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ABSTRACT
Decentralized policies for information gathering are required when

multiple autonomous agents are deployed to collect data about a

phenomenon of interest without the ability to communicate. De-

centralized partially observable Markov decision processes (Dec-

POMDPs) are a general, principled model well-suited for such de-

centralized multiagent decision-making problems. In this paper,

we investigate Dec-POMDPs for decentralized information gath-

ering problems. An optimal solution of a Dec-POMDP maximizes

the expected sum of rewards over time. To encourage information

gathering, we set the reward as a function of the agents’ state infor-

mation, for example the negative Shannon entropy. We prove that

if the reward is convex, then the finite-horizon value function of

the corresponding Dec-POMDP is also convex. We propose the first

heuristic algorithm for information gathering Dec-POMDPs, and

empirically prove its effectiveness by solving problems an order of

magnitude larger than previous state-of-the-art.
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1 INTRODUCTION
Autonomous agents and robots can be deployed in information

gathering tasks in environments where human presence is either

undesirable or infeasible. Examples include monitoring of deep

ocean conditions, or space exploration. It may be desirable to deploy

a team of agents, e.g., due to the large scope of the task at hand,

resulting in a decentralized information gathering task.

Some recent works, e.g., [5, 21], tackle decentralized information

gathering while assuming perfect, instantaneous communication

between agents, while centrally planning how the agents should

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and
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act. In terms of communication, we approach the problem from

the other extreme as a decentralized partially observable Markov

decision process (Dec-POMDP) [15]. In a Dec-POMDP, no explicit

communication between the agents is assumed
1
. Each agent acts

independently, without knowing what the other agents have per-

ceived or how they have acted.

Informally, a Dec-POMDP model consists of a set of agents in

an environment with a hidden state. Each agent has its own set of

local actions, and a set of local observations it may observe. Mar-

kovian state transition and observation processes conditioned on

the agents’ actions and the state determine the relative likelihoods

of subsequent states and observations. A reward function deter-

mines the utility of executing any action in any state. The objective

is to centrally design optimal control policies for each agent that

maximize the expected sum of rewards over a finite horizon of

time. The control policy of each agent depends only on the past

actions and observations of that agent, hence no communication

during execution of the policies is required. However, as policies

are planned centrally, it is possible to reasong about the joint in-

formation state of all the agents. It is thus possible to calculate

probability distributions over the state, also known as joint beliefs.

A decentralized information gathering task differs from other

multiagent control tasks by the lack of a goal state. It is not the

purpose of the agents to execute actions that reach a particular state,

but rather to observe the environment in a manner that provides

the greatest amount of information while satisfying operational

constraints. As the objective is information acquisition, the reward

function depends on the joint belief of the agents. Convex functions

of a probability mass function naturally model certainty [6], and

have been proposed in the context of single-agent POMDPs [3]

and Dec-POMDPs [10]. However, to the best of our knowledge

no heuristic or approximate algorithms for convex reward Dec-

POMDPs have been proposed, and no theoretical results on the

properties of such Dec-POMDPs exist in the literature.

In this paper, we propose the first heuristic algorithm for Dec-

POMDPswith a convex reward.We prove the value function of such

Dec-POMDPs is convex, generalizing the similar result for single-

agent POMDPs [3]. The Dec-POMDP generalizes other decision-

making formalisms such asmulti-agent POMDPs andDec-MDPs [4].

Thus, our results also apply to these special cases removing parts

required by the more general Dec-POMDP.

Our paper has three contributions. Firstly, we prove that in Dec-

POMDPs where the reward is a convex function of the joint belief,

the value function of any finite horizon policy is convex in the

joint belief. Secondly, we propose the first heuristic algorithm for

Dec-POMDPs with a reward that is a function of the agents’ joint

1
If desired, communication may be included into the Dec-POMDP model [24, 27].
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state information. The algorithm is based on iterative improvement

of the value of fixed-size policy graphs. We derive a lower bound

that may be improved instead of the exact value, leading to compu-

tational speed-ups. Thirdly, we experimentally verify the feasibility

and usefulness of our algorithm. For Dec-POMDPs with a state

information dependent reward, we find policies for problems an

order of magnitude larger than previously.

The paper is organized as follows. We review related work in

Section 2. In Section 3, we define our Dec-POMDP problem and

introduce notation and definitions. Section 4 derives the value of a

policy graph node. In Section 5, we prove convexity of the value in

a Dec-POMDP where the reward is a convex function of the state

information. Section 6 introduces our heuristic policy improvement

algorithm. Experimental results are presented in Section 7, and

concluding remarks are provided in Section 8.

2 RELATEDWORK
Computationally finding an optimal decentralized policy for a finite-

horizon Dec-POMDP is NEXP-complete [4]. Exact algorithms for

Dec-POMDPs are usually based either on backwards in time dy-

namic programming [9], forwards in time heuristic search [17, 26],

or on exploiting the inherent connection of Dec-POMDPs to non-

observable Markov decision processes [7, 11]. Approximate and

heuristic methods have been proposed, e.g., based on finding lo-

cally optimal “best response” policies for each agent [13], memory-

bounded dynamic programming [22], cross-entropy optimization

over the space of policies [16], or monotone iterative improvement

of fixed-size policies [19]. Algorithms for special cases such as goal-

achievement Dec-POMDPs [2] and factored Dec-POMDPs, e.g., [18],

have also been proposed. Structural properties, such as transition,

observation, and reward independence between the agents, can

also be leveraged and may even result in a problem with a lesser

computational complexity [1]. Some Dec-POMDP algorithms [17]

take advantage of plan-time sufficient statistics, which are joint

distributions over the hidden state and the histories of the agents’

actions and observations [14]. The sufficient statistics provide a

means to reason about possible distributions over the hidden state,

also called joint beliefs, reached under a given policy.

