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ABSTRACT
We motivate and describe a novel task which is modelled on inter-
actions between apprentices and expert teachers. In the task the
agent must learn to build towers which are constrained by rules.
Whenever the agent performs an action which violates a rule the
teacher provides verbal corrective feedback (e.g. “No, put red blocks
on blue blocks”) and answers the learner’s clarification questions.
The agent must learn to build rule compliant towers from these cor-
rections and the context in which they were given. The agent starts
out unaware of the constraints as well as the domain concepts in
which the constraints are expressed. Therefore an agent that takes
advantage of the linguistic evidence must learn the denotations of
neologisms and adapt its conceptualisation of the planning domain
to incorporate those denotations. We show that an agent which
does utilise linguistic evidence outperforms a strong baseline which
does not.

KEYWORDS
human-robot interaction; interactive learning; knowledge repre-
sentation and reasoning

ACM Reference Format:
Mattias Appelgren and Alex Lascarides. 2019. Learning Plans by Acquiring
Grounded Linguistic Meanings from Corrections. In Proc. of the 18th Inter-
national Conference on Autonomous Agents and Multiagent Systems (AAMAS
2019), Montreal, Canada, May 13–17, 2019, IFAAMAS, 9 pages.

1 INTRODUCTION
Inmany commercial scenarios, workers face planning problems that
consist of goal conditions that are complex and vaguely specified.
For example, these problems are created by Standard Operating
Procedures (SOPs)—large manuals containing rules and guidelines
for workers performing complex routine tasks. In companies such
as Amazon or Occado they may contain rules such as “make sure
the box is properly sealed” or “never put frozen items in the same
bag as meat products”.

Developing a formally precise representation of such goal con-
straints in a planning domain, which supports inference about
whether a given state complies with the goals or not, remains a
major challenge. This is especially true in scenarios where the SOPs
and the vast array of contingencies in which they apply are so
extensive that it’s untenable for a domain expert to communicate
to a software developer all the ways in which the constraints man-
ifest themselves in all possible domain states. Instead, it is more
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natural for domain experts to communicate their knowledge by re-
acting to specific situations—for example, by correcting the learner
when they make mistakes. The situation where the learner made
a mistake may not have come to mind to the teacher beforehand,
or may result from a previous misunderstanding of the learner’s
capabilities.

A further challenge regarding SOPs is that they may change in
unforeseen ways (this is especially true in bespoke manufacturing
and in large online retail companies), making previously irrelevant
domain level concepts now become relevant. For example, a com-
pany that starts to sell batteries must ensure that labels are put to
the left rather than the right of the package containing them (this is
a SOP in Amazon (Personal Communication)). However, the agent
planning how to pack items for safe shipment may not have the
domain level concept of “left” as part of its domain model (since the
programmer had not initially identified these concepts as relevant).

In this paper we first present a task which is roughly analogous
to, but simpler than, SOP compliant packing. In these scenarios
packers must follow instructions which refer to attributes such as
weight and fragility (“don’t put heavy things above eggs”, “protect
the vase with bubble warp because it is fragile”). Our task takes
place in a blocks world and we use colour as a proxy for these
concepts (e.g. “put red blocks on blue blocks”).

In the task we assume that agents start out ignorant of not only
the goal constraints but additionally starts without a vocabulary for
the terms in which the constraints are expressed (in our case, colour
words), and does not have a domain model which includes these
concepts either. That is, agents must learn to recognise colours
from RGB values directly, not simply map words onto a symbolic
language.

We present a proof of concept agent that learns to solve the
task from the teacher’s corrective feedback, which contains neolo-
gisms and ambiguities which the agent must resolve to decode the
teacher’s intended message. Working in the blocks world allows us
to bypass the complex visual task of learning symbol groundings
for abstract words like “heavy” and “fragile” and instead focus on
how to model the interaction between (dynamic) symbol grounding,
decoding the teacher’s message, and updating goals and planning
model given those messages.

We present experiments showing that a language aware agent
can learn to solve the planning task in a way that outperforms a
strong baseline which does not attempt to make use of the verbal
content of corrections.

2 RELATEDWORK
As with our task, in Interactive Task Learning (ITL), agents start
out with both linguistic and operational capabilities and need to
learn through interaction with a teacher. A common approach is for
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the teacher and learner to engage in an interactive dialogue where
the teacher gives instructions, definitions of words, and answers
clarifying questions (e.g. [5, 17, 23, 24]).

