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ABSTRACT

We introduce Collaborative Network Training — a self-supervised
method for training neural networks with aims of: 1) enabling task
objective functions that are not directly differentiable w.r.t. the net-
work output; 2) generating continuous-space actions; 3) more direct
optimization for achieving a desired task; 4) learning parameters
when a process for measuring performance is available, but labeled
data is unavailable. The procedure involves three randomly initial-
ized independent networks that use ranking to train one another
on a single task. The method incorporates qualities from ensemble
and reinforcement learning as well as gradient free optimization
methods such as Nelder-Mead. We evaluate the method against
various baselines using a variety of robotics-related tasks including
inverse kinematics, controls, and planning in both simulated and
real-world environments.
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1 INTRODUCTION

Frequently the loss function chosen to train a neural network is
not the same function that is used to measure the network’s ability
to perform the task it will ultimately do. This is in part due to the
requirement that the loss function must be differentiable w.r.t. the
output of the network. Often times this discrepancy can lead to
unfavorable results because the proxy loss function used to train the
network does not optimize the parameters directly for performing
the specific task.

For example, consider a network tasked with generating a se-
quence of joint angles for a robotic manipulator enabling the end-
effector to reach a specified location at a given time. One may create
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ground truth examples based on a conventional inverse kinematics
(IK) and planning algorithm and minimize the difference between
the model generated angles and this truth. While the network may
converge on a local optimum allowing it to produce angles simi-
lar to that of the IK algorithm, it is quite possible it will neglect
information essential to successfully performing the actual task.
In other words, minimizing a loss function in joint space does not
necessarily translate to success in the task space.

We introduce Collaborative Network Training — a new method of
training neural networks with aims of enabling task objective func-
tions that are not directly differentiable w.r.t. the network output
and learning parameters when a process for measuring performance
is available, but labeled data is unavailable. Our proposed method
allows for direct optimization for achieving a desired task and is
particularly suitable for generating continuous-space actions. The
method utilizes a trio of networks that leverage an arbitrary task
performance or “critic" function to rank the output of each network
from worst to best for a given input. During training each network
is treated as an independent agent with a unique set of parameters
and each applies the information gleaned from the trio to direct
its own learning and exploration. Eventually the trio converges
to a single local optimum and only one network is used during
inference.

We begin by describing the methodology and then show perfor-
mance using experiments based on common problems in robotics—
a domain which poses challenges for which our method appears to
be particularly well suited. This includes inverse kinematics, torque
control of a nonlinear dynamic system, and trajectory planning
requiring temporal precision at the millisecond level. We show that
each network’s output and rank is enough to successfully train a net-
work to perform various tasks. Success is measured by comparing
the performance to other model-based strategies using supervised
training with labeled data, state of the art reinforcement learning
methods for deterministic continuous decision making, and more
standard iterative optimization techniques such as Jacobian-based
IK.

2 RELATED WORK

Sometimes the difference between a “training loss" function and
a “task evaluation" function can be advantageous and may result
in increased robustness and generalization overall. For example,
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in classification, test set accuracy may be used to evaluate perfor-
mance, while minimizing either a softmax with negative examples
or a cross-entropy loss during training can help emphasize the
separation and boundaries among classes by pushing them farther
apart ([8, 11, 21]). By exaggerating the boundaries in this manner
the network generalizes better to data outside the training set. Clas-
sification is a scenario in which there are clearly benefits to having
a training loss function that is different than the task evaluation
function.

Though there can be benefits to using a provisional loss function
for training, sometimes it is desirable to optimize the network pa-
rameters more directly to model the distributions seen in the data.
For example, generative networks that attempt to model probabilis-
tic distributions of real world data may minimize a loss function
describing the difference between the true distribution p(x) and
model distribution p(x). Effective features can be gleaned from pa-
rameters of a network trained to do this ([16]). In addition, the
network can produce outputs that resemble the original real-world
distributions ([7, 19]). The network outputs can be further tuned
with generative adversarial network (GAN) training methods in
which the generator is specifically optimized to make the resulting
model distribution indistinguishable from the true distribution by
incorporating an additional discriminator network ([6]).

