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ABSTRACT
In this paper, a new concept of convex based multiple neural net-
works structure is proposed. This new approach uses the collective
information from multiple neural networks to train the model.
From both theoretical and experimental analysis, it is going to
demonstrate that the new approach gives a faster training speed of
convergence with a similar or even better test accuracy, compared
to a conventional neural network structure. Two experiments are
conducted to demonstrate the performance of our new structure:
the first one is a semantic frame parsing task for spoken language
understanding (SLU) on ATIS dataset, and the other is a hand writ-
ten digits recognition task on MNIST dataset. We test this new
structure using both recurrent neural network and convolutional
neural networks through these two tasks. The results of both ex-
periments demonstrate a 4x-8x faster training speed with better or
similar performance by using this new concept.
ACM Reference Format:
Yu Wang, Yue Deng, Yilin Shen, and Hongxia Jin. 2019. A New Concept
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(AAMAS 2019), Montreal, Canada, May 13–17, 2019, IFAAMAS, 9 pages.

1 INTRODUCTION
The concept of neural network has a long history in scientific
research, which can be traced back to early 1940s, when neural
plasticity mechanism was discovered [10]. It is well known that the
current neural network structure’s prototype was from the concept
of perceptron, which is known as the principal component of neural
network for a long time. However, during that period, the training
mechanism has not been involved in the network structure. In 1970s,
Paul Werbos firstly proposed the back-propagation training in his
thesis [39], which has been a well known and standard algorithm
to adjust the neuron weight in a network since then. Since 1980s,
neural network structures with back-propagation training has been
widely applied in the field of control, which are mainly functioned
for system identification purpose [24]. Over the last decade, deep
learning algorithm based on multiple layers neural networks has
become extremely popular in the machine learning field. It has been
widely applied in many application domains, including computer
vision, speech recognition, natural language understanding and etc
[6, 15].

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

During the last decade, there are lots of progresses on build-
ing a variety of different neural network structures, like recurrent
neural networ (RNN), long short-term memory (LSTM) network,
convolutional neural network (CNN), time-delayed neural network
and etc. [12, 13, 31]. Training these neural networks, however, are
still heavily to be relied upon back-propagation [40] by computing
the loss functions’ gradients, then further updating the weights of
networks. Despite the effectiveness of using back-propagation, it
still has several well known draw-backs in many real applications.
For example, one of the main issues is the well known gradient
vanishing problem [3], which limits the number of layers in a deep
neural network and also affect the training speed of the neural
networks adversely. The other issue is the non-convexity in deep
neural networks, which may give sub-optimal result hence may
degrade the model’s performance.

In order to overcome the gradient vanishing problem and speedup
the training performance, a lot of efforts have been made on propos-
ing different neural network structures during the past decades. One
of the most well known approach, long short-term memory (LSTM)
network, reduces the gradient vanishing effect by controlling the
flow of states’ memory using multiple gates structure [11, 12]. It
also improved the training speed as larger gradient values can be
passed from back layers to front layers. Changing the activation
function to a rectified linear unit (ReLU) functionwill also be helpful
to improve the vanishing gradient issue [22].

The other common difficulty in training neural networks is the
non-convex optimization issue, which is mainly caused by the non-
linear activation function at each layer of neural network. The main
consequence of this issue is that the model may converge to a local
optimal solution instead of the global one, hence gives an inferior
model performance. One solution for this problem is by changing
the action function to a linear one, like Rectified Linear Unit(ReLU) ,
and initializing network’s weights using Xavier initialization [5] by
keeping the variance to be close for input and output. However, this
solution still highly depends on the data distribution in a dataset.

In this paper, we propose a new structure of convex based multi-
ple neural networks to improve the model performance in terms of
training speed and accuracy, by bypassing the vanishing gradient
issue through a global loss function, and reducing the negative
effects due to non-convex optimization. Experiments using con-
vex multiple neural networks on two tasks are discussed: one is to
build a semantic frame parser to jointly detect intent and fill slots
tags for an SLU system, the other is a MNIST hand written digits
recognition task. The results are compared with other single neural
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network baseline models to demonstrate the improvement in terms
of training convergence speed and accuracy.

The paper is organized as following: Section 2 gives a background
overview related to the convex based multiple models approach.
Section 3 gives a detailed explanation on how to implement the
convex based multiple neural networks algorithm. A mathematical
explanation is also given for explaining the advantages of using
this new approach. Experiments on SLU and image recognition are
given in section 4.