The expected value of a reward function that depends on the

hidden state and action is a linear function of the joint belief. These

types of rewards are standard in Dec-POMDPs. In the context of

single-agent POMDPs, Araya-López et al. [3] argue that information

gathering tasks are naturally formulated using a reward function

that is a convex function of the state information and introduce

the ρPOMDP model with such a reward. This enables application

of, e.g., the negative Shannon entropy of the state information as

a component of the reward function. Under certain conditions, an

optimal value function of a ρPOMDP is Lipschitz-continuous [8]

which may be exploited in a solution algorithm. An alternative

formulation for information gathering in single-agent POMDPs is

presented in [25], and its connection to ρPOMDPs is characterized

in [20]. Recently, [10] proposes an extension of the ideas presented

in [3] to the Dec-POMDP setting. Entropy is applied in the reward

function to encourage information gathering. Problem domains

with up to 25 states and 5 actions per agent are solved with an exact

algorithm.

In this paper, we present the first heuristic algorithm for Dec-

POMDPs with rewards that depend non-linearly on the joint belief.

Our algorithm is based on the combination of the idea of using a

fixed-size policy represented as a graph [19] with plan-time suffi-

cient statistics [14] to determine joint beliefs at the policy graph

nodes. The local policy at each policy graph node is then iteratively

improved, monotonically improving the value of the node. We show

that if the reward function is convex in the joint belief, then the

value function of any finite-horizon Dec-POMDP policy is convex

as well. This is a generalization of a similar result known for single-

agent POMDPs [3]. From this property, we obtain a lower bound

for the value of a policy that we empirically show improves the

efficiency of our algorithm. Compared to prior state-of-the-art in

Dec-POMDPs with convex rewards [10], our algorithm is capable

of handling problems an order of magnitude larger.

3 DECENTRALIZED POMDPS
We next formally define the Dec-POMDP problem we consider.

Contrary to most earlier works, we define the reward as a function

of state information and action. This allows us to model information

acquisition problems. We choose the finite-horizon formulation

to reflect the fact that a decentralized information gathering task

should have a clearly defined end after which the collected infor-

mation is pooled and subsequent inference or decisions are made.

A finite-horizon Dec-POMDP is a tuple

(
I , S , {Ai }, {Zi }, P

s
, Pz ,

b0, T , {ρt }
)
, where I = {1, . . . ,n} is the set of agents, S is a finite

set of hidden states, Ai and Zi are the finite action and observa-

tion sets of agent i ∈ I , respectively, Ps is the state transition

probability that gives the conditional probability Ps (st+1 | st ,at )
of the new state st+1 given the current state st and joint action

at = (at
1
, . . . ,atn ) ∈ A, where A is the joint action space obtained

as the Cartesian product of Ai for all i ∈ I , P
z
is the observation

probability that gives the conditional probability Pz (zt+1 | st+1,at )
of the joint observation zt+1 = (zt+1

1
, . . . zt+1n ) ∈ Z given the state

st+1 and previous joint action at , withZ being the joint observation

space defined as the Cartesian product of Zi for i ∈ I , b
0 ∈ ∆(S ) is

the initial state distribution
2
at time t = 0, T ∈ N is the problem

horizon, and ρt : ∆(S ) ×A→ R are the reward functions at times

t = 0, . . . ,T − 1, while ρT : ∆(S ) → R determines a final reward

obtained at the end of the problem horizon.

The Dec-POMDP starts from some state s0 ∼ b0. Each agent

i ∈ I then selects an action a0i ∈ Ai , and the joint action a0 =

(a0
1
, . . . ,a0n ) ∈ A is executed. The state then transitions according

to Ps , and each agent perceives an observation z1i ∈ Zi , where

the likelihood of the joint observation z1 = (z1
1
, . . . , z1n ) ∈ Z is

determined according to Pz . The agents then select the next actions

a1i , and the same steps are repeated until t = T and the task ends.

Optimally solving a Dec-POMDP means to design a policy for

each agent that encodes which action the agent should execute

conditional on its past observations and actions; in a manner such

that the expected sum of rewards collected is maximized. In the

following, we make the notion of a policy exact, and determine the

expected sum of rewards collected when executing a policy.

2
We denote by ∆(S ) the space of probability mass functions over S .
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qi γi (qi )

q0i a0i
q1i a1i
q2i a1i
q3i a0i
q4i a0i

Figure 1: A local policy for agent i. The policy encodes
the agent’s behavior conditional on local observations. The
shaded circles show the set of nodesQi . The starting node is
qi
0
. The table on the right defines the output function γi , and

the labels on the edges define the node transition function
λi . First, the agent executes γi (q0i ). Conditional on the next
observation perceived, the next node is q1i or q

2

i . At the next
node, the action to execute is again looked up from γi .

3.1 Histories and policies
Define the history set of agent i at time t = 1, . . . ,T as H t

i =

{(b0,a0i , z
1

i , . . . ,a
t−1
i , z

t
i ) | a

k
i ∈ Ai , z

k
i ∈ Zi }, and H0

i = {(b
0)}.

A local history hti ∈ H t
i contains all information available to

agent i to decide its next action ati . We define the joint history

set H t
as the Cartesian product of H t

i over i ∈ I . We write a

joint history as ht = (ht
1
, . . . ,htn ) ∈ H t

, or equivalently as ht =

(b0,a
0, z1, . . . ,at−1, zt ) ∈ H t

where ak ∈ A and zk ∈ Z . Both the

local and joint histories satisfy the recursion ht = (ht−1,at−1, zt ).
A solution of a finite-horizon Dec-POMDP is a local policy for

each agent that determines which action an agent should take given

a local history in H t
i for any t = 0, . . . ,T − 1. We define a local

policy similarly as [19] as a deterministic finite-horizon controller

viewed as a directed acyclic graph.