A prime example of this is She et al [24], whose agent learns new
actions from dialogue. In particular, they use a symbolic planner
and goal representation to define what a specific new action should
achieve. Our work extends this type of dialogue by allowing a differ-
ent interaction type, namely correction, instead of just instruction
and description. Another major difference is that our goal is to learn
a higher level task with constraints, rather than how to perform
new actions, as in She et al [24].

Other works have also tackled learning language and tasks from
interaction.Wang et al. [27] learns tomap language to a symbolic ac-
tion language from interactions. However, the interactions assume
that teacher can click through a number of possible interpretations
and select the correct one. They also assume that the agent starts
out with a perfect conceptualisation of the domain, while in our
task, the agent starts out unaware of domain concepts that are
critical to successful planning.

Knox and Stone [10] address a similar hypothesis to ours. They
show with FRAMER, which is a framework for learning from
“yes/no” feedback, that using human interaction to help guide an
agent can make learning policies faster. This hypothesis is also
shared by those attempting to learn from advice [18] which has
also been shown to improve the speed of policy learning [4, 13].
However, this work mainly focuses on lower level tasks, such as mo-
tor control [10, 13], while we tackle higher level planning: finding
which sequence of executable actions to perform.

Another method for learning from interaction is Learning from
Demonstration (LfD). The majority of this work also concerns learn-
ing to perform new skills. However, a small subset of research has
focused on learning plans: i.e. when to perform a particular action,
as opposed to how to perform it [13, 16, 21]. A significant example
is Niculescu and Matric [22] who, like us, exploit correction. The
language they use is unambiguous and contains no neologisms. In
contrast, in our task the language’s content is hidden and must
be inferred, a general and pervasive feature of natural language
communication.

Reinforcement Learning (RL) [25] is another popular method for
learning planning problems. The goal descriptions we are attempt-
ing to learn could be compared to learning a reward function, which
is often addressed in conjunction with RL [1, 6] and approaches to
learning this reward function with human interaction as evidence
exist [6, 8]. However, RL is most useful for calculating expected
utilites when action outcomes are stochastic. At this stage we deal
with a fully deterministic domain, so we have elected not to use RL
(although we may in the future).

Another significant difference from other tasks is the one men-
tioned earlier: that learning to ground linguistic terms involves
adapting the domain model to include newly discovered and un-
foreseen concepts, rather than simply mapping terms to already
known domain concepts (as in [13, 27]).

A significant part of our system is grounding language to their
physical denotations. Our approach falls into a group of approaches
which trains explicit classifiers for concepts [19]. Our approach
shares similarity with, and was partially inspired by, the G3 frame-
work [11, 12, 26], which builds a graphical model to represent an

Figure 1: The shades used for blocks within each colour cat-
egory.

instruction. A significant difference between our work and theirs
is that they concern themselves only with description, where the
system seeks a correct grounding between the language and world,
which we tackle correction, where a mismatch between language
and world is expected, and finding what that mismatch is leads to
interesting inferences.

3 THE TASK
The planning problem consists of a goal description G and a set of
initial states S0. Each s ∈ S0 consists of 10 blocks scattered on the
table. G entails that these blocks must be in a single tower, and the
agent knows this. However, G also entails further constraints that
the agent is ignorant of (see below). The agent experiences a state
s ∈ S0 and attempts to build a tower, receiving verbal corrections
whenever it performs an action inconsistent with G, continuing in
this manner until a goal state is reached. This process is repeated
for each s ∈ S0.

The constraints are rules referencing the colour of blocks. Colours
can be referred to in terms of their broad colour category, such as
red, green, or pink, or using the specific name of the shade, such
as maroon, olive, or hot pink (Figure 1 shows the shades we use,
chosen from the set of named shades in CSS3). Each rule takes one
of two forms, for a pair of colours C1 and C2:

r
(C1,C2)
1 = ∀x . C1(x) → ∃y. on(x ,y) ∧ C2(y) (1)

r
(C1,C2)
2 = ∀y. C2(y) → ∃x . on(x ,y) ∧ C1(x) (2)

The teacher expresses both of these rules as “put C1 blocks on
C2 blocks”. Throughout the remainder of this text we will keep a
running example of “put red blocks on blue blocks” which would
have as potential intended message either r (r ed,blue)1 or r (r ed,blue)2
(which we abbreviate to r (r,b)1 and r (r,b)2 ).