2 BACKGROUND
In this section, a brief background of the convex based multiple
models structure is given, and how the structure can be used in the
realm of deep learning.

The structure of convex based multiple models was firstly dis-
cussed in [8] for system identification in adaptive control. It uses the
convex information of k identification models f̂ (θ̂ i )(i = {1 · · ·k})
to identify an unknown dynamic plant f (θ ), where θ is an unknown
system parameter to be identified. To represent the multiple models
structure mathematically, at any time t , it has:

k∑
i=1

α̂ it f̂ (θ̂
i
t ) = f̂ (θ̂t ) (1)

where α̂ it is the convex coefficient corresponding to the ith identifier
f̂ (θ̂ it ), and f (θ̂t ) converges to f (θ ) when t →∞. The parameter α̂ it
also satisfies the convex criterion, i.e.,

∑k
i=1 α̂

i
t = 1 at ∀t ∈ [0,∞).

The learning algorithm for calculating α̂ = [α̂1, ..., α̂k ] is designed
as:

α̂ = −EETα̂ + Eek (2)

where E = [e1−ek , · · · , ek−1−ek ], and ei is the difference between
f̂ (θ̂ i ) and f (θ ). The details of derivation of (20) and proof of its con-
vergence can be referred to the paper [8, 25]. The multiple models
approach using the adaptive algorithm has demonstrated a bet-
ter performance for system identification in terms of convergence
speed and robustness.

Despite decent performance has been obtained by using convex
based multiple models in system identification, it has never shown
that this multiple models approach is feasible to deep learning. The
obstacles are mainly from three aspects:
1. The adaptive learning algorithm in system identification are
smooth continuous differential equations, whereas training the
data-driven machine learning models should be in a discrete data-
driven manner.
2. The inputs between a system identification model and a deep
learning model are very different. The input of the former task is
normally functional based (either continuous or discrete), but that
of the later model are normally very sparse data which may not
form a function.
3. The outputs between a system identification model and a deep
learning model can also be very different. The predicted outputs
from a deep learning model are mostly probabilistic based, i.e., the
outputs are probabilities for different labels. However, the outputs
of a system identification model are mostly function-generated
deterministic values.

Due to these three major differences between system identifica-
tion and deep learning tasks, it is very hard to directly apply the
convex based multiple models algorithm into the field of machine

learning, and even harder to transfer the algorithm to deep neural
networks.

To overcome these difficulties, in this paper, we propose a new
convex based multiple models algorithm, which can be used for
general deep neural network based tasks. In next section, we will
give a detailed mathematical explanation of the proposed algorithm,
and how to train it using two types of loss functions.

3 A CONVEX BASED MULTIPLE NEURAL
NETWORKS STRUCTURE

In this section, a new convex based multiple neural networks struc-
ture is proposed. Its structure is as shown in Figure 1. In Figure 1,
x ∈ X represent the input training data and y ∈ Y are their corre-
sponding output labels.N i stands for the ith neural network among
a total of k networks, which have the same structure but different
initial weights values. For any input-output data pair (x,y), x ∈ X
and y ∈ Y , N i (wi, x) is a neural network based estimator to match
the input x to its output label y, and wi is the target weights of the
ith network. During the training procedure, ŵi is an estimation of
wi, and ŷi is the estimated output generated using N i (ŵi, x). To
represent it mathematically:

ŷi = N i (ŵi, x) (3)

In order to train a deep neural network model shown in (3), the
conventional deep learning algorithm is to update ŵi through back-
propagating the output error eit = ŷ

i
t − yt , such that the predicted

output ŷit will gradually approach its true label yt when t →∞.
In our new structure, instead of using each ŷi as the predicted

value of yi , a convex combination of the outputs from k prediction
models will be used as an estimation of yt at each time step t :

ŷt =
k∑
i=1

α̂ itN
i (ŵi

t , xt ) (4)

where ŷit → yt if α̂ it → α i . α̂ it is an estimator of the target convex
coefficient α i at time step t satisfying:

yt =
k∑
i=1

α itN
i (wi

t , xt ) (5)

The target convex coefficient α i satisfies the convex criteria as:
k∑
i=1

α i = 1 (6)

In order to derive the new algorithm based on the convex property,
we also constrain the estimated convex coefficients α̂ it at time step
t within a convex domain, i.e.

k∑
i=1

α̂ it = 1 ∀t ∈ T (7)

where k is the total number of models.

3.1 Introducing Two Types of Loss Functions
In order to train the multiple model structure, two loss functions
are used concurrently. One is the local cross entropy loss functions
Lit for training each neural network individually using back propa-
gation at each time step t , and the other is a global loss function дt
to train the convex coefficients α i .