Definition 3.1 (Local policy). For agent i , a local policy is πi =
(Qi ,q

0

i ,γi , λi ), whereQi is a finite set of nodes, q
0

i ∈ Qi is a starting

node, γi : Qi → Ai is an output function, and λi : Qi × Zi → Qi is

a node transition function.

Fig. 1 shows an example of a local policy. Note that a sufficiently

large graph can represent any finite horizon local policy.

We constrain the structure of local policies by enforcing that

each node can be identified with a unique time step. We call this

the property of temporal consistency.

Definition 3.2 (Temporal consistency). A local policy πi = (Qi ,

q0i , γi , λi ) is temporally consistent if Qi =
⋃T−1
t=0 Qt

i where Qt
i

are pairwise disjoint and non-empty, and Q0

i = {q
0

i }, and for any

t = 0, . . . ,T − 2, for qti ∈ Q
t
i , for all zi ∈ Zi , λi (q

t
i , zi ) ∈ Q

t+1
i .

In a temporally consistent policy, at a node in Qt
i the agent has

(T −t ) decisions left until the end of the problem horizon. Temporal

consistency guarantees that exactly one node in each set Qt
i can

be visited, and that after visiting a node in Qt
i , the next node will

belong to Qt+1
i . In Fig. 1, T = 3, and Q0

i = {q
0

i }, Q
1

i = {q
1

i ,q
2

i },

Q2

i = {q
3

i ,q
4

i }. Temporal consistency is assumed throughout the

rest of the paper.

A joint policy describes the joint behaviour of all agents and is

defined as the combination of the local policies πi .

Definition 3.3 (Joint policy). Given local policies πi = (Qi , q
0

i ,

γi , λi ) for all i ∈ I , a joint policy is π = (Q,q0,γ , λ), where Q is

the Cartesian product of all Qi , q
0 = (q0

1
, . . . ,q0n ) ∈ Q , and for

q = (q1, . . . ,qn ) ∈ Q and z = (z1, . . . , zn ) ∈ Z , γ : Q → A is such

that γ (q) = (γ1 (q1), . . . ,γn (qn )), and λ : Q × Z → Q is such that

λ(q, z) = (λ1 (q1, z1), . . . , λn (qn , zn )).

Temporal consistency naturally extends to joint policies, such

that there exists a partition of Q by pairwise disjoint sets Qt
.

3.2 Bayes filter
While planning policies for information gathering, it is useful to

reason about the joint belief of the agents given some joint history.

This can be done via Bayesian filtering as described in the following.

The initial state distribution b0 is a function of the state at time

t = 0, and for any state s0 ∈ S , b0 (s0) is equal to the probabil-

ity P (s0 | h0). When action a0 is executed and observation z1

is perceived, we may find the posterior belief P (s1 | h1) where
h1 = (h0,a0, z1) by applying a Bayes filter.

In general, given any current joint belief bt corresponding to

some joint history
3 ht , and a joint action at and joint observation

zt+1, the posterior joint belief is calculated by

bt+1 (st+1) =

Pz (zt+1 | st+1,at )
∑

s t ∈S
Ps (st+1 | at , st )bt (st )

η(zt+1 | bt ,at )
, (1)

where η(zt+1 | bt ,at ) is the normalization factor equal to the

prior probability of observing zt+1. Given b0 and any joint history

ht = (b0,a0,z1, . . ., at−1, zt ), repeatedly applying Eq. (1) yields a se-
quenceb0,b1, . . . ,bt of joint beliefs.We shall denote the application

of the Bayes filter by the shorthand notation bt+1 = ζ (bt ,at , zt+1).
Furthermore, we shall denote the filter that recovers bt given ht by
repeated application of ζ by a function τ : H t → ∆(S ).

3.3 Value of a policy
The value of a policy π is equal to the expected sum of rewards

collected when acting according to the policy. We define value

functions V π
t : ∆(S ) × Qt → R that give the expected sum of

rewards when following policy π until the end of the horizon when

t decisions have been taken so far, for any joint belief b ∈ ∆(S ) and
any policy node q ∈ Qt

.

The time step t = T is a special case when all actions have

already been taken, and the value function only depends on the

joint belief and is equal to the final reward: VT (b) = ρT (b).
For t = T − 1, one decision remains, and the remaining expected

sum of rewards of executing policy π is equal to

V π
T−1 (b,q)=ρT−1 (b,γ (q))+

∑
z∈Z

η(z | b,γ (q))VT (ζ (b,γ (q), z)) , (2)

i.e., the sum of the immediate reward and the expected final reward

at time T . From the above, we define V π
t iterating backwards in

time for t = T − 2, . . . , 0 as

V π
t (b,q) = ρt (b,γ (q)) + E

[
V π
t+1 (ζ (b,γ (q), z), λ(q, z))

]
, (3)

3
For notational convenience, we drop the explicit dependence of bt on the joint

history.
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where the expectation is under z ∼ η(z | b,γ (q)). The expected sum
of rewards collected when following a policy π is equal to its value

V π
0
(b0,q0). The objective is to find an optimal policy π∗ whose

value is greater than or equal to the value of any other policy.

4 VALUE OF A POLICY NODE
Executing a policy corresponds to a stochastic traversal of the pol-

icy graphs (Fig. 1) conditional on the observations perceived. In

this section, we first answer two questions related to this traversal

process. First, given a history, when is it consistent with a policy,

and which nodes in the policy graph will be traversed (Subsec-

tion 4.1)? Second, given an initial state distribution, what is the

probability of reaching a given policy graph node, and what are

the relative likelihoods of histories if we assume a given node is

reached (Subsection 4.2)? With the above questions answered, we

define the value of a policy graph node both in a joint and in a local

policy (Subsection 4.3). These values will be useful in designing a

policy improvement algorithm for Dec-POMDPs.