The difference between the rules is which block is constrained.
In r

(r,b)
1 red blocks are constrained, and need to be on blue blocks

but blue blocks can have any colour placed on them. For r (r,b)2 the
blue block is constrained but not the red. This means that for r (r,b)1
it is possible to build a tower with more blue blocks than red, but
this is not true for r (r,b)2 .
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Focal stress in spoken language would disambiguate this in-
tended message [15] (e.g. “put RED blocks on blue blocks corre-
sponds to r (r,b)1 while “put red blocks on BLUE blocks” corresponds
to r

(r,b)
2 ). However, in written form this is left ambiguous (and

no current speech recognition system accurately estimates focal
placement), so the agent must find other means to disambiguate. It
should be noted that in constructing goal constraints no restrictions
are made on the combination of rules allowed, so both r

(r,b)
1 and

r
(r,b)
2 can be part of the goal description.
The task is implemented in a virtual environment where each

scenario is defined in the Planning Domain Definition Language
(PDDL) [20]. The agent can interact with the world through the
action put(x ,y), which simply places object x on y. Further the
agent only partially observes the current state: it can identify the
blocks, their spatial relation on and clear, and it can determine the
RGB-values of each block x (which we denote F (x)). But the agent
is ignorant of how the various RGB values partition into colour
concepts, as shown in Figure 1; it also starts out unaware of the
available vocabulary of colour terms and must learn these from the
teacher.

3.1 The Teacher’s Correction Strategy
To succeed in this task our agent exploits evidence supplied by the
teacher’s corrective feedback. To do so the agent reasons about the
teacher’s dialogue strategy, which is mutually known. To simplify
matters we assume that this strategy is fixed, deterministic, and
correct (i.e., the teacher is sincere and competent).

The two components of the correction strategy are timing (when
is a correction given?) and content (what does the teacher say?).
The teacher corrects action a if a results in state s such that no
sequence of actions consisting of only adding blocks to the tower
would satisfy the goal G. The action a may create such a state s in
two ways, as shown in Figure 2 where the rule being violated is
r
(r,b)
1 : either a creates a tower where the top two blocks make this
rule false (state s1 in Figure 2), or there is a block on the table which
cannot be placed on the existing tower while satisfying the rule
(state s2)—in essence, there are no further blue blocks that you can
add to the tower so as to put the red block on it. If we consider r (r,b)2
s2 directly violates the rule while in s1 there is no place to place
the remaining blue block. This means knowing the context and
the utterance is not enough to disambiguate between the intended
messages.

We assume a corrective strategy where the form of the feedback
discriminates whether the situation is like s1 or like s2 (direct vi-
olation or impossibility to place a remaining block). The verbal
component of the move is the same regardless (i.e., the verbal utter-
anceu is “No, put red blocks on blue blocks”, which, as we explained
before, is ambiguous between r

(r,b)
1 vs. r (r,b)2 ). When the tower di-

rectly violates the rule the teacher’s multimodal move u1 will be
uttering u and pointing to the tower. If a block on the table can
no longer be placed in the tower the move, u2, is uttering u and
pointing to the block (or one of the blocks) which can no longer be
placed.

The agent must use the teacher’s signal (u1 or u2) to learn to
solve the planning problem. We do this by infering the teacher’s

Figure 2: These two states would both be corrected if either
r
(r,b)
1 or r (r,b)2 were in the goal.

intended message M , given u1 (or u2) and the knowledge that it
corrects action a. If we assume the agent knows the colours of the
relevant objects, it would be able to infer with certainty whether
M = r

(r,b)
1 orM = r (r,b)2 . To see this, consider s1 in Figure 2 again

and suppose the teacher saysu1: then by the semantics of correction
[3]— i.e., the content of the corrective moveu1 must be inconsistent
with what it corrects— given that you know the top block o1 is red
and the one beneath it o2 is blue, then the message M that’s meant
by u1 must be r (r,b)1 since s1 makes r (r,b)1 false but satisfies r (r,b)2 .
This interaction between the context, the signal, and its meaning,
given the semantics of correction, is regimented as follows:

Corr (a,u1) ↔ on(o1,o2) ∧ (M = r
(r,b)
1 ∧ red(o1) ∧ ¬blue(o2))

∨ (M = r
(r,b)
2 ∧ ¬red(o1) ∧ blue(o2)) (3)

In a similar fashion, if the speaker uses the multimodal move u2,
then the semantics of correction constrains the combination of the
messageM and the colours of the blocks o1 and o2 in the tower and
the block o3 on the table that the speaker points at:

Corr (a,u2) ↔ on(o1,o2) ∧ (r1 ∧ ¬red(o1) ∧ blue(o2) ∧ red(o3)

∨ (r2 ∧ red(o1) ∧ ¬blue(o2) ∧ blue(o3)) (4)

Since our agent starts the learning process unable to classify the
colour of any objects, it uses the above constraints (i.e., the mutually
known conditions under which a corrective move is coherent) to
constrain inference during learning (see Section 4.1).

