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ABSTRACT
In this paper, we study a courier dispatching problem (CDP)
raised from an online pickup-service platform of Alibaba. The
CDP aims to assign a set of couriers to serve pickup requests
with stochastic spatial and temporal arrival rate among urban
regions. The objective is to maximize the revenue of served
requests given a limited number of couriers over a period of
time. Many online algorithms such as dynamic matching and
vehicle routing strategy from existing literature could be ap-
plied to tackle this problem. However, these methods rely on
appropriately predefined optimization objectives at each de-
cision point, which is hard in dynamic situations. This paper
formulates the CDP as a Markov decision process (MDP) and
proposes a data-driven approach to derive the optimal dis-
patching rule-set under different scenarios. Our method stacks
multi-layer images of the spatial-and-temporal map and apply
multi-agent reinforcement learning (MARL) techniques to
evolve dispatching models. This method solves the learning
inefficiency caused by traditional centralized MDP model-
ing. Through comprehensive experiments on both artificial
dataset and real-world dataset, we show: 1) By utilizing his-
torical data and considering long-term revenue gains, MARL
achieves better performance than myopic online algorithms;
2) MARL is able to construct the mapping between complex
scenarios to sophisticated decisions such as the dispatching
rule. 3) MARL has the scalability to adopt in large-scale
real-world scenarios.
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1 INTRODUCTION
With the rapid development of e-commerce, millions of small
online retailers have emerged, resulting in a large growth
in demand for pickup service. Only if the couriers pick up
the goods within the prescribed time window, the subse-
quent transportation and delivering service can be carried
out timely.

In this study, we consider a courier dispatching problem
(CDP) with dynamic customers. In particular, given a number
of couriers and unserved requests, decision should be made
to assign couriers to pickup requests that maximize the total
revenue. Each request has a hard service time window and the
information is known when the system receives the customer’s
request.

A straightforward solution for the CDP is to formulate
and solve an optimization problem with the development of
the problem. However, these methods rely on appropriately
predefined optimization objectives at each decision point,
which is hard in dynamic situations. To capture the sto-
chastic spatial-and-temporal pattern of pickup requests and
utilize the information in the decision process, we discretize
the urban region into cartesian grids. Then, a hierarchical
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Figure 1: Overview of the proposed decision mechanism

solution approach is designed to handle these pickup re-
quests, namely “dispatching-level” and “routing-level”. At
the “dispatching-level”, we adopt a learning model to un-
cover the spatial-and-temporal pattern of customer demands.
The dispatching model aims to find an optimal policy that
designates each courier to a target grid and at the same time
assigns a service time for each courier in his/her target grid.
At the “routing-level”, the problem within the target grid is
formulated as an orienteering problem with time windows [9].
Briefly, given a set of geographically distributed customers
with different prices and time windows, a vehicle aims to
maximize its income within limited duration constraint. To
solve this problem, we adopt a deterministic insertion algo-
rithm proposed by [9]. Figure 1 depicts our overall decision
mechanism.

This paper focuses on the study of learning models at the
“dispatching-level”. In recent years, multi-agent reinforcement
learning (MARL) techniques have been successfully applied
to a few traditional operational research problems, such as
supply chain management [20], inventory optimization [14]
and fleet management problem [11]. Although the informa-
tion quality is improved by many service infrastructures, it
still remains significant challenges when adopting MARL
approach on CDP. Similar to the fleet management problem
stated in [11], the CDP also faces the difficulties of 1) problem
setting designs including state-action space and appropriate
reward functions, 2) large numbers of agents issue and 3)
the cooperation problem between agents. In order to provide
more realistic decisions, our MARL is evaluated in a more
complex environment that:
(1) Each pickup request has more complex behavior informa-

tion such as arrival time, earliest start time, latest start
time and service time. Consequently, we can not use a
simple linear function to derive the corresponding reward
for each action.

(2) Couriers are assigned with tasks whenever it becomes
free, and get the actual reward when it fulfills the requests
in grids. This setting leads to a delayed reward. Due to
the long processing time of each action, mutual influence
between agents is magnified, which increases the difficulty
in the design of reasonable feedback mechanism.