In these training methods there must exist data representing the
true distributions and a differentiable metric suitable for evaluating
the quality of the networks’ outputs. For example, autoencoding ar-
chitectures may measure the euclidean or cosine distance between
input and output and update the parameters according to one of
these losses ([20]). For discrete predictive tasks such as generating
letters, musical notes, or pixels, a softmax or cross-entropy describ-
ing a conditional distribution for every possible output is often used
([17, 19]). In GANS, the loss measured by the discriminator portion
of the network is used to update the parameters of the generator
portion ([6]).

However, sometimes measuring the performance of a network
is primarily determined by the ability of its outputs to lead to the
successful completion of a task rather than modeling an existing
distribution. Recall the model-based IK problem described earlier
and that a model trained in joint space will not necessarily result in
similar performance in the task space. Reinforcement learning (RL)
methods address this problem by optimizing for the specific task
and generating a conditional probability describing the likelihood
of a future reward for each action in a set of discrete actions ([18]).

In this RL scenario there exists a known metric for directly mea-
suring success on the task, but it is not always clear how to ef-
ficiently define it in a manner such that it is differentiable w.r.t
the network output. By breaking the output into a set of actions,
the Bellman equation enables a differentiable loss function and the
network learns a policy to maximize performance ([13]). Learning
effective policies in this manner is feasible when the number of pos-
sible actions is relatively small, but inadequate for high-dimensional
and continuous action spaces. An actor-critic method, Deep De-
terministic Policy Gradient (DDPG), was introduced in ([12]) and
the actor is a policy function mapping states to continuous actions.
Unlike DDPG, our method does not need to learn the parameters
of a critic network in parallel to the actor.
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In our method of collaborative training, three networks work
together to find the optimal weights for a single network on a
given task. There are many examples of systems that leverage the
information within a group of models as part of the inference or
architecture, and where the training might be adjusted accordingly.
Ensemble learning typically requires multiple learners that are
trained to solve the same problem. During inference each model
contributes to a collection of hypotheses which are used to make
the final prediction ([22]). Conversely, the process of federated
learning is to aggregate the updates made to independent decentral-
ized models to compute a new global model ([10]). The centralized
update does not rely on data, but rather the updates each decentral-
ized model made to boost their own performance. Our method is
different from both of these in that the networks rely on a signal
describing their own performance relative to the others. Moreover,
once the training is complete, we only need to use one of the sets
of learned weights.

The procedure for collaborative network training also draws
inspiration from non-gradient optimization methods including
Nelder-Mead ([14]) and annealing ([9]). Like these search methods
our procedure applies a heuristic which is used to direct the up-
date of each network. Furthermore, the concepts of ordering and
reflection in Nelder-Mead can also be seen in our method and help
to prevent the networks from converging on an undesirable local
optimum.

3 COLLABORATIVE NETWORK TRAINING

Collaborative training leverages the fact that given a collection of
randomly initialized networks each network will produce unique
output values for a particular input. The procedure relies on the
ability to describe the outputs of each network as being simply
better or worse than the outputs of the other networks within the
group. Thus, a necessary component is a critic or task evaluation
function that measures the performance of each network in a con-
tinuous space in order to rank the networks. We use a variety of
ranking functions in our experiments.

The main premise for collaborative training is that if each net-
work is updated in order to behave more similarly to better per-
forming networks for a single input example, then over time and
across many examples the collection will achieve a local optimum
for the task. However, simply updating each network in the direc-
tion of the best performing network leads to quick convergence on
sub-optimal parameters that will not perform well. In order to pre-
vent this, the worst performing network is updated in the direction
determined by its reflection of the best performing network.