4 METHOD
Our agent solves its task by jointly learning the goal constraints
and learning to ground the colour terms referenced in those con-
straints. Figure 3 gives an overview of the agent. There are two
main components: the action selection component senses the world
by grounding colour terms and makes use of search and a symbolic
planner to find a plan consistent with the agents current estimate of
the goal description G. Correction Handling tackles learning from
the teacher’s corrective move by making probabilistic inferences
to identify the most likely goal constraints and learn to recognise
colour terms from RGB values.
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Figure 3: An overview of our Language aware agent and how
its sub-systems interact.

4.1 Learning from Correction
In the event of a correction the agent generates a probabilistic
model capturing the semantics of correction (Equation (3) or (4)).
The variables and dependencies in the graphical model represent the
relevant logical dependencies of correction semantics and therefore
depend on the type of correction (i.e., is it of type u1 or u2?). The
models, for u1 and u2 respectively, are shown in Figure 4.

The node Corr (a,ui ) represents whether the teacher should say
ui given the colour of relevant objects and given the message. Thus

P(Corr (a,u1) = True |Red(o1),Blue(o2),M) = 1 (5)

if the right hand side of Equation (3) evaluates toTrue . Equivalently,

P(Corr (a,u2) = True |Red(o1),Blue(o2),Red(o3) ∨ Blue(o3),M) = 1
(6)

if the right hand side of Equation (4) is True. The conditioning
set are the variables that appear on the right hand side of these
equations. M represents the teacher’s potential intended messages:
r
(r,b)
1 or r (r,b)2 . The colour variables Red(x) and Blue(y) are binary
variables indicating that an object is of that colour (e.g. red(o3))
or not (¬red(o3))1. The node P(Red(o3) ∨ Blue(o3)) represents the
fact that in Equation (4) o3 is either red or blue. The remaining

1note: not a categorical variable saying colour = {r ed, дreen, blue } but a binary
variable indicating r ed vs ¬r ed and blue vs ¬blue etc.

Figure 4: On the left is the correction model generated for
Correction(a1,u1): i.e. the teacher said “No, put red blocks on
blue blocks” and pointed at the tower. On the right is the
model for if the teacher’s signal were u2 instead: i.e. they
pointed at o3 on the table instead of the tower.

variables, F (oi ), represent the visual features of the objects—i.e. the
RGB values of the blocks, used since the true colour of blocks is
not directly observable.

4.1.1 Correction model. The factored probability distribution
the model for u1 in Figure 4 would be:

P(Corr (a,u1),Red(o1),Blue(o2), F (o1), F (o2),M) =

P(Corr (a,u1)|Red(o1),M,Blue(o2))

P(Red(o1)|F (o1))P(Blue(o2)|F (o2))P(M)P(F (o1))P(F (o2)) (7)

P(M) and P(F (oi )) are set to be constant which means they will
cancel out in the conditional calculations required for updating
the goal (Section 4.1.3) and the grounding models (Section 4.1.5).
P(Red(x)|F (x)) and P(Blue(x)|F (x)) are called the grounding mod-
els and are learned from the evidence given by the correction (Sec-
tion 4.1.5).

4.1.2 Grounding. Grounding a particular colour term means ac-
curately predicting P(Colour (x)|F (x)). We estimate this probability
using Bayes Rule:

P(Colour (x)|F (x)) = ηP(F (x)|Colour (x))P(Colour (x)) (8)

where

η =
∑

i ∈{0,1}
P(F (x)|Colour (x) = i)P(Colour (x) = i) (9)

We set the prior P(Colour (x)) to 0.5 since the agent has no knowl-
edge about how likely any block is to be, for example, red or not.

We have chosen to estimate P(F (x)|Colour (x)) with weighted
Kernel Density Estimation (KDE) (we experimented with Gaussian
distributions but found them to perform poorly). Section 4.1.5 shows
how this model is updated.

The factor P(Red(o3) ∨ Blue(o3)|F (o3)) is a simple extension of
the grounding model, defined in terms of the estimates for Red(x)
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and Blue(x), as shown in (10):

P(Red(o3) ∨ Blue(o3) = red |F (o3)) =

P(F (o3)|Red(o3))P(Red(o3))

P(F (o3)|Red(o3))P(Red(o3)) + P(F (o3)|Blue(o3))P(Blue(o3))
(10)

(sharing likelihood function, P(F (x)|Red(x)), with P(Red(x)|F (x))).