4.1 History consistency
As illustrated in Fig. 1, there can be multiple histories along which a

node can be reached. We define when a history is consistent with a

policy, i.e., when executing a policy could have resulted in the given

history. As histories in HT
are reached after executing all actions,

in the remainder of this subsection we consider 0 ≤ t ≤ T − 1.

Definition 4.1 (History consistency). We are given for all i ∈ I
πi =(Qi ,q

0

i ,γi ,λi ), and the corresponding joint policyπ = (Q ,q0,γ ,λ).

(1) A local history hti = (b0,a
0

i , z
1

i , . . . ,a
t−1
i , z

t
i ) is consistent

with π if the sequence of nodes (q0i ,q
1

i , . . . ,q
t
i ) where q

k
i =

λi (q
k−1
i , zki ) for k = 1, . . . , t satisfies: aki = γi (q

k
i ) for every

k . We say hti ends at q
t
i ∈ Q

t
i under π .

(2) A joint history ht = (ht
1
, . . . ,htn ) is consistent with π if for

all i ∈ I , hti is consistent with π and ends at qti . We say ht

ends at qt = (qt
1
, . . . ,qtn ) ∈ Q

t
under π .

Due to temporal consistency, any hti ∈ H t
i consistent with a

policy will end at some qti ∈ Qt
i . Similarly, any ht ∈ H t

ends at

some qt ∈ Qt
.

4.2 Node reachability probabilities
Above, we have defined when a history ends at a particular node.

Using this definition, we now derive the joint probability mass

function (pmf) P (qt ,ht | π ) of policy nodes and joint histories

given that a particular policy π is executed.

We note that P (qt ,ht | π ) = P (qt | ht ,π )P (ht | π ) and first

consider P (ht | π ). The unconditional a priori probability of ex-

periencing the joint history h0 = (b0) is P (h0) = 1. For t ≥ 1, the

unconditional probability of experiencing ht is obtained recursively
by P (ht ) = η(zt | τ (ht−1),at−1)P (ht−1). Conditioning P (ht ) on a

policy yields P (ht | π ) = P (ht ) if ht is consistent with π and 0

otherwise. Next, we have P (qt | ht ,π ) =
∏

i ∈I P (q
t
i | h

t
i ,π ), with

P (qti | h
t
i ,π ) = 1 if hti ends at q

t
i under π and 0 otherwise.

Combining the above, the joint pmf is defined as

P (qt ,ht | π ) =



P (ht ) if ht ends at qt under π

0 otherwise

.

Marginalizing over ht , the probability of ending at node qt under
π is

P (qt | π ) =
∑

ht ∈H t

P (qt ,ht | π ), (4)

and by definition of conditional probability,

P (ht | qt ,π ) =
P (qt ,ht | π )

P (qt | π )
. (5)

We now find the probability of ending at qti under π . Let Q
t
−i

denote the Cartesian product of all Qt
j except Q

t
i . Then qt

−i ∈ Q
t
−i

denotes the nodes for all agents except i . We have (qt
−i ,q

t
i ) ∈ Q

t
.

The probability of ending at qti under π is

P (qti | π ) =
∑

qt
−i ∈Q

t
−i

P
(
(qt−i ,q

t
i ) | π

)
, (6)

where the sum terms are determined by Eq. (4). Again, by definition

of conditional probability,

P (qt−i | q
t
i ,π ) =

P
(
(qt
−i ,q

t
i ) | π

)
P (qti | π )

, (7)

where the term in the numerator is obtained from Eq. (4).

4.3 Value of policy nodes
We define the values of a node in a joint policy and an individual

policy.

Definition 4.2 (Value of a joint policy node). Given a joint policy

π = (Q,q0,γ , λ), the value of a node qt ∈ Qt
is defined as

V π
t (qt ) = Eht∼P (ht |qt ,π )

[
V π
t (τ (ht ),qt )

]
,

where P (ht | qt ,π ) is defined in Eq. (5) and τ (ht ) is the joint belief
corresponding to history ht .

Definition 4.3 (Value of a local policy node). For i ∈ I , let πi =
(Qi ,q

0

i ,γi , λi ) be the local policy and let π = (Q,q0,γ , λ) be the

corresponding joint policy. For any i ∈ I , the value of a local node
qti ∈ Q

t
i is

V π
t (qti ) = Eqt−i∼P (q

t
−i |q

t
i ,π )

[
V π
t
(
(qt−i ,q

t
i )
)]
,

where P (qt
−i | q

t
i ,π ) is defined in Eq. (7).

In other words, the value of a local node qti is equal to the ex-

pected value of the value of the joint node (qt
−i ,q

t
i ) under q

t
−i ∼

P (qt
−i | q

t
i ,π ).

5 CONVEX-REWARD DEC-POMDPS
In this section, we prove several results for the value function of

a Dec-POMDP whose reward function is convex in ∆(S ). Convex
rewards are of special interest in information gathering. This is

because of their connection to so-called uncertainty functions [6],

which are non-negative functions concave in ∆(S ). Informally, an

uncertainty function assigns large values to uncertain beliefs, and

smaller values to less uncertain beliefs. Negative uncertainty func-

tions are convex and assign high values to less uncertain beliefs,

and are thus suitable as reward functions for information gathering.

Examples of uncertainty functions include Shannon entropy, gener-

alizations such as Rényi entropy, and types of value of information,

e.g., the probability of error in hypothesis testing.
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The following theorem shows that if the immediate reward func-

tions are convex in the joint belief, then the finite horizon value

function of any policy is convex in the joint belief.

Theorem 5.1. If the reward functions ρT : ∆(S ) → R and ρt :

∆(S )×A→ R are convex in ∆(S ), then for any policy π ,VT : ∆(S ) →
R is convex and V π

t : ∆(S ) ×Qt → R is convex in ∆(S ) for any t .