This concept is related to exploitation and exploration processes
in reinforcement learning as well as Nelder-Mead reflection. Given
a collection of three networks, the middle network can be thought
of as exploiting the information available within the trio, while the
worst network explores new space in a direction informed by the
best network.

The procedure, summarized in Figure 1, works as follows: N
is the set containing {1, 2,3, ..., N} where N is the total number
of networks. The parameters of each network, 6, are randomly
initialized for n € N. In all of our experiments each network within
an ensemble have identical architectures. Additionally, we use N =
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Figure 1: The collaborative training procedure. Three net-
works are ranked on their performance for a given input, x,
and updated according to losses determined by their rank-
ings. In this example, the Second ranked network is opti-
mized to produce output closer to that of the First network,
the First network remains unchanged, and the Third net-

work is optimized to move away in a new direction informed
by the First.

2) Measure mean absolute error

j
1
dyag: (p,o) = ;Z |pi — ail

3 and preliminary testing did not find an increase in performance
for higher N (though this needs further validation).

For a given training input, x € X, where X is the set of all train-
ing inputs, the outputs of each network, §,, are sorted according
to a ranking function f : (x,9n) — pn, where u, describes the
performance of 7, given x. Thus, the best performing network is
0.y, where wi = argmax(yy) and the worst performing network is

n
0wy Where wy = argmin(pp).

n
We next define the mean absolute difference (MAE) between the
outputs of two networks:

J
> lpi - ail

i=1

dyag  (p.0) = = 1)
where (p, o) are the output vectors of any pair of networks in our
ensemble with each vector of length j.

The loss for a network in the ensemble, £, is determined by its

ranking. For each of the non-worst networks, N \ wy;, the loss is
found by computing djr4r between adjacently ranked networks
That is,
@
where £,, is differentiable w.r.t to 6.y, . The goal is for each network
to be trained so that a given network, 6, , produces an output for
x that more closely resembles an output from a better performing
network 0,,,_,.

Finally, the loss for the worst performing network, £,,,; is com-
puted using

Lunerg, = AMAEGw, Jw, )

®)

To summarize, for a given input, the best performing network
remains unchanged, the second best network is updated in the
direction of the best performing network, and the worst performing
network is updated in the direction described by the reflection of
the worst past the best.

Using these losses the collection can be trained in batch as long
as each sample is evaluated individually. The same learning rate
is used for each network and the parameters are optimized using
AdamOptimizer. Training is stopped when the average performance
across all networks no longer improves. A single network from

Lun = AMAEQwr> Dwy + Gw; — Jwy)

i=1
‘ 3) Update each &, according to £, for n={1,2,3}
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the trio is chosen at random to use during inference. While using
the averaged output across all networks may improve performance
in some cases, in order to maintain fairness and more carefully
evaluate and compare performance to alternative methods we do
not leverage the ensemble during inference in our experiments.
Thus, it is important to remember that three times as many param-
eters are used during training as there are during inference. That is,
parameters are effectively added during training and then removed.

Relation to Nelder-Mead. In the Nelder-Mead optimization
method, a function f(v) is optimized by using a collection of N
vectors wi,...,wp, each also of dimensionality of N. Each of
the w’s is a candidate solution, and together they form a simplex
that crawls through the parameter space in an amoeba-like way,
essentially the worst (least-optimal) vertex pushing forward in the
direction of the best one. For obvious reasons, this method does
not naturally scale well to enormous parameter spaces.

However, we take inspiration from the Nelder-Mead optimiza-
tion idea that mid-level solutions should move towards better ones,
and the worst solutions might as well explore candidates for im-
proving on the best solutions. Recognizing the non-linearity of the
error surface and the high-dimensionality of the parameter space,
we wish to have a model that “moves towards” another model but
without degrading its performance on the target task; moving the
parameters of model A towards the parameter values of model B—
as would be done in a direct implementation of Nelder-Mead—does
not make sense in this context. Furthermore, we wish to do so in
a way that we do not require—as Nelder-Mead does—a simplex of
the same dimensionality as that of the parameter space in which
we are optimizing (having the same number of networks as param-
eters would be infeasible). The natural solution to this, then, is to
have a small set of models, where the notion of “moving toward” is
achieved by training one model on the output of another model.

