive
reward (+1), the other one gives negative reward(�0.1). The two
agents share the reward, and now the teacher has the same sen-
sory information as the learner (it can not distinguish between the
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(a) Negatively correlated reward

(b) Observing a visual e�ect on the other agent

Figure 5: Cumulative reward during training. Green curves:
the teacher is present in the environment. Red curves: the
learner is alone. The curves represent the performance of
the amemory agent with andwithout the another agent. For
reference (in dotted line) the performance of the same agent
with a LSTM.

fruits, so it has to take a gamble if it want to receive any positive
reward). We introduce a new element to the setup, which is quite
natural in a true observational setting: in addition to observing the
behaviour of an agent, one would (sometimes) observe the e�ect of
an interaction – in a real situation, we would observe if the agent
is happy, sad, if it got hurt etc. These are very informative cues.
To simulate that, when the teacher eats one of the fruits, it will
momentarily change color (red or white), indicating if it received
positive or negative reward, if it ate the right or wrong fruit. An-
other important di�erence to the previous scenarios, is that now
the teacher does not have additional or privileged information any-
more. Information that could be somehow communicated via its
behaviour. Instead, here additional information is provided by the
reaction of the teacher when eating the right/wrong fruit. In this
case, the teacher is suboptimal as it will try at random one of the
fruits. If the teacher is not present, when endowed with memory,
our agent will just try one fruit at random and remembers if it was
good or bad. If not successful in the� rst try, it will go for the good
fruit after eating the bad fruit. If the learner has no memory, its
overall reward is much worse as it can not remember which fruit
was previously visit. This can be seen from the performance curves
in Fig. 5b. Finally, if the teacher is present in the environment, a
agent with memory, eventually learns not to take this gamble, but
wait for the teacher to do so; observe its ’reaction’, and directly
seek the right fruit, without risking the negative penalty (Fig. 5b).

4.6 Scaling up: Mujoco experiments
Lastly, we wanted to validate the previous insights in a more chal-
lenging and realistic scenario. For this, we used the MuJoCo physics
engine [33] to create two small maze-like tasks. We opted for two

Figure 6: Mujoco: Learning curves with/without the teacher

di�erent agents with di�erent bodies and hence very di�erent ac-
tion spaces, one simple ball that can roll forward and backwards,
steer and jump (3 action dimensions, 5 DoF) and a quadrupedal body
(14 DoF; 8 action dimensions). Both agents were equipped with a
simple LIDAR-like raycasting system that allowed to them to sense
the distance to the nearest object and its type (wall, other walker
body, target) in each direction in the horizontal plane. A scenario
particularly challenging for imitation learning, as both observations
and actions require some kind of explicit or implicit mapping from
one agent state-action space to the other. This is especially non
trivial as not all states can be achieved by both agents. For instance,
the quadrupedal body cannot get as close to the walls and can easily
get stuck at corners. Furthermore, the agents interfere with each
other physically (which violated the assumption made in Sec. 3).

We start by placing both agents in a small room that also con-
tains a randomly positioned goal. This goal is visible only to the
teacher, although getting close to it rewards both agents. This is
e�ectively a scaled up version of the scenario investigated above,
but with notable additional di�culties due to the physical embodi-
ment. Training the two agents in this scenario serves two purposes:
�rst, it teaches both agents to locomote (note that especially the
quadruped does not move coherently at the beginning of learning).
Secondly, it serves to establish the bond between the two agents, as
this has been something that we have seen leads to positive transfer
when the environment increases in complexity. The second phase
of this experiment takes place in a two room enclosure (Fig. 6a).
Now the goal is visible to both agents and the new teacher has been
previously trained to reliably achieve navigation to this goal.

What we observe again, is that the learner tries to keep close
to the new teacher and sees the reward much sooner than our
baseline, the quadruped trained in the initial scenario but without
the teacher present4. This is despite the fact that the scenario is
considerably more challenging and the quadruped needs to�rst
learn to handle additional challenges not encountered in the initial
training scenario (like navigating around corners), and that physical
interference between the agents is possible when the teacher is
present. Nevertheless, we can see that the learner manages to get to
the goal and experience the positive rewardmuch sooner in learning
when the teacher is present. This extra signal it learnt during the
previous phase, acts a more targeted exploration strategy which
speeds up learning. Learning curves comparing the training of these
two agents are provided in Fig. 6b. We observe that learning slows
down at some point. We speculate that this is, at least partially, due
to the physical interference between the agents (bumping into each

4Note that this is a strong baseline in that in this setting the quadruped bene�ts from
having learned to walk in the initial scenario and will coherently explore the maze
randomly.
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other; see video). However, asymptotically both agents perform on
par when the teacher is removed.

5 CONCLUSION AND FURTHERWORK
This paper demonstrates that observational learning can emerge
from reinforcement learning, combined with memory. We argued
that observational learning is an important learning mechanism
that can be a ’cheaper’ alternative than some of the current ap-
proaches to learning from teachers. In particular, this approach
does not require any explicit modelling of the teacher, nor map-
ping their experience in the learner’s state and action space. We
have shown in our experiments, that relying only on the (sparse)
reward signal given by the environment coupled with only the
sheer presence of a teacher, can lead to a variety of behaviours,
ranging smoothly between imitation and information seeking. We
also demonstrated that, via a curriculum, we could end up with an
autonomous agent that solves tasks without the presence of the
teacher although it learned through observations of a teacher. We
also showed that the teacher and the learner did not have to share
the same action and state space which adds to our claim that only
e�ects on the environment are important and not actual teacher’s
actions.

This is an initial work which should be extended further, in other
settings. Especially, we want to test scenarios where the goal of the
teacher and of the learner are not strictly aligned. We performed a
preliminary study where there is a negative correlation (e.g. they
are in opposite directions in the room). In the same way, we should
study how optimal the teacher has to be, how much its motivation
should be correlated to the one of the learner.
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