Proof. Let π = (Q,q0,γ , λ), and b ∈ ∆(S ). We proceed by induc-

tion (VT (b) = ρT (b) is trivial). For t = T − 1, let q
T−1 ∈ QT−1

, and

denote a := γ (qT−1). From Eq. (2), V π
T−1 (b,q

T−1) = ρT−1 (b,a) +∑
z∈Z

η (z | b,a)VT (ζ (b,a, z)). We recall from above that VT is con-

vex, and by Eq. (1), the Bayes filter ζ (b,a, z) is a linear function of

b. The composition of a linear and convex function is convex, so

VT (ζ (b,a, z)) is a convex function of b. The non-negative weighted
sum of convex functions is also convex, and by assumption ρT−1 is
convex in ∆(S ), from which it follows that V π

T−1 is convex in ∆(S ).
Now assume V π

t+1 is convex in ∆(S ) for some 1 ≤ t ≤ T − 1. By
the definition in Eq. (3) and the same argumentation as above, it

follows that V π
t is convex in ∆(S ). □

Since a sufficiently large policy graph can represent any policy,

we infer that the value function of an optimal policy is convex.

The following corollary gives a lower bound for the value of a

policy graph node.

Corollary 5.2. Let дt : H t → [0, 1] be a probability mass
function over the joint histories at time t . If the reward functions
ρT : ∆(S ) → R and ρt : ∆(S ) ×A→ R are convex in ∆(S ), then for
any time step t and any policy π ,

Eht∼д (ht )
[
V π
t (τ (ht ),qt )

]
≥ V π

t
(
Eht∼д (ht )

[
τ (ht )

]
,qt
)
.

Proof. By Theorem 5.1, V π
t : ∆(S ) ×Qt → R is convex in ∆(S ).

The claim immediately follows applying Jensen’s inequality. □

Applied to Definition 4.2, the corollary says the value of a joint

policy node qt is lower bounded by the value of the expected joint

belief at qt . Applied to Definition 4.3, we obtain a lower bound for

the value of a local policy node qti as

V π
t (qti ) ≥ Eqt−i∼P (q

t
−i |q

t
i ,π )

[
V π
t
(
Eht∼P (ht |qt ,π )

[
τ (ht )

]
,qt
)]
,

where inside the inner expectation we write (qt
−i ,q

t
i ) = q

t
. Thus,

we can evaluate a lower bound for the value of any local node

qti ∈ Qt
i by finding the values V π

t (qt ) of all joint nodes qt ∈ Qt

and then taking the expectation of V π
t (qt ) where qt = (qt

−i ,q
t
i )

under P (qt
−i | q

t
i ,π ).

Corollary 5.2 has applications in policy improvement algorithms

that iteratively improve the value of a policy by modifying the

output and node transition functions at each local policy node.

Instead of directly optimizing the value of a node, the lower bound

can be optimized.We present one such algorithm in the next section.

As Corollary 5.2 holds for any pmf over joint histories, it could

be applied also with pmfs other than P (ht | qt ,π ). For example,

if it is expensive to enumerate the possible histories and beliefs

at a node, one could approximate the lower bound, e.g., through

importance sampling [12, Ch. 23.4].

In standard Dec-POMDPs, the expected reward is a linear func-

tion of the joint belief. Then, the corollary above holds with equality.

Corollary 5.3. Consider a Dec-POMDP where the reward func-
tions are defined as ρT (b) =

∑
s ∈S

b (s )RT (s ) and for 0 ≤ t ≤ T − 1,

ρt (b,a) =
∑
s ∈S

b (s )Rt (s,a), where RT : S → R is a state-dependent

final reward function and Rt : S × A → R are the state-dependent
reward functions. Then, the conclusion of Corollary 5.2 holds with
equality.

Proof. Letπ = (Q,q0,γ , λ) andb ∈ ∆(S ). First note thatVT (b) =
ρT (b) =

∑
s ∈S

b (s )RT (s ). Consider then t = T − 1, and let qT−1 ∈

QT−1
, and write a := γ (qT−1). Then from the definition of V π

T−1 in

Eq. (2), consider first the latter sum term which equals∑
z∈Z

η(z | b,a)
∑
s ′∈S

ζ (b,a, z) (s ′)RT (s
′)

=
∑
s ′∈S



∑
z∈Z

∑
s ∈S

Pz (z | s ′,a)Ps (s ′ | a, s )b (s )

RT (s

′)

which follows by replacing ζ (b,a, z) by Eq. (1), canceling out η(z |
b,a), and rearranging the sums. The above is clearly a linear func-

tion of b, and by definition, so is ρt , the first part of V
π
T−1. Thus,

V π
T−1 : ∆(S ) ×QT−1 → R is linear in ∆(S ). By an induction argu-

ment, it is now straightforward to show that V π
t is linear in ∆(S )

for all 0 ≤ t ≤ T − 1. Finally,

Eht∼д (ht )
[
V π
t (τ (ht ),qt )

]
= V π

t
(
Eht∼д (ht )

[
τ (ht )

]
,qt
)

for any pmf д over joint histories by linearity of expectation. □

Corollary 5.3 shows that a solution algorithm for a Dec-POMDP

with a reward convex in the joint belief that uses the lower bound

from Corollary 5.2 will also work for standard Dec-POMDPs with

a reward linear in the joint belief.

Since a linear function is both convex and concave, rewards that

are state-dependent and rewards that are convex in the joint belief

can be combined on different time steps in one Dec-POMDP and

the lower bound still holds.

6 POLICY GRAPH IMPROVEMENT
The Policy Graph Improvement (PGI) algorithm [19] was originally

introduced for standard Dec-POMDPs with reward function linear

in the joint belief. PGI monotonically improves policies by locally

modifying the output and node transition functions of the individ-

ual agents’ policies. The policy size is fixed, such that the worst case

computation time for an improvement iteration is known in ad-

vance. Moreover, due to the limited size of the policies the method

produces compact, understandable policies.