4.1.3 Inferring the Goal Constraints. Given the corrections re-
ceived by the teacher the agent wishes to find the most likely goal
description. To begin with the agent only knows that rule con-
straints exist and the shape they take, further, since it does not
know the colours it does not know the full space of possible rules.
As the agent learns more colour terms, its hypothesis space of
possible rules expands.

When the agent is corrected it uses this evidence to update the
possible values of G as well as its (probabilistic) belief about which
possibility is most likely. First, it extracts the possible messagesM ,
for example, if the verbal component of the corrective move is u =
“no, put red blocks on blue blocks”, then the agent knows thatM is
r
(r,b)
1 or r (r,b)2 . Further, whichever one the teacher did intend will
certainly be part of G.

To keep track of the agent’s belief about which of these rules are
in the goal we introduce R(r,b) which represents the four possibili-
ties of whether these rules are in the goal or not:

r
(r,b)
1 ∈ G ∧ r

(r,b)
2 ∈ G (11a)

r
(r,b)
1 ∈ G ∧ r

(r,b)
2 < G (11b)

r
(r,b)
2 ∈ G ∧ r

(r,b)
1 < G (11c)

r
(r,b)
1 < G ∧ r

(r,b)
2 < G (11d)

This variable is added when the agent encounters a correction
where the potential messages have not been observed previously.
That is, the first time the agent encounters u it adds this variable.
The agent then keeps track of which goal constraint(s) it believes
most likely through P(R

(r,b)
n ) where n represents the number of

corrections receivedwith evidence relevant toR(r,b)n (i.e. corrections
where the possible message is r (r,b)1 or r (r,b)2 ).

When the teacher utters u in response to action a the observed
evidence is that Corr (a,u) = True and the values of F (o1), F (o2),
and, optionally, F (o3) (if the teacher pointed at block o3 on the table).
For brevity we define X = {F (o1), F (o2), ...} to be the observed
features relevant to the correction at hand.

The agent updates its belief aboutR(r,b)n given these observations
and its previous belief R(r,b)n−1 :

P(R
(r,b)
n |R

(r,b)
n−1 ,Corr (a,u) = True,X ) (12)

The main evidence that is relevant to this belief update is the in-
tended message. Since this is not directly observable we marginalise
over the possible messagesM = {r

(r,b)
1 , r

(r,b)
2 }:

P(R
(r,b)
n |R

(r,b)
n−1 ,X ,Corr (a,u)) = (13a)∑

m∈M
P(R

(r,b)
n ,m |R

(r,b)
n−1 ,X ,Corr (a,u)) = (13b)∑

m∈M
P(R

(r,b)
n−1 |R

(r,b)
n ,m)P(m |X ,Corr (a,u)) (13c)

To calculate P(M = m |X ,Corr (a,u)) we use the correction model
(Section 4.1.1) marginalising over the colour terms.

To calculate P(R(r,b)n |R
r,b)
n−1,M) we assume conditional indepen-

dence between the two rules being in the goal given the message:

P(R
(r,b)
n |R

(r,b)
n−1 ,m) = (14a)

P(r
(r,b)
1 ∈ G |R

(r,b)
n−1 ,m)P(r

(r,b)
2 ∈ G |R

(r,b)
n−1 ,m) (14b)

This independence stems from the overall assumption that there
is no restriction on what rules appear together. So, if r (r,b)1 ∈ G it
does not change our belief about if r2(r ,b) ∈ G. The affect ofm on
the posterior likelihoods of the goal are encapsulated in equations
(15) and (16):

P(r
(r,b)
1 ∈ G |R

(r,b)
n−1 ,m , r

(r,b)
1 ) = P(r

(r,b)
1 ∈ G |R

(r,b)
n−1 ) (15)

P(r
(r,b)
1 ∈ G |R

(r,b)
n−1 ,m = r

(r,b)
1 ) = 1 (16)

To calculate P(r (r,b)1 ∈ G |P(R
(r,b)
n−1 ) in Equation (15) wemarginalise

over the states of R(r,b)n−1 where r (r,b)1 ∈ G, i.e., (11a) and (11b):

P(r
(r,b)
1 ∈ G |R

(r,b)
n−1 ) =

∑
s ∈R(r ,b)

n−1

P(R
(r,b)
n−1 = s)δ (r

(r,b)
1 ∈ s) (17)

where δ (r (r,b)1 ∈ s) = 1 if r (r,b)1 ∈ s is true and 0 otherwise.
On expanding the hypothesis space with a new random variable

(which happens at step i , say), we set the prior as in (18) and (19):

P(r
(r,b)
j ∈ G |R

(r,b)
i ) = 0.01 (18)

and
P(r

(r,b)
j < G |R

(r,b)
n ) = 1 − P(r

(r,b)
j ∈ G |R

(r,b)
n ) (19)

One consequence of these equations is that given a correction

P(r
(r,b)
1 < G ∧ r

(r,b)
2 < G |Corr (a,u)) = 0 (20)

which is exactly what is desired, since we know that one of the two
messages must be part of the goal.