Session 5A: Learning Agents  AAMAS 2019, May 13-17, 2019, Montréal, Canada

1307



Neural Network 1：𝑁1

Neural Network 2：𝑁2

Neural Network k：𝑁𝑘

ො𝑦1

ො𝑦2

ො𝑦𝑘

𝑦

𝑦

𝑦

𝑔1

𝑔2

𝑔𝑘

ො𝛼1

ො𝛼2

ො𝛼𝑘


Global Loss

Local Loss

Local Loss

Local Loss

𝑥Input:

Figure 1: A new convex based multiple neural networks structure

The local loss function Lit is defined as the cross-entropy of
outputs

Lit =

n∑
j=1

yij ,t log ŷ
i
j ,t (8)

where yij ,t stands for the predicted probability of the jth label for
the ith model at time step t , and n is the total number of label
classes in output yi .

The global loss function дt is further defined as the difference
between the true label y and the predicted label ŷ:

дt = yt − ŷt (9)

By substituting (4) into (9), and combining the convex property as
shown in (7), the global loss function can be rewritten as:

дt = yt − ŷt

= yt − (α̂
1
t N

1
t + α̂

2
t N

2
t + · · · + α̂

k
t N

k
t )

=

k∑
i=1

α̂ ityt − (α̂
1
t N

1
t + α̂

2
t N

2
t + · · · + α̂

k
t N

k
t )

=

k−1∑
i=1

α̂ itд
i
t + α̂

k
t д

k
t

=

k−1∑
i=1

α̂ itд
i
t + (1 −

k−1∑
i=1

α̂ it )д
k
t

=

k−1∑
i=1

α̂ it д̃
i
t + д

k
t

(10)

where N i is an abbreviation of N i (ŵi
t, xt ). д

i
t is defined as the

difference between the ith model’s output and the target output,
i.e. дit = yt − N

i
t . д̃

i
t is defined as:

д̃it = д
i
t − д

k
t (11)

which is the difference between the ith model loss function and the
last kth model loss function.

The loss function derived from (10) can be further simplified as:

д̃t = G̃
T
t α̃t (12)

where д̃t = дt − д
k
t , G̃

T
t ∈ R

m×(k−1) (m output labels and k mod-
els) is defined as G̃t=[д̃1t , д̃

2
t , · · · , д̃

k−1
t ], and the convex coefficient

vector is defined as α̃t=[α̂1t , · · · , α̂
k−1
t ] ∈ R(k−1)×1.

3.2 Training using Global Loss Function
As discussed earlier, two types of loss functions are used to train the
system in a concurrent manner. The local loss function Lit is used
for training each individual network N i (ŵi

t , xt ) by adjusting the
adaptive weights ŵi

t through back-propagation, which is a standard
training mechanism. On the other hand, the global loss function дt
together with its derived loss function vector G̃Tt will be used to
train the convex coefficient vector α̃t at the same time.

As the training using local loss function Lit is a standard back-
propagation neural network training, the paper’s emphasis is not
on this and will omit the discussion. Our discussion is mainly on
how to use the global loss function vector G̃Tt to train the convex
coefficients, such that it can overcome the non-convex optimization
problem and also further improve the training performance of the
neural network.

Multiplying G̃t on both sides of (12), it becomes:

G̃tд̃t = G̃tG̃
T
t α̃t (13)

Then by moving left hand side element to the right of equation, the
learning rule of the convex coefficients can be derived as:

δα̃t = −G̃tG̃
T
t α̃t + G̃tд̃t (14)

where δα̃t , α̃t+1 − α̃t, hence

α̃t+1 = α̃t − G̃tG̃
T
t α̃t + G̃tд̃t (15)

Equation (15) is the new learning law for the convex coefficients α̃t.
Remarks: It is worth to notice that:
1. At each time step t , the estimated convex coefficients satisfy

∑k
i=1 α̂

i
t =

1, hence α̂kt = 1 −
∑k−1
i=1 α̂ it , i.e. only k − 1 convex coefficients are

needed to be calculated at each time step t .
2. In order to form a convex hull based on the outputs of multiple
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Algorithm 1 Convex based multiple neural networks
1: Input Data: X , Output Labels: Y
2: Initialize N i (i = {1, · · · ,k}) with the same NN structures.
3: number of iteration = iter ,n = 0
4: Initialize the weight vector of N i : wi