Our major contributions are as follows:
∙ It is the first time to solve the CDP using multi-agent

reinforcement learning method based on Markov decision
process.
∙ We propose an effective dispatching algorithm with decen-

tralized control and reward shaping to introduce coopera-
tion between agents.
∙ Our proposed method outperforms a set of well-studied

online algorithms for CDP through comprehensive experi-
ments on both of the artificial dataset and the real-world
dataset. Moreover, the generalization of our method is con-
firmed on unseen scenarios beyond the training dataset,
mainly on scope of customer time window, dynamic ratio
and zone distribution variation.

2 RELATED WORK
In this section, we discuss traditional models and solutions
to solve the CDP. Additionally, we also present multi-agent
reinforcement learning approaches that recently appeared in
related problems.

2.1 Models for CDP
The courier dispatching problem (CDP) is commonly con-
sidered as a dynamic variant of the vehicle routing problem
(DVRPs) with time windows [21], or an online matching prob-
lem [18]. According to the type of the uncertain information,
studies have been carried out in uncertain customer demands
[1, 7], stochastic travel time [10, 25], stochastic service time
[21] and customer locations [23]. However, the common thing
is that all these models tackles the dynamic and stochastic
characteristic of the CDP.

2.2 Heuristics for CDP
To solve these dynamic problems, we categorize existing
approaches based on whether any prediction of future events
is utilized in the decision process, namely the myopic strategy
and the looking-forward strategy.

In the first group, the solution process is based on known
data and does not consider any uncertain information. Ritzinger
et al. pointed out that it is hard to compromise between reac-
tiveness and decision quality in dynamic scenarios [16]. The
challenge of these myopic solutions is to set up appropriate
objective functions. Heuristics from static scenarios can be
modified for dynamic situations, such as tabu search [6] and
large neighborhood search [8].

Researches from many real-world applications show the
underline data pattern of customer demands [12]. The looking-
forward strategy predicts future events either implicitly or
explicitly. Sungur et al. use stochastic programming with
recourse to model the uncertainty in demands [21]. During
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the offline phase, a robust optimization is proposed to derive
a master plan. During the operation phase, their recoursing
rule simply omits non-occurring customers and reschedules
new customers. A different approach is to embed sampling
techniques into static solvers [17]. The most similar work
to our research is to model the CDP using the language of
Markov decision processes (MDP). For any practical sized
DVRPs, obtaining optimal policies is computationally in-
tractable [5]. Thus, heuristic methods with rollout policy are
commonly applied [7, 13, 23]. More practically, a dynamic
lookup table technique that simplifies and discretizes the
states during the optimization is proposed recently [22, 24].

2.3 Multi-agent RL (MARL) for planning
There are many obstacles to adopt multi-agent reinforce-
ment learning(MARL) algorithms in real-world applications,
which often involves complicated interactions between multi-
ple agents. Furthermore, feedback from the environment is
also non-linear. Further difficulties include non-stationary en-
vironment and prohibitively large and intractable state-action
space [11]. With the development of MARL and deep learning
research, multi-agent systems have been recently studied in
a variety of domains including robotic teams and resource
management [2, 4]. In a MARL setting, it is usually challeng-
ing to specify a good objective function, since the returns
of agents are correlated [3]. By applying experience sharing
technique, homogeneous agents can learn faster and reach
better overall performance [19]. Recently, Oroojlooyjadid et
al. adopted deep Q-Learning to optimize the replenishment
decisions at a given stage in a supply chain management ap-
plication [14]. More similar to our work, Lin et al. proposed
a contextual multi-agent actor-critic(CMAAC) method to
find the optimal dispatching rules that balance the supply
and demand in a geographical area [11]. However, the size of
CMAAC’s action space is limited to 6 neighboring girds to
move, which is a less optimal decision for real-world online
dispatching system.

3 PROBLEM STATEMENT AND
SIMULATOR DESIGN

Problem. Our study is carried out on a 20× 20 grid world,
where pickup requests arrive over time. Each pickup request
specifies the earliest start time, the latest start time and the
service time. We aim to design a dispatching algorithm that
maximizes the total revenue of all couriers within limited
working hours. In particular, the dispatching algorithm gen-
erates two parts of decisions: 1) assigning the courier to a
target grid; 2) and assigning a service time for the courier in
the target grid at the same decision time.

Simulator. To evaluate algorithm performance, we intro-
duce a simulator that generates the pickup requests and
executes the decisions of the tested dispatching algorithm.
All the later experiments are carried out on this simulator.