We extend PGI to the non-linear reward case, and call the method

non-linear PGI (NPGI). Contrary to tree based Dec-POMDP ap-

proaches the policy does not grow double-exponentially with the

planning horizon as we use a fixed size policy. If the reward func-

tion is convex in ∆(S ), NPGI may improve the lower bound from

Corollary 5.2. The lower bound is tight when each policy graph

node corresponds to only one history suggesting we can improve

the quality of the lower bound by increasing policy graph size.

NPGI is shown in Algorithm 1. At each improvement step, NPGI

repeats two steps: the forward pass and the backward pass. In the

forward pass, we use the current best joint policy to find the set B
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Algorithm 1 NPGI

Input: Policy π = (Q,q0,γ , λ), initial belief b0

Output: Improved policy π
1: while not converged and time limit not exceeded do
2: B ←ForwardPass(π , b0)
3: π+ ←BackwardPass(π , B)

4: if V π +
0

(b0,q0) ≥ V π
0
(b0,q0) then π ← π+

5: return π

of expected joint beliefs at every policy graph node. In practice, we

do this by first enumerating for each agent the sets of local histories

ending at all local nodes, then taking the appropriate combinations

to create the joint histories for joint policy graph nodes. We then

evaluate the expected joint beliefs at every joint policy graph node.

In the backward pass, we improve the current policy by modify-

ing its output and node transition functions locally at each node.

As output from the backward pass, we obtain an updated policy

π+ using the improved output and node transition functions γ+

and λ+, respectively. As NPGI may optimize a lower bound of the

node values, we finally check if the value of the improved policy,

V π +
0

(b0,q0), is greater than the value of the current best policy, and

update the best policy if necessary.

Backward pass. The backward pass of NPGI is shown in Algo-

rithm 2. At time step t for agent i , for each node qti ∈ Qt
i , we

maximize either the valueV π +
t (qti ) or its lower bound with respect

to the local policy parameters. In the following, we present the

details for maximizing the lower bound, the algorithm for the exact

value can be derived analogously.

For t = T − 1, we consider the last remaining action. Fix a

local node qT−1i ∈ QT−1
i . Denote the expected belief at qT−1 =

(qT−1
1
, . . . ,qT−1n ) ∈ QT−1

as b := EhT−1∼P (hT−1 |qT−1,π )
[
τ (hT−1)

]
.

We write a =
(
γ+
1
(qT−1
1

), . . . ,aT−1i , . . . ,γ+n (q
T−1
n )
)
∈ A as the joint

action where local actions of all other agents except i are fixed to

those specified by the current output function. We solve

max

aT−1i ∈Ai
E [ρT−1 (b,a) + E [VT (ζ (b,a, z)]] (8)

where the outer expectation is under qT−1
−i ∼ P (qT−1

−i | qT−1i ,π ),
the distribution over the nodes of agents other than i , and the inner
expectation is under η(z | b,a). Note that in general, b is different

for each qT−1
−i , as qT−1 = (qT−1

−i ,q
T−1
i ) will be different. We assign

γ+i (q
T−1
i ) equal to the local action that maximizes Eq. (8). Note

that this modification of the policy does not invalidate any of the

expected beliefs at the nodes in Q .
For t ≤ T − 1, we consider both the current action and the next

nodes via the node transition function. Fix a local node qti ∈ Q
t
i ,

and define a and b similarly as above. Additionally, for any joint

observation z = (z1, . . . , zn ) ∈ Z , define

qt+1 (z) =
(
λ+
1
(qt
1
, z1), . . . ,q

zi
i , . . . , λ

+
n (q

t
n , zn )

)
as the next node inQt+1

when transitions of all other agents except

i are fixed to those specified by the current node transition function.

Algorithm 2 BackwardPass

Input: Policy π = (Q,q0,γ , λ), expected beliefs B = {bq | q ∈ Q }
Output: Policy π+ with improved output and node transition func-

tions γ+, λ+

1: γ+ ← γ , λ+ ← λ
2: for t = T − 1, . . . , 0 do
3: for i ∈ I do
4: W t

i ← ∅

5: for qti ∈ Q
t
i do

6: if t = T − 1 then
7: Solve Eq. (8), assign γ+i (q

t
i )

8: else
9: Solve Eq. (9), assign γ+i (q

t
i ) and λ

+
i (q

t
i , zi )∀zi

10: if ∃wt
i ∈W

t
i : SamePolicy(wt

i , q
t
i ) then

11: Redirect(qti ,w
t
i )

12: Randomize(qti )

13: W t
i ←W t

i ∪ {q
t
i }

14: return (Q,q0,γ+, λ+)
15: procedure SamePolicy(qti ,w

t
i )

16: if γ+i (q
t
i ) == γ

+
i (w

t
i )∧∀zi : λ

+
i (q

t
i , zi ) == λ+i (w

t
i , zi ) then

17: return True

18: else
19: return False

20: procedure Redirect(qti ,w
t
i )

21: for (x , zi ) ∈ {(x , zi ) ∈ Qt−1
i × Zi | λ

+
i (x , zi ) = q

t
i } do

22: λ+i (x , zi ) = wi

23: procedure Randomize(qti )
24: γ+i (q

t
i ) ∼ Uniform(Ai )

25: if t , T − 1 then
26: ∀zi ∈ Zi : λ

+
i (q

t
i , zi ) ∼ Uniform(Qt+1

i )

We solve

max

ati ∈Ai
∀zi ∈Zi :q

zi
i ∈Q

t+1
i

E
[
ρt (b,a) + E

[
V π +
t+1

(
ζ (b,a, z),qt+1 (z)

)] ]
,
(9)

where the outer expectation is under qt
−i ∼ P (qt

−i | q
t
i ,π ), and

the inner expectation is under η(z | b,a). We assign γ+i (q
t
i ) and

λ+i (q
t
i , ·) to the respective maximizing values of Eq. (9). This assign-

ment potentially invalidates the expected beliefs in B for any nodes

in Qk
for k ≥ t + 1. However, as in the subsequent optimization

steps we only require the expected beliefs for Qk
, k ≤ t , we do not

need to repeat the forward pass.