0
5: Initialize the convex coefficients of N i : α̂ i0
6: while t < iter do
7: Choose xt from X , its target label is yt
8: for i = 1→ k do
9: ŷit ← N i (ŵi

t, xt )

10: дit ← yt − ŷ
i
t

11: Local loss: Lit ←
∑m
j=1 y

i
j ,t log ŷ

i
j ,t

12: Back-propagate training wi
t using L

i
t

13: end for
14: Global loss: дt ←

∑k
i=1 α̂

i
tд

i
t

15: д̃it ← дit − дt
16: G̃t ← [д̃

1
t , д̃

2
t , · · · , д̃

k−1
t ]

17: Convex coefficient training: α̃t+1 ← α̃t − G̃tG̃
T
t α̃t + G̃tд̃t

18: n → n + 1
19: end while

neural networks, the total number of models, k , needs to satisfy an
inequality involved the total number of output labels n:

k > n + 1 (16)

This means that the total number of neural network models needs
to be larger than the number of labels in order to form a convex
hull using the output of multiple neural networks. Though this
property seems to increase the total number of parameters, in the
following experiment section, it will demonstrate that a smaller
hidden layer size (or cell units in LSTM) in multiple neural networks
can be used for our new structure, to achieve a similar or even better
performance. It needs to clarify that the model can still be trained if
property 2 is not satisfied, but may result in an inferior performance.
It is because that there will be no real solutions for the convex
coefficients α i if k < n + 1, but only numerical approximations.

In the next part, a detailed explanation on synchronized training
using both local and global loss functions will be given.

3.3 Synchronized Training using Local and
Global Loss Functions

The definition of local loss Lit and global loss vector G̃t are given in
last section. It is also explained that how to train the convex coeffi-
cient α i based on the global loss дt and its vector G̃t . The combined
synchronized training using local and global loss functions is going
to be discussed in this section in detail. Algorithm 1 shows the
training flow for the convex based multiple neural networks.

At each iteration, each of the neural networks will be trained
through back-propagation using their local losses Lit first, then a
global loss vector G̃t generated by the collected information from
the outputs of multiple neural networks will be used to train the
convex coefficients α̂ i . A detailed step by step explanation of the
training procedure is as shown in Algorithm 1.

3.4 Performance Analysis
In our new proposed convex based multiple neural networks struc-
ture, two important performance features need to be noticed:
1. The back-propagation used in gradient descent optimization
for each individual network involves calculating the gradient of
nonlinear activation functions, which is much slower than that of
adjusting the convex coefficients α̂ . As shown in (15),comparatively,
the update of α̂ is a linear difference equation, which gives an ex-
ponential convergence/learning speed of the convex coefficient α̂ .
2. The convex output ŷt generated by multiple neural networks
will be close to the true label yt once α̂t converges, i.e. ŷt =∑k
i=1 α̂

i
tN

i (ŵi
t , xt ) � yt , once α̂t � α . A simple theoretical ex-

planation is given by the facts that: the global loss дt is a convex
combination of each loss дit , i.e. дt =

∑k
i=1 α

i
tд

i
t . Once the α̂t con-

verges, which indicates that the learning gradient approaches to
zero as shown in (15), i.e. −G̃t G̃Tt → 0. This means that дt → 0 as
G̃t is a linear matrix of дt .

The above two features give a clear explanation that why the
convex based approach can give a faster learning speed, and the
model can also avoid the gradient vanishing problem in some sense
as the model will be not affected by the local loss since the global
loss will converge much faster than the local losses.

Remarks: Besides the applications on system identification tasks
as described in: [25, 33], multiple models based algorithms has
been also widely applied on a variety of reinforcement learning
structures as in [9, 23, 26, 29, 34, 35] and NLP applications, like
spoken language understanding [36, 38], entity recognition [36],
and visual question understanding [37]. In our model, we proposed
a general structure that can be used for different tasks as to be
shown in the experiment section.

4 EXPERIMENT
In this section, we perform experiments on two well-knonw public
datasets ATIS and MNIST [16, 28], for spoken language understand-
ing (SLU) and hand written digits recognition. For each task, we
compare the test results using single neural network and convex
based multiple neural networks structure. The experiment on ATIS
dataset is to build an NN model to generate the intent and slot
tags for a given utterance. The previous state-of-the-art result is
obtained by using attention based Bi-LSTM model in [20]. With-
out loss of generality, we are also using the attention bi-direction
LSTM as each individual network in our multiple neural networks
structure for a fair comparison. The experiment on MNIST dataset
is a classification task to find the number zero to nine from images.
The baseline single model is chosen as the DropConnnect network
[32], which demonstrates best accuracy on the task so far. Since
the SLU task using ATIS dataset is not as well known as the MNIST
image recognition task, a detailed SLU task description is given as
follows.