4 EXPERIMENTS

4.1 A Direct Comparison to Supervised
Training with Labeled Data

In our first experiments we compare collaborative training with
a typical supervised method that uses labeled data. The two tasks
we use are modeling the Griewank function and a forward kine-
matic calculation for a particular joint chain. The purpose of these
initial experiments is to compare the proposed method to typical
supervised training under conditions that are ideal for supervision,
namely, when the objective function used for training is identical to
the function used for evaluation and when the number of possible
solutions to f(x) is only one for each input x (zero redundancy). In
both tasks, the supervised network, ¢, and the set of three collab-
orative networks, C = {61, 02, 03} use identical architectures and
see the same training samples.

Note that when evaluating our method against supervised train-
ing, getting results that are roughly comparable would be successful;
a system that uses full label and gradient information should be an
upper bound on how well a self-supervised system could perform. A
more direct comparison will be against completely self-supervised
methods and supervised methods designed to address redundant
solutions (such as in IK), which we will show in the subsequent
sections.
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Griewank Function We train a network to approximate a widely
used function for optimization testing, the Griewank Function. This
function is often used because of its many local minima and maxima.
In this experiment each network uses a feed-forward architecture
with three hidden layers each with 200 nodes and rectified linear
units (ReLU) on all layers. The first method of training ($) uses
labels derived from a first order Griewank function

f(x) = 1+ (1/4000) - x2 — cos(x) @)

and the second method employs collaborative training (C) using

a critic function to describe the performance of each network for

a given input, x € [-600, 600] (the typical testing bounds for this

benchmark function), by measuring the absolute distance between

f(x)and gg, (x) where gy, (x) is the resulting output for the network
On.

Figure 2: Sawyer robot has seven degrees of freedom.

Forward Kinematics In the second experiment the networks
are tasked with predicting the 3-d coordinates of a robotic arm. We
use the kinematic chain as defined by the Rethink Robotics’ Sawyer
Robot which is a seven degree-of-freedom (DoF) robotic arm with
a single end effector. The arm is shown in Figure 2 and thus x is a
vector of length seven and gy, (x) is a vector of length three. Labels
for ¢ are gathered using typical forward kinematic calculations for
a random set of joint angles and the critic function is the euclidean
distance between the actual coordinates and those generated by
go,, (x). Each network has three hidden layers each with 200 nodes
with ReLU activation.

Results. The results based on 10,000 sample test sets for each
experiment are shown in Tables 1 and 2 and Figures 3 and 4. In the
single variate case (Griewank) the supervised network, ¢, performs
equivalently to each individual network in the ensemble. In the
case in which both the inputs and outputs are multivariate (for-
ward kinematics), the ¢ network unsurprisingly learns the fastest.
However, the differences between ¢ and the collaboratively trained
networks are not substantial despite {61, 02, 63} not training on
labeled data.
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Figure 3: Losses for Griewank experiment are shown here.
The x-axis indicates the number of samples seen and the y-
axis indicates the performance. In this experiment the per-
formance is given by the negative log mean absolute error
between the network generated output for a given input, x,
and the true value determined by the Griewank function.
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Figure 4: Losses for forward kinematics experiment are
shown here. The x-axis indicates the number of samples
seen and the y-axis indicates the performance. In this ex-
periment the performance is given by the negative log of
the euclidean distance between the network generated out-
put for a given input, x, and the true value determined by
the forward kinematic calculation for the Sawyer robot.