Our simulator applies a discrete event driven model. At
the start time, all couriers send a request to the dispatching
algorithm and receive an instruction. As long as any courier

completes his/her current task, the dispatching algorithm
assigns a new task to the courier. Whenever a courier ar-
rives his/her target gird, a deterministic insertion algorithm
(DIA)[9] is called to give the detailed pick-up instructions.
The input parameters of DIA include the target gird arrival
time, allowed service time and real-time customers at the
arrival time of the target grid. In particular, as shown in
Figure 2, the “routing-level” decision is treated as a part of
the simulator. When a courier completes all assigned requests,
the corresponding revenue and the actual task execution time
is recorded for this action and the following activities are
conducted sequentially:
∙ Order generation: new pickup requests are dynamically

added to the environment as soon as the new request
appears, and are removed from the environment when
current time goes beyond the customer service time window.
Hiring more couriers can reduce the portion of not served
requests, and this relates to the tradeoff between the labor
cost and platform revenue. In the environment setting, the
number of couriers can fulfill above 80% of the requests in
a whole day, which is at a reasonable level for performance
comparison of different algorithms.
∙ Courier status updates: each courier has three status de-

fined as follows:
1) free: ready for the next instruction
2) walking: on the way to target grid
3) picking: executing the pickup services within the target

grid.

Figure 2: Environment Settings

4 LEARNING FOR DISPATCHING
In this section, we propose a Multi-Agent Reinforcement
Learning (MARL) method to solve the CDP.

4.1 MDP Definition
We build the Markov decision process (MDP) from a decen-
tralized point of view that each courier is modeled as an
agent. By using the decentralization language, the size of
the state-action space is much controllable. The centralized
model leads to an exponentially increased size of the state-
action space when the number of courier increases. It is worth
mentioning that even in a decentralized perspective, global
information such as the generation of pickup requests, the sta-
tus of other agents can be perceived. The other components
of the MDP are defined as follows:
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∙ State 𝑠𝑖
𝑡 ∈ 𝒮: The state of courier 𝑖 at time step 𝑡 considers

informations in the 9× 9 neighboring grids of the courier 𝑖.
We use image-like tensor input as state, with each channel
containing specific information about the environment. Two
sets of states are discussed in the experiment, which differs
in the information level the dispatch system could observe.
At basic level, the dispatch system obtain the current
snapshot of customers and couriers. The states include the
number of agents, the number of pickup requests and the
total price the requests in each grid, plus the distance of
each neighbor grid to the current grid. At pre-solved level,
dispatch system get extra information by calling the route
planning solver. The presumed score of all possible actions
at the current time is added as new channels.
∙ Action 𝑎𝑖

𝑡 ∈ 𝒜: At the “dispatching-level”, the decision
includes the target grid and the maximum patrol time
within the grid. Therefore, our action space is the cartesian
product of candidate grids and time periods. We restrict
the candidate grids to the 5× 5 neighborhood grids of the
courier 𝑖. And the maximum patrol time is discretized into
{0, 10, 20, 30} minutes. To avoid agents moving beyond the
gird board, the target grid is clipped at the edge of the
board. All the possible actions are represented as one-hot
encoding. During the training stage, an action is chosen
by roulette wheel selection according to probability distri-
bution given by the model. During the testing stage, the
action with the highest probability is selected.
∙ Reward Function 𝑟𝑖

𝑡 ∈ ℛ = 𝒮 ×𝒜 → R: The reward design
determines the optimization goal of the trained model. In-
tuitively, the reward for courier 𝑖 at time step 𝑡 is defined
as total price of served requests according to last instruc-
tion. Moreover, the cooperation between couriers can be
introduced through reward shaping, putting a weight 𝛼 on
how much each courier should care about its individual
reward function versus the average of reward of all couriers.
For example,

𝑟𝑖
𝑡,𝑠ℎ𝑎𝑝𝑖𝑛𝑔 = 𝑟𝑖

𝑡 + 𝛼×𝑅𝑡𝑒𝑎𝑚 (1)
The effectiveness of considering team work is empirically
discussed in later sections.
∙ Agent: A decentralized policy is applied as the homoge-

neous property of couriers. All the agents establish a com-
mon policy through parameters sharing. During the execu-
tion phase, each courier is modeled as an agent that selects
an action based on its own observations mentioned above.
∙ Discount factor: The discount factor controls the degree of

how far the MDP looks into the future. In our application,
the state transitions are affected by the joint behaviors of
all agents. Meanwhile, the long processing time of each
action introduces large uncertainty during the training
process. Therefore, a relatively small discount factor is
preferable compared with the single-agent scenario. In our
setting, the discount factor 𝛾 = 0.8 is adopted.