4.1 Description of two SLU tasks: Intent
Detection and Slot Filling

Two important tasks in spoke language understanding are intent
detection and slot filling. The first task is to detect the intent of a
query and the second task is to label the input utterance with correct
slot tags. For example, Figure 2 is an example of part of the utterance
from ATIS dataset [28] with its intent and the corresponding slot
labels.
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from Denver to PhiladelphiaPart of
an utterance:

Slot Tags:

Intent:

O FromLoc O ToLoc

Flight

Figure 2: Utterance example for intent classification and slot
tagging

from Denver to Philadelphia

O OFromLoc ToLoc

FlightIntent

Slot tags

BLSTM

Context Layer

𝒄𝒕,𝟏
𝒊 𝒄𝒕,𝟐

𝒊 𝒄𝒕,𝟑
𝒊 𝒄𝒕,𝟒

𝒊

𝒉𝒕,𝟏
𝒊

𝒉𝒕,𝟐
𝒊 𝒉𝒕,𝟑

𝒊 𝒉𝒕,𝟒
𝒊

Figure 3: A single attention based BLSTM (A-BLSTM) for
joint intent detection and slot filling

In [20], it is suggested using one joint recurrent neural network
model to learn two tasks together. By taking advantage of an atten-
tion based Bi-LSTM (A-BLSTM) structure, it gives the state-of-art
results on ATIS dataset. A brief overview of the structure is as
shown in Figure 3, where cit , j is the attention based contextual
information [2]. In our experiment, we will choose each single
network in our multiple model structure as the same attention
based Bidirectional LSTM (A-BLSTM) structure shown in Figure 3,
and further compared our performance with the single A-BLSTM
structure in [20].

4.1.1 Data. The ATIS dataset used in this experiment follows
the same format as in [19–21, 41]. The training set contains 4978
utterance and the test set contains 893 utterance, with a total of 18
intent classes and 127 slot labels. It is worth noticing that the slot
tags follows the BIO encoding, which requires both B and I tags to
be correctly tagged for a slot to be considered correct.

4.1.2 Convex based Multiple A-BLSTMs (CMA-BLSTM) for Joint
Intent Detection and Slot Filling. In this section, we will discuss how
to apply the convex based multiple neural networks in joint intent
detection and slot filling, by using A-BLSTM as a basic structure
for each neural network. Without loss of generality, all the model
illustration are using ATIS dataset as an example. The set-up for
the models on our in-house dataset will be similar. A graphical
illustration is given in Figure 4. Since the total number of intent
classes for ATIS dataset is 18, 19 models will be used to guarantee
that a convex solution can be obtained for α i , that is,

∑m
i=1 α

i =
1(m = 19).

For each individual network of the structure, an attention based
BLSTM (A-BLSM) shown as in Figure 3 is used. At each iteration t ,

an input utterance xt = [x1t , · · · , x
l
t ] with l words will be fed into

multiple A-BLSTMs word by word. Each word is represented by
a word vector generated by the embedding layer. A sequence of
predicted slot labels are generated as ŝit = [ŝ

i
t ,1, · · · , ŝ

i
t ,l ] for the i

th

model, where i ∈ {1, · · · , 19}. The output of each A-BLSTM after
reading in all the words in xt is the predicted intent label ŷit . The
final estimated output ŷt at iteration t is equal to the convex sum
of the outputs of 19 A-BLSTMs:

ŷt =
19∑
i=1

α̂ it ŷ
i
t (17)

The loss function of the convex based multiple attention BLSTMs
(CMA-BLSTM) structure is also divided into two parts as described
earlier: the local losses Lit and a global loss дt with its correspond
loss vector Gt . Specifically in this task, the local loss function for
the ith network can be defined as the sum of the loss of intent
detection task(Li1,t ) and slot filling task(Li2,t ):

Lit = L
i
1,t + L

i
2,t

= yit log(ŷ
i
t ) +

l∑
j=1

sit , j log(ŝ
i
t , j )

(18)

The local loss functions are used to train each individual attention
based BLSTM(A-BLSTM) through back-propagation.