4.2 Inverse Kinematics

Neural methods for inverse kinematics (IK) are a more interesting
and challenging problem because there are multiple joint solutions
for a set of end effector coordinates. Standard approaches to solving
the IK problem do not include training models, but instead rely on
computing the Jacobian and iteratively updating the joint positions
until the end effector is within a set distance threshold of the desired
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model ¢ 01 0 03
mean error 125 127 131 125
standard deviation | .022 .026 .018 .018

Table 1: Griewank function results. The error represents
the average absolute difference between the true Griewank
value and the network approximated value for 10,000 ran-
dom input values x € X[-600, 600].

model ¢ 01 02 03
mean error 3.57 3.71 3.66 3.69
standard deviation | .41 41 39 45

Table 2: Forward kinematics results. Error represents the
mean euclidean distance (centimeters) between the ground
truth coordinates and approximated coordinates.

coordinates. We use this methodology as a baseline and would
expect resulting performance to be an upper bound for neural
network based IK solvers. The lower bound for neural network
based IK would be to train a single network using typical supervised
methods in which the data is not controlled for redundant solutions.
In the following experiments we train feed forward networks to
generate a set of joint angles given the end effector coordinates.

Inverse Kinematics In this experiment we use the Sawyer Ro-
bot kinematic chain. Our hypothesis is that the collaborative train-
ing methodology will learn a mapping that will outperform a net-
work trained on labeled data because it will optimize specifically
for the task of generating a single set of joint angles that satisifies
the given end effector coordinates, thus, “protecting" the learning
against redundant solutions. The critic function used here is the
euclidean distance between the goal coordinates, x (the input to the
networks), and the coordinates produced by the set of joint angles
generated from gg, (x). This contrasts with the labeled data meth-
ods that are commonly used in previous work which will model the
distribution of all possible joint angle solutions for a specific set of
coordinates [2, 4]. The input for the networks is a vector of length
three (coordinates of the end effector) and the outputs are vectors
of length seven representing angles for each joint. We complete
this experiment three times with networks of varying sizes. We
use a network with three fully connected hidden layers with the
following sizes for the three runs: [200, 200, 200], [1000, 1000, 1000],
[3000, 3000, 3000].

While collaborative training inherently addresses the redun-
dancy problem there are examples in the literature when a network
is provided only a single joint solution for a given set of coordi-
nates to prevent the network from learning the distribution across
all solutions. By manually choosing solutions in this manner the
responsibility is shifted to the individual for selecting appropriate
joint angles that will minimize the potential for redundancy. One
method is to select a solution when a specific joint(s) in the chain
is locked at a particular angle or restricted to a given range. In
[3] multiple networks are trained to support different fixed joint
positions. We also include this method as a baseline for comparison.
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We train an ensemble of 6 networks (each with identical architec-
tures as those used for the collaborative training) and redundancy
is reduced by limiting joint solutions to a set of 6 different ranges.

model 1) 61 6, 03  ensemble
mean error (200) 6.4 420 4.10 4.15 2.98
standard deviation (200) | 1.52 .71 .72 .71 .78
mean error (1000) 6.13 212 212 219 2.26
standard deviation (1000) | 1.65 .23 .23 .23 31
mean error (3000) 591 56 .53 .54 2.07
standard deviation (3000) | 1.55 .18 .15 .19 .26

Table 3: Inverse kinematics results. The error describes the
resulting mean Euclidean distance (centimeters) between
the end-effector position generated by the model and the
end-effector position generated by Sawyer’s built-in Jaco-
bian IK method for a random input coordinate.

Results The results of a 100 size sample test set are shown in
Table 3. Results were obtained by measuring the average euclidean
distance between Sawyer’s end-effector position as determined
by the built-in benchmark Jacobian-based IK method for a given
3-d coordinate and the resulting joint position provided by each
network. While the results are not perfect, the precision of the
collaborative networks increased with the number of learn-able
parameters. In the testing scenario in which the networks used
3000 unit layers the difference is within about half a centimeter.
The convergence plots for the three network configurations are
shown in 5.