4.2 MARL
This section presents a Multi-Agent Reinforcement Learning
based on actor-critic framework. There are two main ideas

in the design of MARL: 1) Decentralized value function and
policy network are used with an expected update; 2) Reward
shaping introduces explicit cooperation between agents and
considers the whole gains of dispatching system.

Value Network. The decentralized state-value function is
learned by minimizing the following loss function derived
from Bellman equation:

𝐿𝜃𝑣
=

(︀
𝑉𝜃𝑣

(︀
𝑠𝑖

𝑡

)︀
− 𝑉𝑡𝑎𝑟𝑔𝑒𝑡

(︀
𝑠𝑖

𝑡+1; 𝜋
)︀)︀2 (2)

𝑉𝑡𝑎𝑟𝑔𝑒𝑡

(︁
𝑠𝑖

𝑡+1; 𝜋
)︁
= 𝑟𝑖

𝑡 + 𝑉𝜃′
𝑣

(︁
𝑠𝑖

𝑡+1

)︁
(3)

where we use 𝜃𝑣 to denote the parameters of the value
network, 𝜋 to denote the dispatching policy and 𝜃′

𝑣 to denote
the target value network. In order to stabilize the learning
process, we fix the target network for a few episodes sam-
pling’s time. Moreover, efficient corporation among agents
can be established on this decentralized value network.

Policy Network. Policy gradient methods work by comput-
ing an estimator of the policy gradient and plugging it into
a stochastic gradient ascent algorithm. The most commonly
used gradient estimator has the form:

𝑔 = E𝑡

[︀
∇𝜃𝑙𝑜𝑔𝜋𝜃

(︀
𝑎𝑡|𝑠𝑡

)︀
𝐴𝑡

]︀
(4)

where 𝜋𝜃 is a stochastic policy and 𝐴𝑡 is an estimator of
the advantage function as time step 𝑡, which is 𝐴(𝑠𝑡, 𝑎𝑡) for
short. In this paper, we use the same objective proposed in
the state-of-art actor-critic algorithm from Proximal Policy
Optimization(PPO):

𝐿𝜃 = E𝑡

[︀
min

(︀
𝑟𝑡

(︀
𝜃
)︀

, 𝑐𝑙𝑖𝑝
(︀
𝑟𝑡

(︀
𝜃
)︀

, 1− 𝜖, 1 + 𝜖
)︀)︀

𝐴𝑡

]︀
(5)

𝐴𝑡 = −𝑉𝜃𝑣

(︀
𝑠𝑡

)︀
+ 𝑟𝑡 + · · · + 𝛾𝑇 −𝑡+1𝑟𝑇 −1 + 𝛾𝑇 −𝑡𝑉

(︀
𝑠𝑡

)︀
(6)

where 𝜃 denotes the parameters of policy network and the
expectation E𝑡 indicates the empirical average over samples.
The probability ratio 𝑟𝑡(𝜃) is computed as follows:

𝑟𝑡

(︀
𝜃
)︀
=

𝜋𝜃

(︀
𝑎𝑡|𝑠𝑡

)︀
𝜋𝜃𝑜𝑙𝑑

(︀
𝑎𝑡|𝑠𝑡

)︀ (7)

Based on the MDP definition, we collect a set of tuples
(𝑠, 𝑎, 𝑠′, 𝑟) based on our simulator environment mentioned in
Section 3. Note that since we do not distinguish individual
couriers, the collections of all couriers form a joint-dataset for
learning value and actor network. The detailed description
of MARL is summarized in Algorithm 1.