The global loss function is defined as
дt = yt − ŷt

= yt − (α̂
1
t ŷ

1
t + α̂

2
t ŷ

2
t + · · · + α̂

19
t ŷ19t )

(19)

The global loss vector G̃t cam be derived from дt , hence giving the
convex based learning algorithms as

α̃t+1 = α̃t − G̃tG̃
T
t α̃t + G̃tд̃t (20)

The subsequent training procedure follows the steps shown in
Algorithm 1. The outputs of the convex based multiple A-BLSTMs
(CMA-BLSTM)include two parts: one is the predicted slot filling
vector ŝt , and the other is the intent label predicted ŷt , as shown in
Figure 4. The performance is evaluated based on the classification
accuracy for intent detection task and F1-score for slot filling task.

4.1.3 Experiment Setup and Results. To compare the perfor-
mance of our new convex based multiple attention based BLSTMs
(CMA-BLSTM) structure with the results obtained using A-BLSTM
in [20], the same or smaller numbers of units in an LSTM cell are
chosen for CMA-BLSM, as 128, 64, 32 and 16, while A-BLSM uses a
total numbers of 128 units. Based on the size of our dataset, the num-
ber of hidden layers is chosen as 1. The size of word embedding is
128, which are initialized randomly at the beginning of experiment.
The weight vectors wi are also initialize randomly with different
values. The experiments are conducted on an NVIDIA M40 GPU.

Firstly, in order to demonstrate the speed of the new proposed
algorithm, we will compare the model based on two metrics:
1. The number of epochs needed for convergence using different
algorithms. An early stopping mechanism is applied here if there
are five consecutive epochs without any improvement.
2. Since the training time for each epoch using different models
may be different, we also recorded the total training time needed
for different models using the same NVIDIA M40 GPU.

A comparison of results is summarized in Table 1.
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Figure 4: Convex based multiple A-BLSTMs structure for joint intent detection and slot filling

Table 1: Training speed comparison using different models
on ATIS Dataset

Model Epochs Training time (sec) Speedup

Recursive NN 121 122.5 6.41 X
[7]

Attention Encoder-Decoder NN 145 135.6 7.09 X
[20]

Attention BLSTM
(A-BLSTM)(n=128)

165 158.6 8.30 X

[20]

CMA-BLSTM (n=16) 13 19.1 1 X
CMA-BLSTM (n=32) 18 25.8 1.35 X
CMA-BLSTM (n=64) 24 33.2 1.74 X
CMA-BLSTM (n=128) 28 38.6 2.02 X

In Table 1, it demonstrates a comparison of convergence speed
by using CMA-BLSTMs with that of using A-BLSTM and two other
RNN based approaches, on public ATIS dataset. One can observe
that, depending on the number of units (n) in an LSTM cell, the
convergence epochs needed for the CMA-BLSTM based structure

is only about
1
8
to

1
4
of the training time needed for the other

three approaches to converge. The main reason is that the global
convex coefficients α̂ i converge much faster than the weights ŵi

in each network. Once the convex coefficients converge to their
true values, the predicted outputs of models will be close to the
target outputs even before each individual network in the multiple
networks structure converges, as explained in section 3.4.

It is also observed that, when using CMA-BLSTM, the smaller
number of units n used, the faster of the convergence speed can
achieve. Although the number of training epoch needed for model
convergence is a main criterion to evaluate the efficiency and learn-
ing speed of different models, the comparison is only fair and mean-
ingful when the results are based on a similar or better task perfor-
mance. Hence, in Table 2, another comparison for different models
is given by evaluating their intent detection accuracy and slot filling
F1 scores on two different datasets.

Table 2: Performance of Different Models on ATIS Dataset

Model F1 Score Intent Accuracy

Recursive NN 93.96% 95.4%
[7]

RNN with Label Sampling 94.89% NA
[19]

Hybrid RNN 95.06% NA
[21]

RNN-EM 95.25% NA
[27]

CNN CRF 95.35% NA
[41]

Encoder-labeler Deep LSTM 95.66% NA
[14]

Attention Encoder-Decoder NN 95.87% 98.43%
[20]

A-BLSTM (n=128) 95.98% 98.21%
[20]

A-BLSTM with three layers (n=128) 96.20% 98.32%

CMA-BLSMs (n=16) 95.75% 98.10%
CMA-BLSMs (n=32) 96.32% 98.54%
CMA-BLSMs (n=64) 96.53% 98.65%
CMA-BLSMs (n=128) 96.89% 98.88%

Convex based Multiple Recursive NN 95.78% 96.94%
Convex based Multiple Attention
Encoder-Decoder NN (n=128)