4.1.4 Updating The Goal. After a correction is given the agent
updates what rule constraints are in it’s goal description. Since a
correction will only change the belief about rules which are po-
tential messages of that correction this goal update can be made
locally. The goal is updated using the most likely state of R(r,b):

Gn = Gn−1 ∗ arдmax P(R
(r,b)
n ) (21)

where G ∗ e represents AGM belief revision [2]. For us, this means
that when arдmax P(R

(r,b)
n ) = (11b) then r (r,b)1 is added to the goal

and if r (r,b)2 was previously part of the goal it is removed.

4.1.5 Updating the Grounding Models . To update the likelihood
function P(F (x)|Colour (x)) there is no direct labelled data available:
rather the agent must exploit predictions from the correction model
to estimate how likely it is that an object is a particular colour:

w = P(Red(o1) = True |Corr (a,u1), F (o1), F (o2)) (22)

we usew as a label for o1 being red or not, thus creating a new data
point (w, F (o1)) for the distribution P(F (x)|Red(x) = True). This
probability density is estimated using a weighted KDE.
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KDE is a non-parametric model which places a kernel around
every known data point and calculates the probability of a point
by summing over the values at that point. To take into account the
weights the sum is weighted by eachw and normalised by the sum
of weights. Form data points {(w1,x1), ...(wm ,xm )} this becomes

P(F (x)|Red(x) = True) =
1

m∑
i=1

wi

m∑
i=1

wi · φ(F (x) − F (xi )) (23)

Where we use a diagonal Gaussian distribution for the kernel φ.

4.2 Action Selection
To select actions we treat the task as a symbolic planning problem
because the scenarios are restricted such that the agent has the
requisite motor skills to perform all actions, and the outcome of an
action is deterministic. We use what is learned from the steps in
Section 4.1 to build the necessary symbolic description. We use the
FF planner [9], a PDDL planner which requires a goal and current
state description to plan.

The goal is updated as described in Section 4.1.4 and begins as

∀x . in-tower(x) (24)

i.e., the agent defaults to assuming no constraints on towers.
The agent can observe on relations and clear (required in the

preconditions of the put action) so the only part of the state de-
scription the agent must estimate probabilistically is the colour of
each block.

We predict the probability that each object is a particular colour
using the Grounding Models introduced in Section 4.1.2. We define
S∗ to be the most likely belief state (over the colours):

S∗ = arдmaxi ∈{0,1}
∑
x

∑
C

P(C(x) = i |F (x)) (25)

So if we had P(red(o1) = 1|F (o1)) = 0.6 and P(red(o2) = 1|F (o2)) =
0.3 S∗ would contain o1 as red and o2 as not red. If we also had
P(blue(o1) = 1|F (o1)) = 0.7 then S∗ would contain o1 as both red
and blue, which is acceptable under our framework (this would be
an incorrect inference for red and blue but it could be correct if the
colours were red and maroon).

Since S∗ is simply a specific belief state and since the grounding
models may be incorrect it may be the case that it is impossible
to build a rule compliant tower given S∗ and the agent’s current
estimate ofG . For example, if the rule r (r,b)1 is in the goal and there
are more red blocks than blue then the planner would not be able
to find a plan, since there are not enough blue blocks to place red
blocks on. The agent assumes it is possible to build a tower in every
scenario, so any inconsistency must be due to errors in the agents
estimates.

To ensure that we do find a plan in every situation the agent
performs a search over belief states, starting at S∗. The search
attempts to find the most likely belief state for which there is a
valid plan, maximising:

P(S) =
∑
C

∑
x

P(C(x) = i |F (x)) (26)

where C(x) = 1 if C(x) ∈ S and 0 otherwise.

Name Rules
One Rule r

(r ed,blue)
1

Maroon r
(r ed,blue)
1 ∧ r

(дreen,maroon)
1

Three Red r
(r ed,blue)
1 ∧ r

(pink,r ed )
1 ∧ r

(purple,r ed )
1

Three Rules r
(r ed,blue)
1 ∧ r

(дreen,yellow )

2 ∧ r
(purple,oranдe)
1

Table 1: The four planning problems our agents tackled.
Each problem varies in the number and identity of rules con-
straining the goal.