5 DATA DESCRIPTION
In this section, we describe the instances of the simulation
environment. We create artificial datasets to empirically test
the performance of different algorithms, with the scenario
settings varies [15]. In addition, we also apply the model to
the real-world pickup-service data to verify the feasibility.
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Algorithm 1: Multi-agent Training Framework
1: Initialize replay memory 𝑀
2: Initialize actor net and critic net
3: for m = 1 to 𝑁𝑒𝑝𝑖𝑠𝑜𝑑𝑒 do
4: Random choose instance from train set
5: Reset environment and get initial state
6: Stage 1: Sampling
7: while t < T do
8: Sample actions a𝑡 according to policy network,

given s𝑡

9: Execute a𝑡 in the simulator and observe reward r𝑡,
next state s𝑡+1

10: Compute value network target as Eq(3) and
advantage as Eq(6)

11: Store the transitions (𝑠𝑖
𝑡, 𝑎𝑖

𝑡, 𝑟𝑖
𝑡, 𝑠𝑖

𝑡+1) for all couriers
𝑖 ∈[1, . . . , 𝑁 ] into memory 𝑀

12: end while
13: Stage 2: Learning
14: for 𝑛1 = 1 to 𝑁1 do
15: Sample a batch of experience: 𝑠𝑖

𝑡, 𝑉𝑡𝑎𝑟𝑔𝑒𝑡(𝑠𝑖
𝑡+1; 𝜋)

16: Update value network by minimizing the value loss
Eq(2) over the batch

17: end for
18: for 𝑛2 = 1 to 𝑁2 do
19: Sample a batch of experience: 𝑠𝑖

𝑡, 𝑎𝑖
𝑡, 𝐴(𝑠𝑡, 𝑎𝑡)

20: Update policy network as 𝜃 ← 𝜃 +∇𝜃𝐿𝜃 according
to Eq(5)

21: end for
22: end for

5.1 Time Horizon
Our pick up services are provided within a fixed time horizon.
In our settings, we set the time horizon to 480 minutes,
which represents the working period from 8:00 am to 4:00 pm.
Within this horizon, discrete pickup requests are generated
following a given distribution. Couriers are not required to
return to the depot at 4:00 pm, but they would not accept
any new requests. The revenue of the day is the total price
of all served requests.

5.2 Temporal & Spatial Distribution
The arrival rate of new requests in a city varies over time and
space. In our data generator, we divide the service area into
𝐺 grids and partition the time horizon into 𝑀 intervals. We
use 𝜆𝑔𝑚 to denote the request arrival rate in grid 𝑔 at time
interval 𝑚. In each time interval 𝑚, every grid 𝑔 generates a
series of new arrival requests with the arrival rate of 𝜆𝑔𝑚 in a
Poisson process. Given a new generated request 𝑟𝑖 generated
at time 𝑡𝑖, the corresponding time windows is set as follows:
1) the earliest start time 𝑤𝑖 is at 𝑡𝑖 + ∆𝑇1 , where 𝑡𝑖 is the
arrival time of request 𝑟𝑖 ; 2) the latest that time 𝑤𝑖 is set to
𝑤𝑖 + ∆𝑇2. The parameters ∆𝑇1 and ∆𝑇2 are constant value.
In addition, customer service time is uniformly chosen from
the set {2, 3, 4} minutes, and a customer price is uniformly
chosen from the set {1, 2, 3, 4, 5} dollars.

Table 1: Arrival Rate Matrix

Grid Type Customer Arrival Rate

intense 0.05 0.00 0.00 0.10 0.04 0.00 0.00 0.05
peripheral 0.01 0.06 0.01 0.01 0.01 0.06 0.05 0.01

Table 2: Scenario settings

Scenario
Type

Time
Window

Degree of
Dynamism

Zone
Distribution

Courier
Number

Customer
Number

Base World 60 min 90% fixed 10 1000
Median World 60 min 90% fixed 30 3000
Large World 60 min 90% fixed 100 15000
Small TW 20 min 90% fixed 10 1000

Low Dynamism 60 min 50% fixed 10 1000
Random Grid 60 min 90% random 10 1000

5.3 Testing Scenarios
5.3.1 Artificial Data. We design six scenarios as summa-

rized in Table 2 to test our algorithms. Each set of scenarios
contains 40 problem instances.
∙ Grid world: we design a 20× 20 grid world. Each grid is a