120k parameters
3000k parameters
27000k parameters

-log mean Euclidean distance

T T T T T T T

0 1 2 3 4 5 6
Number of samples seen

le7
Figure 5: Average losses for collaborative networks for the
three network configurations. Network parameter counts
are 120k, 3000k, 27000k.

Also, in agreement with our hypothesis, each network resulting
from the collaborative training method outperforms the training
method using explicitly labeled data and while the ensemble of
six networks also consistently performed better than the single
network the performance did not increase at the same rate as the
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collaborative training with the increase of parameters. This suggests
that there was still some redundancy in the solution space during
training and this solution is not feasible with kinematic chains with
a high number of DoFs and high ranges of motion. Addressing
all of the possible configurations by locking joints at particular
angles becomes increasingly difficult with each additional degree
of freedom.

Additionally, we found that collaboratively trained networks
generate joint angles that result in very smooth trajectories because
without any additional constraints the training process naturally
minimizes differences among joint angles for geometrically close
input coordinates.

4.3 Nonlinear Controls

In this experiment we examine collaborative network training for
a common nonlinear controls problem. We use the OpenAl gym
pendulum-v0 environment with the task of keeping a friction-less
pendulum standing up [1]. The state of the art and current high
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Figure 6: The 25 actions are carried out sequentially and the
resulting rewards are accumulated for each step. The critic
function compares the accumulated reward of each network
when given the same input state. During inference the gen-
erated action sequences are used in an overlapping manner.
The network generates a sequence of 25 actions, but only the
first five are used. After these five actions are performed the
pendulum state is read and a new set of 25 actions are pro-
duced. The first five of these are used, the pendulum state
read again, and so on.

score for the task uses a variant of DDPG to learn an effective policy. model DDPG 2! 02 03

We compare our method to this. mean reward -134.48 -136.41 -127.84 -128.32
In DDPG and related reinforcement learning methods the actor standard deviation 9.07 93.25 81.79 88.72

network generates the next action given the current state. As ex- geometric mean reward | not reported -72.051 -73.66  -53.35

perience is gained a policy that enables high rewards is eventually
learned. Instead of predicting a single action and maintaining a
memory of what actions lead to good results, our implementation
based on collaborative training simply predicts a sequence of sev-
eral actions. We do not use a memory buffer or specific exploration
protocol as is typical for RL; rather, a single network generates an
entire action sequence given only the initial starting condition.
The reward function for the task is determined by the angle of
the pendulum and the required effort of each action. The precise
equation for the reward used in the gym’s environment is:

— (A% +0.1% Agt% +0.001 % a%) (5)
where A is the pendulum angle and a is the action. The architecture
of each network in the collaborative ensemble takes the start state
as input, has three ReLU activated hidden layers with 30 nodes
each (identical to current OpenAl winner), and has an output layer
of 25 linear units. These 25 values in the output vector represent
the next 25 actions (torques) given the initial condition. The critic
function comparing performance among the networks is identical
to this reward function and is accumulated over the 25 actions.
This technique is related to model predictive control in that each
individual action for a specific time slot is optimized while taking
all other actions into account [5].

The trio does not utilize additional joint angle and velocity infor-
mation after the initial state that is provided as the input. Therefore,
in order to achieve good performance the networks must essen-
tially learn a robust model about the dynamics of the pendulum
system to produce a good sequence. For each subsequent action
in the sequence the performance is likely to degrade as the errors
in the network’s model accumulate. For this reason, after training
and during testing we use an overlapping method of using only
the first five values in the 25-value generated action sequence. The
pendulum state is read again after the five actions and a new 25
step action sequence is generated and so on (see Figure 6).
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Table 4: Best 100-episode performance on the inverted pen-
dulum task.