The search begins at S∗ and proceeds to adjacent states by flip-
ping the value of a prediction, for example from Red(x) = 1 to
Red(x) = 0. A priority queue is kept such that the search always
explores states with higher scores first.

However, to reduce the size of the search problem we use what
we know about the goal constraints to only add adjacent states that
move us towards states where it would be possible to find a plan. For
example, if we have r (r,b)1 then the number of red blocks must be
less or equal to the number of blue blocks. Thus, if a state has more
red than blue blocks then it will be impossible to find a plan and the
relative number must be changed by either increasing the number
of blue or decreasing the number of red. The search method adds
the highest scoring adjacent states, where one of these changes has
been made. In the case where all constraints are satisfied but no
plan was found the agent considers random adjacent states.

The search continues until a plan is found or a fixed number of
states have been explored. In the latter case, the agent defaults to
finding a random plan which builds a tower out of the remaining
blocks (ensuring the agent always takes some action).

The actions in the plan are executed in sequence until either
the tower is built or a correction is given by the teacher. If the
teacher gives a correction the agent performs the steps in correction
handling. After this the teacher resets the world state to the state
which appeared before the corrected action occurred. This ensure
the world is always in a state where it is possible to build a rule
compliant tower without removing any blocks from the tower.

5 EXPERIMENTS
The purpose of our experiments is to test our Language Agent
against a strong baseline which does not make use of language. We
wish to show that disambiguating the message and grounding the
colour terms is worth it, by showing that this agent learns faster
than the baseline.

The agents must minimise regret over the training scenarios.
Regret is the number of mistakes made by the agent, that is, the
number of corrected actions. A perfectly executed scenario would
correspond to 0 regret.

The system runs in a simulated environment and the teacher
is simulated by an agent which follows the correction strategy
described in Section 3.1. We run the agent through four different
planning problems each consisting of 50 scenarios: i.e., 50 distinct
initial sates. The planning problems vary by what rules are in the
goal constraints, Table 1 details what planning problems were used.
We report the regret accumulated over these scenarios.

Session 4F: Communication and Argumentation 1  AAMAS 2019, May 13-17, 2019, Montréal, Canada

1302



Figure 5: The regret reward for the One Rule planning prob-
lem.

Between each scenario the agent retains all knowledge it has
learned so far, specifically, it retains its estimate of P(R(Ci ,Cj )

n ) for
all relevant Ci and Cj as well as the grounding models, P(Ci |F (x)).

5.1 Baselines
We compare our Language Agent to two other agents. The Naive
Agent is an agent that does not attempt any learning between sce-
narios. It acts as a lowerbound on how badly an agent could perform.
The Naive agent only ensures no corrected action is repeated, for
example, if put(o1,o2) was corrected the agent will not perform
this action again. Otherwise the agent acts randomly. It retains no
knowledge between scenarios.

The No Language Agent, the second baseline, attempts to learn
the task without making use of the language content of the cor-
rection. It only makes use of the teacher’s “no” and the pointing
they do. This changes what inferences are available to the agent
and therefore what it can learn from correction. Action selection
stays largely the same.

Given the correction “no” + point at tower for action put(o1,o2)
the agent cannot infer enough to create anything resembling the
rules in Equations (1) and (2) because the message doesn’t convey
which colour terms C1 and C2 are a part of the goal description
(since the correction does not convey a positive example of both
colours, only one). The only inference the agent can make is that
blocks with similar RGB values to o1 cannot be placed on blocks
with similar RGB values to o2:

¬∃x .y.Co1 (x) ∧Co2 (y) ∧ on(x ,y) (27)

The agent adds this rule to its goal state. To identify P(Coi (x)|F (x))
the agent creates a grounding model with a single data point for
P(F (x)|Coi = 1), namely F (oi ).

When the teacher points at o3 the agent does have enough in-
formation to construct a rule along the lines of Equations (1) and
(2). By pointing at o3 the teacher is saying the block is constrained
and cannot be placed any longer. This must mean it is on the left
hand side of a rule and that it either must go on o2 or o1 most go
on it. In logical form this would be:

r1 = ∀x .Co3 (x) → ∃y.Co2 (y) ∧ on(x ,y) (28)

r2 = ∀y.Co3 (y) → ∃x .Co1 (x) ∧ on(x ,y) (29)

Figure 6: The cumulative regret for the Maroon planning
problem.

From the available evidence the agent cannot make a decision about
which rule is correct. To make an informed decision the agent will
attempt to break one of the rules and observe how the teacher
reacts. The agent attempts to break (28) by finding the object o4
most dissimilar to o3 and place it on o2. If the teacher corrects this
action then (28) is most likely the rule, otherwise it is (29).