96.32% 98.65%

Results in Table 2 show that, except the case when the smallest
number of units used (n = 16), the performance of CMA-BLSMwith
n = {32, 64, 128} is better than the current state-of-the-art result as
shown in [20]. Also to further demonstrate the our performance
improvement is not due to the increasing number of parameters, we
also compare increase the number of layers in current state-of-art
results to three, the MM approach still outperform it starting from
n = 32. The results for n = 16 are also very close to those using
single A-BLSTM. From this comparison, it demonstrates that the
CMA-BLSM can achieve a better or faster result compared to a

single attention based BLSM, with a need of only fewer than
1
4

training time.
In order to demonstrate the convex based MM approach can

improve model performance in general, we also applied the MM
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Figure 5: A single DropConnect Neural Network Structure

algorithm to two other models [7, 20] as shown in Table 1, the result
is as given in Table 2. (Due to the space limiation, only n = 128
is used for the model "Attention Encoder-Decoder NN"). It can
be observed that both models’ performance in [7, 20] has been
improved after using the convex based multiple models approach.

4.2 Descriptions of MNIST Dataset and
DropConnect

To demonstrate the generality of our appraoch, we also apply the
technique to a hand written digits recognition task, i.e. recogniz-
ing the handwritten digits images using MNIST dataset[16] . The
MNIST dataset consists of 28 × 28 black and white images, each
containing a digit 0 to 9 (10-classes). Each digit in the 60, 000 train-
ing images and 10, 000 test images is normalized to fit in a 20 × 20
pixel box while preserving their aspect ratio. Currently the best
performed model is the DropConnect Neural Networks (DCNN) in
[32], which gives 0.21% error rate.

4.2.1 DropConnect. DropConnect is the generalization of Dropout
in which each connection, rather than each output unit, can be
dropped with probability 1 − p. DropConnect is similar to Dropout
as it introduces dynamic sparsity within the model, but differs in
that the sparsity is on the weightsW, rather than the output vectors
of a layer. For a DropConnect layer, the output r is given as:

r = a((M ×W)v) (21)

where a(·) is a nonlinear activation function, v is the input, and
M is a binary matrix encoding the connection information and
Mij follows the Bernoulli distribution of p, i.e. M ∼Bernoulli(p).
The graphical illustration is given in Figure 5, where the redcross
indicates the connections we droped. Due to the space limitation,
we will not describe the structure in detail. A full explanation of
DropConnect can be found in [32].

4.2.2 Convex based multiple DropConnect (CM-DCNN). In this
section, similar to the multiple model structure as given in the SLU
case, we will describe how to construct the convex based multiple
model structure using DropConnect (CM-DCNN) for digit recog-
nition. As shown in Figure 6, there arem DropConnect networks
running in parallel. The number of m networks is chosen as 11
in this case, since there are 10 digits need to be recognized, i.e.
ŷit ∈ R

10. Similarly, the outputs of the 11 networks ŷit are combined

DCNN 1: 𝑵𝟏

DCNN 2: 𝑵𝟐

DCNN 11： 𝑵𝟏𝟏


Image Input 𝒙𝒕

ෝ𝜶𝒕
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ෝ𝜶𝒕
𝟏

ෝ𝜶𝒕
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ෝ𝒚𝒕
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ෝ𝒚𝒕 = [0,0,0, … , 0,1]

Figure 6: Convex based multiple DropConnect NN (CM-
DCNN Structure

in a convex manner to generate the final classifier output ŷt :

11∑
i=1

α̂ it ŷ
i
t = ŷt (22)

where α̂ it are adaptively adjusted using the global loss as in (20).

4.3 Experiment Setup and Results
To compare the performance of our new convex based multiple
DropConnect neural networks (CM-DCNN) with the results ob-
tained using a single DropConnect neural network, we use the same
feature extractor network described in [4]. This feature extractor
consists of a 2 layer CNN with 32-64 feature maps in each layer re-
spectively. The last layer’s output is treated as the input to the fully
connected layer which has 150 relu units on which DropConnect
are applied. Since the total number of classes for MNIST dataset is
10, 11 models will be used to guarantee that a convex solution can
be obtained for α i , that is,

∑m
i=1 α

i = 1(m = 11). The global loss
and the learning rule of the convex coefficient are as defined in (10)
and (15), wherem = 11. The learning rate is selected as 0.01 for all
models and the experiments are conducted using a single NVIDIA
M40 GPU.