Results Table 4 shows the results of the best 100-episode per-
formance on the pendulum task. The mean reward of the collabo-
rative training method is an improvement over the DDPG method
reported on OpenAl. However, the distribution of rewards from
collaborative training is heavily skewed. For skewed data the geo-
metric mean is a better indicator of central tendency and indicates
improved performance over DDPG. Though collaborative training
may have better overall results, the standard deviation is much
higher and appears to be more prone to poorly performing outliers.
Given this behavior, we ran 10,000 episodes and used a t-test (with a
bonferonni post-hoc correction)to evaluate if there were significant
differences between the results obtained by DDPG and the collabo-
rative networks. The mean rewards for these 10,000 episodes are
reported in the table below. The results between each collaborative
network and the DDPG network were significant at the p < .01
level.

model DDPG 61 0, 03
mean reward -157.48 -143.22 -145.94 -141.23
standard deviation | 19.07 97.41 86.98 101.11

Table 5: Mean rewards for 10,000 episodes on the inverted
pendulum task.

Millisecond Precision for Model-based
Drumstick Trajectory Generation

4.4

While the previous experiment demonstrated the methodology’s
ability to learn an effective policy within a controlled simulated



Session 5A: Learning Agents AAMAS 2019, May 13-17, 2019, Montréal, Canada

environment, in this section we demonstrate the efficacy with a — ~
real-world system. In this experiment we attempt to train a net-
work to generate a sequence of motor velocities resulting in the
production of drumstick trajectories allowing it to strike the drum
in a rhythmically controlled manner (see Figure 7.

-~ —
The output vector represents a
sequence of 20 actions (motor
velocities) to be performed at
10ms intervals. The resulting

N ~
drumstick motion should
produce strikes at the times
600 ReLU indicated by the input vector.

600 RelU

600 RelU

An input vector of 0’s and 1's
represent the onset locations of
23 0.0.0.0.1.0.0.0.0.0.0.0.0.0.0.0.0.0.1.0. [t LIUEULCRILE
steps are separated by 10ms and
the input vector encodes 200ms
or 20 time stamps plus the
current velocity of the stick

Current velocity Onset sequence

Figure 7: One end of a drumstick is secured to a motor (MX-

28 Dynamixel). The goal is to train a network to control the Figure 8: The network is trained to produce a sequence of
motor so that the drumstick strikes the drum producing a actions controlling the drumstick’s trajectory. The resulting
rhythm described by the input vector. trajectory should produce a rhythm that is identical to the

sequence provided by the input vector.

In the previous experiments the critic functions used to evaluate
the performance of each network were relatively straightforward.
Here, we highlight a custom critic function that incorporates a
method to measure the rhythmic similarity between the resulting
drum strikes and the input onset sequence as well as a method to
measure “goodness” when the drumstick doesn’t come into contact
with the drum at all producing no onsets. To measure rhythmic
similarity we compute the cosine distance between the input vec-
tor and the resulting onset vector generated from the drumstick
movements. To evaluate the trajectory we measure the euclidean
distance between the tip of the drumstick and two constant values
representing either the ideal “rest" position or ideal “strike" position.
Therefore, we assume prior knowledge of the positions of the stick
and drum in the environment. This allows us to train the models in
simulation by replicating the real-world setup.

Another step to better ensure adequate transfer from simulation
to real-world is to use a symbolic representation of the desired
onset sequence rather than the raw audio signal. In doing this the
actual audio does not need to be simulated. Therefore, the input to
the networks are a sequence of zeros and ones. Each value in the
input vector represents an event a specific time where the temporal
resolution is 10ms. We provide the networks with a sequence of 20
events representing 200ms. In the vector a one indicates an onset
and zeros indicate no onsets at that time. Additionally, the starting
angle of the joint is included in the input vector (see Figure 8.