1𝑘𝑚× 1𝑘𝑚 square area. The grid world are defined into
three types: intense, peripheral and empty, with the per-
centage of each grid type equals 5%,15%,80% respectively.
As shown in Table 2, the type of each grid is fixed initially
in all instances except for the Random Grid, which has the
grid type randomly generated based on the probability.
∙ Time horizon: time horizon equals 480 minutes and is

equally partitioned into eight periods as shown in Table 1.
∙ Couriers: Three sets of courier number are conducted in

our experiments to evaluate the scalability of MARL model.
Each courier has a moving speed of 0.5 km/minute. All
couriers departure from the central gird (10,10).
∙ Pickup request: according to Table 1, we generate pickup

requests for each grid and each time period in a Poisson
process and set the current time as 𝑤𝑖 for request 𝑟𝑖. The
location of each request is uniformly generated within the
corresponding grid.
∙ Degree of dynamism (DOD): to evaluate the impact of

information known in advance to different algorithms, we
adjust the number of pickup request known at time 0. For
example, if the value of DOD equals 90% as shown in Table
2, we randomly choose 10% of the total generated requests
and set their 𝑡𝑖 to time 0.

5.3.2 Real-world Data. We use the real-world data pro-
vided by the courier pickup services of Alibaba in the city
of Hangzhou. We select an area of 20km × 20km and divide
the area into 20×20 grids. Different to the artificial data,
we adopt real distances between grids that are provided by
GaoDe map api1. We choose 60 continuous days of data and
use the first 30 days’ data as training set and the second half
as the test set for later experiments.

1https://lbs.amap.com/
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6 EXPERIMENT DESIGN
6.1 Compared Algorithms
The MARL model is compared to the following dispatching
algorithms:
∙ Random: This method does not require any information

about the current state. It randomly selects a neighborhood
grid and a service period from the action space 𝒜.
∙ GHAV (Greedy to the highest absolute value): The highest

absolute value dispatcher selects a grid with a service period
that currently has the highest value per unit time from the
action space 𝒜.
∙ GHEP(Greedy to the highest expected profit): The highest

expected profit dispatcher selects a grid and a service
period that has the highest expected profit related to the
requested courier. We define the expected profit of each
candidate action by considering the traveling time to the
target grid and pre-calling the route planning solver to
identify possible gains after arriving the target grid.
∙ MBM (Maximum bipartite matching): Maximum bipartite

matching dispatcher tries to maximize the total score for
all couriers that will be available in 20 minutes. More
particularly, in the bipartite graph, there are two disjoint
subsets. One sub-graph includes available couriers and the
other includes the cartesian product of candidate grids and
service periods. We calculate the expected profit of each
candidate courier to each grid with each service period.
Then a maximum optimal matching problem is solved and
the current courier is dispatched.

6.2 Experimental Settings
In our experiment, training step lasts for 10000 episodes,
and the performance on both the train set and test set are
reported. The similar network structure is applied for both
value function and policy network, which is parameterized
by one fully-connected hidden layer of 200 units with ReLU.
After each episode, the sample of transition tuples is written
into the memory buffer, which has the size of 20000. In
learning step, iteration number 𝑁1 and 𝑁2 is set to 10, with
the batch size of 1024. Adam optimizer is applied, with the
learning of 5×10−4. In considering the collaborative revenue
of the whole fleet, performance with the reward reshaping
weight 𝛼 of 0.1, 0.5 and 0.9 has been compared, and 𝛼 value
of 0.5 obtains the highest score with a slight advantage of
0.16% and 0.67% against other two settings, and therefore
𝛼 value of 0.5 is applied in the following discussion. In the
PPO setting, clipping value 𝜖 is set to 0.2.

6.3 Performance Comparison
As shown in Table 3, the performance of each dispatching
strategy is presented. The score is calculated by the per-
centage of achieved price over the total price of all orders.
For the proposed MARL, we feed different information to
the presentation of states. At basic information level, the
dispatch system only obtains the current information of cus-
tomers and couriers, which is denoted as MARL-B in Table

Table 3: Comparison of performance

Strategy Base World Real World
train set test set train set test set

Random 23.35% 22.99% 24.56% 27.78%
GHAV 74.17% 74.07% 71.24% 74.86%
GHEP 75.12% 75.51% 73.47% 75.30%
MBM 81.13% 80.77% 76.46% 75.93%

MARL-B 82.80% 83.00% 77.86% 77.96%
MARL-EP 84.27% 84.45% 79.16% 79.21%

3. Furthermore, we add an additional expected profit channel
that is the same information used in GHEP and MBM, which
is denoted as MARL-EP

On both the base-world and real-world dataset, Random is
the worst strategy, which could only get about 23% score of
all orders appeared in the whole day. By comparing the per-
formance of GHAV and GHEP, the expected value function
does help couriers to identify the relative best target grid
more accurately. This pattern is also shown in the results of
MARL-B and MARL-EP. MBM has a significant increase in
score compared to GHAV and GHEP. This is attributed to
the consideration of global resource and demand allocation
when making a single dispatching decision. MARL-EP gives
the best achievement in score in all scenarios. These results
provide good evidence that MARL has the learning ability
of sophisticated decision process.