Making use of these inferences allows the agent to build up a
goal which will solve the task without disambiguating the language
or performing language grounding. Between scenarios the agent
retains its current estimated goal description and the distributions
P(F (x)|Coi (x)).

5.2 Results
Figures 5–8 show the cumulative regret for each planning problem.
Our Language agent outperforms the two baselines in all cases. The
No Language agent performs much better than the Naive agent,
showing that outperforming it is meaningful. In most problems our
Language Agent has learned to act near perfectly (indicated by the
the reward curve eventually going flat), while the No Language
agent has only achieved this in the simplest, One Rule, planning
problem. This seems to support our belief that benefiting from
generalisations expressed in language outweigh the cost incurred
by having to disambiguate the that language and ground the colour
terms.

Further, we would expect the generalisations that language can
express to be especially valuable if there is an overlap between
the rules; that is, if there is a colour which is used several times
in different rules, since the Language agent would be able to more
quickly generalise by using the overlapping colour. We test this by
comparing the Three Rules to the Three Red problem. In the Three
Red problem all three rules contain “red” as one of the relevant
colours. Given this, we would expect the linguistic agent to be able
to more quickly learn as it does not need to learn as many colours,
while the No Language agent has no way of detecting the overlap.
In Figure 7, where three different rules contain the word “red”, we
do indeed see that there is a significant difference between the
speed in which the Language agent has learned. This is especially
clear when comparing to the Three Rules problem, in Figure 8.
Here we see that the Language agent is having much more trouble
learning the problem and is much closer to the No language agent
in performance.
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Figure 7: The cumulative regret for the Three Red planning
problem.

However, speedier learning is not the only benefit we get from
the Language agent. The resulting domain model the agent has
learned is highly interpretable. The goal description is human read-
able, for example, inspecting the learned goal for the One Rule
problem we found that the agent has in fact learned r (r,b)1 ∈ G . This
is not true for the No Language agent where the goal consists of 25
different rules referencing meaningless terms such as C15 (which
could only be made more meaningful by inspecting the data points
in its grounding model). Further, since the Language agent learns
colour terms these could be used for other types of communication
with humans. For example, the agent could easily interpret the
command “pick up a red block”, given sufficient knowledge of the
other words in the sentence. Therefore this would fit well with an
ITL system which attempts to learn further tasks and actions.

6 CONCLUSION
In this paper we presented a novel task, where an agent learns a set
of constraints from a teacher who verbally corrects the agent when
it performs actions that violate the constraints. Additionally, we
present an agent that explots the semantics of correction to learn
the previously unknown constraints and how to ground colour
terms in RGB values. Our agent consistently out-performs baseline
systems which do not make use of language.

The results are encouraging, showing that using coherence rela-
tions can be a useful tool for joint task and language learning. That
being said, this work represents a proof-of-concept as we make
several simplifying assumptions in the domain, which makes the
current approach unsuitable to be tested “in the wild”.

Wewill discuss twomain directions that must be addressed when
extending to a more general setting. The world the agent inhabits
and the interactions with the teacher would need to be made richer.
Dealing with a richer world would require more sophisticated vi-
sual processing and reasoning about uncertain outcomes. Dealing
with richer interactions requires more sophisticated ways of com-
puting possible messages from language, a wider coverage over
different types of interaction, and reasoning over ambiguity and
uncertainty in the teacher’s messages and strategy. To interact with
real humans we would also have to be conscious of the patience
of the teacher, as long wait times between interactions or the need
for many repetitions would cause them to become fed up.

Figure 8: The cumulative regret for the Three Rules plan-
ning problem.

In the current system the main bottle-neck as far as speed of
learning is learning to ground the colour terms. If we move to
closer to a real world domain this is likely to be compounded as
we are limited by the current state-of-the-art in visual processing,
which requires models that require in the order of thousands of
examples to learn. The most promising solutions to this would
be to use pre-trained models and adapt them through one-shot
or few-shot learning methods [7, 14], perhaps by using linguistic
definitions as in [23]. We believe the method we are using to update
the parameters of the grounding models is flexible enough to be
integrated with a large class of visual processing systems. For this
reason we are less concerned with dealing with more complex
visual scenes, as we don’t aim to extend the state-of-the-art in
visual processing.

We are more interested in exploring richer interactions with the
teacher. In our future work we plan on relaxing assumptions made
on the strategy of the teacher, extend the set of constraints the
agent learns, and expand the way in which the agent and teacher
interact.
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