Frequently a network will produce actions that are not possible.
The safety mechanisms within the simulation recognizes illegal

actions and prevents them. In the scenario where an action would . - |[1|‘!‘I|\JI||T|||HTII‘\I‘

from the best and worst performing networks, gy, and gy,, we use
the effected joint action sequence, (g, ) and e(Jw, ), where e(x) is a
function representing the simulation and built-in safety constraints.
Thus, the loss function for the worst performing network is defined
as:

Ly = dMAE(E(Gw, ), e(Gw,) + (e(Gw,) = e(Gw,))) (6)
Using the effected sequence is feasible because a differentiable loss
function is not required.

Similarly to the previous experiment, during inference an over-
lapping method of using only the first few actions of the output
is put in place. In this experiment, we only using the first action
before recomputing another sequence of 20 actions.

Results We evaluated the system in both simulation and the
real-world. During real-world inference we wanted a user to be
able to provide input by drumming. To do this, the drumming audio
is recorded and a spectral difference-based onset detection method
([15]) is used to create the input sequence necessary for the network
(see Figure 9). This pre-processing audio analysis step introduces
the potential for error by either missing onsets or producing false
positives. Though, the method is relatively robust achieving roughly
90% accuracy in the controlled environment in which we performed
the experiment.

Audio Anaylsis Onset Detection Inputto Network. Network Output (velocity)

need to exceed the velocity threshold to successfully reach the
target position, the simulation moves as far as it can in the same
direction at the thresholded rate. In the scenario where an action

would require the robot to pass through the drum the simulation Figure 9: The processing pipeline of the real-time system
ignores the action all together and does nothing. Because of this includes an audio stream which is analyzed for drum on-
behavior, the sequence of performed velocities are likely to be differ- sets. The onset sequence is provided as input to the network
ent than the sequence of generated joint angles. This is particularly which then produces a sequence of motor velocities.

true during the early stages of training. In order to encourage the

networks to learn to generate legal actions we make a modification To evaluate in simulation we generated 1000 onset sequences
to the loss function (Equation 3) for the best performing network in with random initial joint positions and measured the cosine simi-
the ensemble. Instead of using the generated joint action sequence larity between the resulting onsets and the input sequence. It was
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guaranteed that the robot was physically capable of playing all of
the test sequences, therefore, any errors could not be attributed
to the sequences being outside of the robot’s capabilities. For the
real-world evaluation 3 minutes worth of drumming was recorded
from a professional drummer and analyzed producing 852 onsets.
The resulting onset sequence was then fed into the network (at
200ms intervals) resulting in an approximate imitation of the hu-
man drummer. Onset detection was performed on the resulting
audio and cosine similarity was measured between the human and
robot drummer’s onsets. The results are shown in Table 6.

Simulation Real-world
1.0 0.86

cosine similarity

Table 6: Cosine similarities (1 is perfect) between the input
rhythms and the rhythms generated by the drum strikes re-
sulting from the motor velocity commands.

In both simulation and the real-world settings the generated
onset had to occur within the 10ms window of the target as specified
by the input onset sequence. Anything outside of this window (no
matter how close) was treated as an error and would penalize
the cosine similarity score. In simulation the network was able to
produce actions that perfectly produced the desired input sequence.
In the real-world scenario performance declined, but the results
were still convincing and much of the decline was likely due to the
onset detection.

5 CONCLUSION

In this article we introduced Collaborative Network Training. We
demonstrate the efficacy using both simulation and real-world en-
vironments using experiments ranging from traditional (IK and
inverted pendulum) to novel (drum strike trajectory). In the IK ex-
periment the methodology addresses the problem of redundancy
and achieved results similar to standard iterative Jacobian-based
methods. In the simulated inverted pendulum experiment the net-
work learned policies that achieved results on par with the state
of the art reinforcement learning method, DDPG. Finally, in the
drum strike trajectory planning experiment the method resulted in
a policy enabling a motor to strike a drum with millisecond level
precision.

The experiments presented in this work used only a single net-
work during inference. Future directions of this work will examine
potential gains of leveraging the ensemble during inference as well
as including additional networks with varying architectures during
training.
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