6.4 Agent Scale
In discussion of applicability of the MARL in urban scale level,
Median World with 30 couriers, 3000 customers and Large
World with 100 couriers, 15000 customers are studied, which
is significantly larger than the problem instances studied in
the MDP modelling group (e.g. [7, 13, 22–24]). The detailed
performance on all scenarios is listed in Table 4. The Median
World has relatively sufficient number of couriers. MARL-EP
presents about 1% improvement against the MBM.

In the Large World, we firstly observe the better perfor-
mance of GHAV compared to GHEP. This is due to the
mutual influence between a large number of agents leads to a
rapid change of grid values, thus the expected value function
fails to give a correct evaluation of the grid value. Neverthe-
less, MARL-EP still gets the best performance, having at
least 3% increase against all human-designed methods.

Table 4: Performance on extended agent scale

Strategy Median World Large World
train set test set train set test set

Random 35.75% 34.77% 27.57% 27.94%
GHAV 82.00% 81.46% 65.75% 64.87%
GHEP 84.09% 84.27% 64.44% 64.22%
MBM 91.37% 91.45% 74.71% 74.62%

MARL-B 91.87% 91.99% 77.77% 77.85%
MARL-EP 92.45% 92.58% 78.47% 78.51%
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Table 5: Performance on different scenario

Strategy Dataset
Small TW Low Dynamism Random Grid

Random 25.21% 31.01% 23.47%
GHAV 64.98% 73.49% 72.85%
GHEP 68.15% 77.58% 76.48%
MBM 68.76% 79.00% 80.68%

MARL-B 71.62% 81.60% 81.34%
MARL-EP 72.50% 81.51% 82.71%

6.5 Model Generality
Typically, reinforcement learning is trained on a specific en-
vironment setting, the generalization capability of RL model
is beyond the scope in many problems. However, due to the
uncertainty and unpredictability of online situation, it is
worth discussing if there exists certain transferability of the
dispatching strategy acquired. On this topic, the generality
and extensibility of our model is discussed on types of 3
datasets derived from the base scenario, mainly varying on
the aspects of customer service time window, the degree of
dynamic orders, and customer zone distribution. In scenario
Small TW, the time window of available service time is re-
duced to 20 minutes, which require a more real-time response
to new appear customers. In scenario Low Dynamism, the
ratio of dynamic orders reduced to 50%, and in scenario
Random Grid, the zone distributions are randomly shuffled.

The detailed performance on all scenarios is listed in Ta-
ble 5. MARL-EP still presents a significant advantage over
GHAV, GHEP and MBM on all the scenarios, though the
gap is less obvious than on the trained scenario. The resultes
proves that MARL is capable of handling unseen dynamics
in real scenarios.

6.6 Imitation Learning
The major shortcoming of reinforcement learning lies in its
low sampling efficiency, leading to long warm-up phase during
the learning. In many reinforcement learning tasks, if high-
quality samples can be generated through historical data or
strategies, then the policy might be trained quickly through
imitation learning, by using the privilege of past experience
and expert strategy. In our experiment, GHEP is selected
as the imitated objective for MARL-EP. Two attempts have
been conducted, specifically all GHEP strategy before the
300𝑡ℎ episode, and 20% probability of GHEP strategy before
1000𝑡ℎ episode. The performance is listed in figure 3. It is
obvious that imitation learning only accelerate the initial
process of the learning curve, while the long-term performance
is less favorable than the none-imitated model. The possible
explanation is that, reinforcement learning method in this
dispatching problem can be easily guided into a local optimum
by the imitated strategy. Exploration by self-discovery is quite
important in the RL framework, excessive exploitation of
expert experience might block the opportunity to learn the
best strategy from a long-term perspective.