Similar to the SLU experiment, we also compare models’ per-
formance based on the two metrics, i.e. the number of training
epochs for convergence and the total training time needed. Due
to space limitation and fair comparison purpose, we only use the
same CNN setup as in[32] without changing the number of feature
maps . A comparison of results is summarized in Table 3. It shows

that our convex based model only takes about
1
4
of the training

time compare to the single DropConnect Structure, and up to 30x
speed-up compared to other baseline models.

Finally, we compare the error rate on the standardMNIST dataset
obtained by using CM-DCNNand state-of-the-art approaches, which
is given in Table 4. In our case, we use m=11 models in order to
achieve the 0.19% error rate.

From Table 4, it is observed that the convex based multiple Drop-
Connect gives an even better result compared to the current state-of-
the-art result. This is mainly because that the collective information
from multiple networks help correct the errors made by each indi-
vidual networks to some extent, as we explained in the performance
analysis section.
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Table 3: Training speed comparison using different models
on MNIST Dataset

Model Epochs Training time (sec) Speedup

Recursive CNN 486 886.5 13.7 X

[18]
Gated Pooling CNN 724 1242.3 19.66 X

[17]
Multi-Column DNN 1008 1853.6 29.33 X

[4]
DropConnect 136 268.8 4.25 X

[32]

Convex based Multiple
DropConnect NN (m=11)

24 63.2 1.0 X

Table 4: Performance onMNISTDataset using differentmod-
els

Model Error (%)

Recursive CNN [18] 0.31
Gated Pooling CNN [17] 0.29
Multi-Column DNN [4] 0.23

DropConnect [32] 0.21

Convex based Multiple DropConnect NN 0.19

Remarks:
It is worth noticing that, to compare it fairly, the training environ-
ments are the same for all models by using the same tensorflow
[1] version, and python [30] as front end language. Also, the GPU
environment is chosen as the same single NVIDIA M40 GPU.

4.3.1 Performance comparison based on convergence errors. In
order to better understand the convergence speed of the convex
based multiple model approach to that of the single model approach,
a graphical comparison of the convergence speeds of their output
errors is given in this section. In order to evaluate the changes of
errors in terms of training time, we computing the error using a
time sliding window approach instead of using the epoch, such that
the errors can be evaluated in the real-world time for comparison
purpose. The error is defined as the signed mean square error as in
(23). DropConnect case.

et = (siдn)
1

K(t)

K (t )−1∑
k=0

| |(ŷt−k − yt−k )| |2 (DCNN)

= (siдn)
1

K(t)

K (t )−1∑
k=0

| |(

m∑
i=1

α it−kŷ
i
t−k − yt−k )| |2 (CM-DCNN)

(23)

where K(t) = N (t −w0, t) is the number of samples trained in the
time window span [t −w0, t], andw0 is the window size selected by
the algorithm designer. In our experiments, we choose thew0 = 1 in
the unit of second (sec). The sign is defined by using the normalized
dot product of two vectors ŷt and yt , i.e.

siдn =


1 if

ŷt · yt
|ŷt | |yt |

≥ 0

−1 if
ŷt · yt
|ŷt | |yt |

< 0

The reason we want to use the signed error instead of MSE itself is
because that we would also like to monitor the direction change
of our training output ŷt towards yt . The error plot is as given

in Figure 7. It is shown in the figure that the MSE error of CM-
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Figure 7: Convergence of Errors usingDCNNandCM-DCNN

DCNN converges much faster than that of the original DCNN on
the MNIST task, which follows the training time results in Table
3. On the other hand, it is noticed that there are rapid changes of
the sign of error when we use the convex based multiple DCNNs.
This indicates that the direction of error oscillates in a very fast
manner as slight changes of the convex coefficiens α will lead to
a large overshoot of the convex combined output ŷt . Despite this
oscillation if we consider the sign of error, the converge speed of
CM-DCNN far surpass that of DCNN by over 4 times.

5 CONCLUSION
In this paper, a new concept of convex based multiple neural net-
works structure is proposed. We applied this new technique on
two tasks: one is a spoken language understanding (SLU) task for
intent detection and slot filling, the other is an image recognition
task to recognize handwritten digits. The new proposed algorithm
demonstrated a much time faster learning speed on both tasks com-
pared to the models with state-of-the art performances. Also, on
the SLU task, we show that the new model can give a decent and
even better result (compared to a single model), when we further
decrease the size of each network to reduce the training time. From
both theoretical and experimental perspectives, it can conclude
that this new convex based multiple models approach has a great
potential in improving the learning speed on different applications
using deep neural networks, and at the same time, this technique
can further improve the model performance in terms of accuracy
and F1 scores.
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