Line 10 of Algorithm 2 checks if there exists a nodewt
i that we

have already optimized that has the same local policy as the current

node qti . If such a node exists, we redirect all of the in-edges of

qti to w
t
i instead. This redirection is required to maintain correct

estimates of the respective node probabilities in the algorithm. If

we redirected the in-edges of qti to w
t
i , on Line 12 we randomize

the local policy of the now useless node qti that has no in-edges
4
, in

4
To randomize the local policy of a node qti ∈ Q

t
i , we sample new local policies until

we find one that is not identical to the local policy of any other node in Q t
i . Likewise,

when randomly initializing a new policy in our experiments we avoid including in

any Q t
i nodes with identical local policies.
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l1 l3

Figure 2: Arrangement of locations in theMAV domain (left)
and rovers domain (right).

the hopes that it may be improved on subsequent backward passes.

If a node qti is to be improved that is unreachable, i.e., it has no

in-edges or the probabilities of all histories ending in it are zero,

we likewise randomize the local policy at that node.

Policy initialization. We initialize a random policy for each agent

i ∈ I with a given policy graph width
���Q

t
i
��� for each t as follows5.

For example, for a problem with T = 3 and
���Q

t
i
��� = 2, we create a

policy similar to Fig. 1 for each agent, where there is one initial

node q0i , and 2 nodes at each time step t ≥ 1. The action determined

by the output function γi (qi ) is sampled uniformly at random from

Ai . For each node qti ∈ Q
t
i for 0 ≤ t ≤ T − 1, we sample a next node

from Qt+1
i uniformly at random for each observation zi ∈ Zi and

assign the node transition function λi (qi , zi ) accordingly.

7 EXPERIMENTS
We evaluate the performance of NPGI on information gathering

Dec-POMDPs. In the following, we introduce the problem domains,

the experimental setup, and present the results.

7.1 Problem domains
We run experiments on the micro air vehicle (MAV) domain of [10]

and propose an information gathering rovers domain inspired by

the Mars rovers domain of [2]. In both tasks the objective of the

agents is to maximize the expected sum of rewards collected minus

the entropy of the joint belief at the end of the problem horizon.

MAV domain. A target moves between four possible locations,

li in Figure 2. The target is either friendly or hostile; a hostile

target moves more aggressively. Two MAVs, MAV1 and MAV2 in

the figure, are tasked with tracking the target and inferring whether

it is friendly or hostile. The MAVs can choose to use either a camera

or a radar sensor to sense the location of the target. An observation

from either sensor corresponds to a noisy measurement of the

target’s location. The camera is more accurate if the target is close,

whereas the radar is more accurate when the target is further away.

The Manhattan distance is applied, i.e., at l0 the target is at distance
0 from MAV1 and at distance 3 from MAV2. If both MAVs apply

their radars simultaneously, accuracy decreases due to interference.

Using the camera has zero cost, and using the radar sensor has a

cost of 0.1, and an additional cost of 1 or 0.1 if the target is at distance

0 or 1 to the MAV, respectively, to model the risk of revealing the

MAVs own location to the (potentially hostile) target. To model

information gathering, we set the final reward equal to the negative

Shannon entropy of the joint belief, i.e., ρT (b) =
∑
s ∈S

b (s ) log
2
b (s ).

The initial belief is a uniform over all states. This problem has 8

5
At the last time step, it is only meaningful to have

���Q
T
i
��� ≤ |Ai |. In our experiments

if
���Q

T
i
��� > |Ai |, we instead set

���Q
T
i
��� = |Ai |.

states; 4 target locations and a binary variable for friendly/hostile,

and 2 actions and 4 observations per agent.

Information gathering rovers. Two rovers are collecting informa-

tion on four sites li of interest arranged as shown in Figure 2. Each

site is in one of two possible states which remains fixed throughout.

The agents can move north, south, east, or west. Movement fails

with probability 0.2, in which case the agent remains at its current

location. The agents always fully observe their own location. Ad-

ditionally, the agents can choose to conduct measurements of the

site they are currently at. A binary measurement of the site status

is recorded with false positive and false negative probabilities of

0.2 each. If the agents measure at the same location at the same

time, the false positive and false negative probabilities are signifi-

cantly lower, 0.05 and 0.01, respectively. Movement has zero cost,

while measuring has a cost of 0.1. The final reward is equal to the

negative entropy. The initial belief is such that one agent starts at

l0, the other at l3, with a uniform belief over the site status. The

problem has 256 states, and 5 local actions and 8 local observations

per agent.

7.2 Experimental setup
We compare NPGI to one exact algorithm and two heuristic al-

gorithms. The exact method we employ is the Generalized Multi-

Agent A* with incremental expansion (GMAA*-ICE) [17] with the

QPOMDP search heuristic. According to [17] a vector representa-

tion of the search heuristic, analogous to the representation of an

optimal POMDP value function by a set of so-called α-vectors [23],
can help scale up GMAA*-ICE to larger problems. However, since

the vector representation only exists if the reward function is linear

in the joint belief, we represent the search heuristic as a tree. The

two heuristic methods are joint equilibrium based search for policies

(JESP) [13] and direct cross-entropy policy search (DICEPS) [16].

All of the methods above are easily modified to our domains

where the final reward is equal to the negative Shannon entropy.

However, applicability of NPGI is wider as it allows the reward at

any time step to be a convex function of the joint belief.We note that

there are other algorithms such as FB-HSVI [7] and PBVI-BB [11]

that have demonstrated good performance on many benchmarks.