Figure 3: Performance with imitated strategy from GHEP
dispatcher

6.7 Cooperation Discussion
In a multi-agent system, it is likely that not all agents are iden-
tically under control, especially in the real business scenario.
In the courier dispatch system, couriers might be managed
and controlled by different dispatch platforms, and it is worth
discussing if MARL is capable of learning dispatching strategy
in a cooperative environment. In the following discussion, the
experiment of four fleets is discussed, each with the courier
number of 10. In fleet 1, all 10 couriers share the same policy.
In the other three fleets, two sets of dispatching policies are
adopted, with each policy controls the implementation of five
couriers. In fleet 2, the first 5 couriers use MARL-EP policy,
and the other 5 couriers use GHEP policy. In fleet 3, the first
5 couriers use MARL-EP policy, and the other 5 couriers use
Random policy. In fleet 4, each group of five couriers uses
an independent learning environment, in which samples are
independently collected and model is separately trained. Due
to the homogeneous nature of all couriers, the performance
obtained by fleet 4 is approximately equal to fleet 1. However,
the learning progress is a bit slower in fleet 4 due to the
smaller sample size of each model. In fleet 2, the total perfor-
mance is a bit lower than the pure MARL-EP strategy. At
the beginning stage of the learning phase, GHEP gets a quite
high score, while MARL-EP is roughly random. However, as
the training process proceeds, the performance of MARL-EP
gradually grows and surpasses the GHEP group at the 1000𝑡ℎ

episode, and the final performance of MARL-EP group is
13% higher than the GHEP group. In fleet 3, the five couriers
in MARL-EP group obtains the highest group revenue by
making up the loss caused by the inefficient random strategy.

6.8 Strategy Analysis
In this section, we aim to gain an insight into the derived
dispatching policy by MARL-EP due to its outstanding per-
formance. We analyze the trajectory of each courier as shown
in Figure 5 from dataset scenario 1. In each subgraph, the
color shown in the grid represents the cumulative price of
appeared pickup requests in the last two hours, where the
light color represents low price and dark color represents
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Figure 4: Performance with two set of strategy

high price. Further, we set up the same initial state to all
tested scenarios. Note that the pickup requests in our prob-
lem settings have hard constraints of service time window
and disappeared time, which leads to a high requirement
of precision spatial and temporal matching. Interesting be-
havior can be seen from figure 5. a) The random dispatcher
generates the longest walk trace and shortest pick-time that
actually gain value. b) The GHEP shows no cooperation
between couriers. This strategy leads to agents’ competition
in local areas, which results in low overall revenue. c) The
MBM considers cooperation when there are enough pickup
requests showing up. However, it is difficult to make an ad-
visable decision during the period when there are not enough
requests. d) In comparison, the MARL-EP dispatcher is able
to capture the changes of request distribution over time. Take
the area highlighted in MARL-EP of figure 5 as an evidence,
the myopic strategies fail to explore this area due to its iso-
lated and remote location. Only pre-dispatching at the early
time could capture the orders of this area.

Figure 6 presents the dispatching paths of different meth-
ods given real-world data of Hangzhou city over 8 hours. Sim-
ilar analysis and conclusion can be drawn. In addition, better
supply and demand matching between north and center area
over spatial and temporal space is observed in MARL-EP.

7 CONCLUSION
In this paper, we formulate the courier dispatching problem
as a Markov decision process and use a multi-agent reinforce-
ment learning method to solve this problem. We propose
an effective dispatching algorithm with decentralized control
and reward shaping to encourage cooperation among agents.
The results from experiments on both the artificial dataset
and the real-world dataset show that the MARL achieves
significant improvement over the human-designed dispatch-
ing policies. Our method is capable of capturing intrinsic
patterns among data and make reasonable decisions from
a long-term perspective. Model generality is confirmed on
the unseen scenarios beyond the training dataset, mainly on
the scope of the customer time window, dynamic ratio, and

Figure 5: Trajectory of 5 couriers in the first two hours of
Scenario 1

Figure 6: Trajectory of 5 couriers in the whole day on
𝐴𝑢𝑔.5𝑡ℎ 2018

zone distribution variation. Moreover, we show the scalabil-
ity of the proposed method on significantly larger data sets
compared to existing literature.

In future research, we will focus on investigation of more
effective network architecture and learning algorithms. Mean-
while, it is beneficial to apply our proposed method to more
interesting combinatorial optimization problems in the do-
main of logistics and online scheduling systems.
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