However, these algorithms rely on linearity of the reward to achieve

compression of histories and joint beliefs, and non-trivial modifica-

tions beyond the scope of this work would be required to extend

them to Dec-POMDPs with non-linear rewards.

As baselines, we report values of a greedy open loop policy that

executes a sequence of joint actions that has the maximal expected

sum of rewards under the initial belief, and the best blind policy

that always executes the same joint action.

We run NPGI using both the exact value of nodes and the lower

bound from Corollary 5.2. The number of policy graph nodes
���Q

t
i
���

at each time step t is 2, 3, or 4. For each run with NPGI we run 30

backward passes, starting from randomly sampled initial policies.

For all methods, we report the averages over 100 runs. If a run does

not finish in 2 hours, we terminate it.

7.3 Results
Tables 1 and 2 show the average policy values in the MAV and infor-

mation gathering rovers problems, respectively. NPGI is indicated
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Table 1: Average policy values in the MAV domain (|S | = 8,
|Ai | = 2, |Zi | = 4).

Method
���Q

t
i
��� T = 2 T = 3 T = 4 T = 5

2 -1.919 -1.831 -1.768 -1.725

Ours 3 -1.919 -1.831 -1.768 -1.725

4 -1.919 -1.831 -1.768 -1.725

2 -1.919 -1.831 -1.768 -1.726

Ours (No LB) 3 -1.919 -1.831 -1.768 -1.725

4 -1.919 -1.831 -1.768 -1.726

DICEPS -1.925 -1.937 -1.926 -1.940

JESP -1.953 -1.859 -1.794 -1.750

GMAA*-ICE -1.919 -1.831 - -

Greedy -2.156 -2.044 -1.978 -1.932

Blind -1.945 -1.904 -1.909 -1.932

Table 2: Average policy values in the information gathering
rovers domain (|S | = 256, |Ai | = 5, |Zi | = 8).

Method
���Q

t
i
��� T = 2 T = 3 T = 4 T = 5

2 -3.495 -3.189 -3.034 -2.989

Ours 3 -3.498 -3.189 -3.034 -2.977

4 -3.500 -3.189 -3.034 -3.004

2 -3.495 -3.189 -3.035 -2.976

Ours (No LB) 3 -3.498 -3.189 -3.035 -3.085

4 -3.500 -3.189 -3.035 -

DICEPS -3.482 -3.535 -3.825 -4.792

JESP -3.483 -3.536 - -

GMAA*-ICE -3.479 -3.189 - -

Greedy -3.844 -4.031 -3.877 -3.818

Blind -3.479 -3.412 -3.418 -3.472

by “Ours” when the lower bound (LB) was used, and as “Ours (No

LB)” when exact evaluation of node values was applied. Results are

reported as function of the problem horizon T , and for NPGI also

as function of the policy graph size
���Q

t
i
���. The symbol “-” indicates

missing results due to exceeding the cut-off time.

GMAA*-ICE finds an optimal solution, but similarly to [10] we

find that it does not scale beyond T = 3 in either problem. Con-

sidering T = 2 and T = 3, the average values of our method are

very close to the optimal value in both problems. In these cases, we

found that NPGI finds an optimal policy in all the MAV problem

runs, and in about 60% of the MAV problem runs.

In the MAV problem (Table 1), performance of our method is

consistent for varying policy graph size
���Q

t
i
��� and horizon T . This

indicates that even a small policy suffices to reach a high value in

this problem. We also note that applying the lower bound does not

reduce the quality of the policy found by our approach.

In the rover problem (Table 2), we observe more variation in pol-

icy quality as function of the policy graph size. However, applying

the Mann-Whitney U-test we do not find significant differences

(significance level of 0.01) either for varying policy graph size, nor

Table 3: Average NPGI backward pass duration (in seconds)
with or without lower bound (LB).

MAV Rovers

T With LB No LB With LB No LB

2 0.002 0.002 0.04 0.04

3 0.04 0.05 0.26 0.34

4 1.20 2.74 1.43 4.40

5 31.02 55.34 32.23 158.7

for exact computation versus applying the lower bound. A compact

policy with as few as 2 nodes per time step in the policy graph can

reach a high value in this problem as well.

Table 3 shows the average duration of one backward pass of

Algorithm 1 as function of the problem horizon T with
���Q

t
i
��� = 2,

with or without using the lower bound (LB). The lower runtime

requirement when applying the lower bound is seen clearly for

T ≥ 4. The runtime of NPGI is dominated by the backward pass

and solving the local policy optimization problems, Eqns. (8) and (9),

which applying the lower bound help reduce. As indicated by the

results in Tables 1 and 2, applying the lower bound also does not

degrade the quality of the policies found.

Our method outperforms the baselines except for T = 2 in the

rover problem where a blind policy of always measuring is optimal.

In several cases, JESP and DICEPS return policies with a value lower

than one of both of the baselines.

The size of the policy graph in NPGI must be specified before cal-

culating the policy. As shown by our experiments, fixing the policy

graph size effectively limits the space of policies to be explored and

can produce compact and understandable policies. However, a po-

tential weakness is that optimizing over fixed-size policies excludes

the possibility to find a larger but potentially better policy.

8 CONCLUSION
We showed that if the reward function in a finite-horizon Dec-

POMDP is convex in the joint belief, then the value function of

any policy is then convex in the joint belief. Rewards that are

convex in the joint belief are of importance in information gathering

problems. We applied the result to derive a lower bound for the

value, and empirically demonstrated that it improves the run-time of

a heuristic planning algorithm without degrading solution quality.

We presented the first heuristic algorithm for Dec-POMDPs with

rewards convex in the joint belief, and showed that it reaches good

performance in large Dec-POMDPs. Future work includes devel-

oping an approximation algorithm with bounded suboptimality.

Approximation of the reward function by a piecewise linear func-

tion similar to [3] is a potential first step towards this goal.
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