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ABSTRACT
Increasing urban concentration raises operational challenges that

can benefit from integrated monitoring and decision support. Such

complex systems need to leverage the full stack of analytical meth-

ods, from state estimation using multi-sensor fusion for situational

awareness, to prediction and computation of optimal responses.

The FASTER platform that we describe in this work, deployed at

nation scale and handling 1.5 billion public transport trips a year,

offers such a full stack of techniques for this large-scale, real-time

problem. FASTER provides fine-grained situational awareness and

real-time decision support with the objective of improving the pub-

lic transport commuter experience. The methods employed range

from statistical machine learning to agent-based simulation and

mixed-integer optimization. In this work we present an overview

of the challenges and methods involved, with details of the com-

muter movement prediction module, as well as a discussion of open

problems.
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1 INTRODUCTION
Efficient movement of people in increasingly dense cities is one

of the key challenges towards sustainable growth of urban areas

throughout the world. Enabling effective response to incidents

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

and unforeseen events requires real-time monitoring of the public

transport network level of service, which in turn hinges on fine-

grained real-time information on passenger movements.

While real-time information on vehicle movements is at the

heart of traditional control centers, high-quality quantitative infor-

mation on passenger movements is usually lacking. Indeed, while

ticketing data would represent the most natural source of such

information, it does not generally provide destination information

when a passenger enters the network, is often not available for

processing in real-time, and in dense networks does not indicate

which route is chosen. Cameras possess valuable information on

passenger counts on platforms but due to computational constraints

are seldom processed to provide quantitative measures.

Hence estimation of the network state in terms of the current

passenger movements requires the fusion of multiple real-time data

sources. In a real-world setting however, numerous challenges arise.

The different sensing sources available have heterogeneous cov-

erage, latency, and error statistics. Methods used to leverage the

multi-modal sources must therefore be robust to different noise lev-

els and time scales. Because of the real-time nature of the problem,

they must also be fast and scalable.

The FASTER solution is motivated by the constraints arising

when applying mainstream AI techniques to operational settings.

Robustness in practice. An imperative of mission-critical applica-

tions is that a minimal level of service is required in all conditions.

Because public transport systems are event-based in nature, via

the dynamics of train arrivals and departures, lack of data due to

failure of the sensors or IT network is often indistinguishable from

a fault of the underlying physical system being monitored.

Consistency across heterogeneous use-cases. A city-scale cyber-

physical system needs to support heterogeneous use-cases, from

monitoring of crowd levels in sections of train platforms to offline

analysis of daily network level of service. This requires that the

underlying solution integrates a trade-off between optimal estima-

tion methods for specific use-cases (real-time, offline), and global

coherence of the estimates.

Complexity versus optimality. With a goal of model explainability

and robustness, important for instance in critical situations such as

incident response, it is important to control the complexity of the

models used, for instance by combining simple linear models in a
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multi-modal fusion framework, whose output can in turn be used

by parsimonious agent-based engines.

Contributions. The main contributions of this work include:

• design of an end-to-end solution using machine learning,

agent-based simulation and mixed-integer optimization,

• novel methodologies employed in specific analytic modules

such as the passenger movement prediction model,

• implementation and deployment of the solution at city-scale

with constraints from real-time and offline settings.

In Section 2 we present an overview of related work. Section 3

provides a description of the system architecture. In Section 4 we

present and evaluate a framework for commuter movements pre-

diction. In Section 5 we outline the observed benefits of such an

integrated approach. We conclude with open problems in Section 6.

2 RELATEDWORK
In the context of road networks, modeling vehicle movements has

leveraged techniques from sequential estimation and automatic con-

trol as early as the 90’s, with the seminal work of [32]. More recently,

applications of data assimilation and distributed planning have ben-

efited from the preponderance of smartphones, used as sensors and

instruments of feedback, via guidance and incentives [2, 15, 44].

Similar methods have subsequently been employed for public trans-

port networks [26]. Further, the availability of unstructured data has

allowed adding semantics to pure spatio-temporal representation

of dynamical patterns [22, 33].

Mobile traces have been used to analyze and predict movement

patterns of people [7, 13, 14, 18, 19, 21, 29, 34–36] with applications

ranging from real-time congestion monitoring to land-use planning,

using techniques such as non-linear filtering and topological graph

analysis. However, the spatial resolution of GPS and cellular sensing

is often a limiting factor in indoor settings.

On the other hand, wifi sensing has fine-grained spatial resolu-

tion. [12] proposes a system to estimate the number of passengers

in public transport vehicles. In [5] users’ locations at a mass event

are tracked using probe and other wifi requests. In [24, 39], the

authors build a system to passively “sniff” wifi signals of office

workers with an online SVM model to predict their length of stay.

Wifi sensing finds further application in the retail sector. The au-

thors of [28] present a solution to predict the next place that a user

will visit based on a Hidden Markov Model (HMM) framework.

In [20] the authors propose a Recurrent Neural Network ap-

proach to classify GPS trip traces by transportation mode. Deep

generative models have been explored in [25]. The authors of [8]

use probe requests to reveal underlying social relationships. In [1]

the authors build snapshots of users at a large scale event. These

new opportunities to efficiently manage cities through the use of

connected technology have led to the definition of “urban comput-

ing” [23, 42, 43].

Agent-based models have benefited from developments in ma-

chine learning leading to hybrid models [41]. The problem of in-

ferring train arrivals and hence delays of public transport services

was addressed by [16] where regional train timetables are inferred

using cell phone data by detecting bursts in number of cell phones.

However, their method would not work well on a dense urban

metro system. The problem of detecting events of commuters left

behind in a subway system is addressed in [44]. The authors rely on

offline farecard data, and estimate the most likely model assuming

known distributions of passengers walking times.

Related to our goal of modeling passenger movements is the

inference of users’ trip activities in a public transportation system.

[11] proposes a semi-continuous hidden Markov model framework.

Activities are clustered using a Gaussian mixture that depends on

the start time and duration of the activity. Similarly, [40] applies

an HMM framework to activity classification.

While agent-based simulation has historically been focused on

infrequent planning exercises, more recent endeavors have proven

that they are now practical for real-time applications [3, 10, 17, 27].

Progress in classic problems such as vehicle routing [4] and the

use of surrogate and hybrid models [6, 31] have pushed the field

forward, as well as system implementations such as the use of

high-performance computing allowing reaching nation scale [30].

3 SYSTEM OVERVIEW
The FASTER system is a city-scale solution providing situational

awareness and decision support to monitor and manage a large-

scale public transport network, in particular in terms of improving

the response during incidents and events.

3.1 System context
The system described in this work ingests several heterogeneous

data sources with varying levels of latency in order to build a com-

prehensive and fine-grained view of the ground conditions, raise

early warnings and alerts during unexpected events, and compute

optimized response plans to public transport incidents. Data sources

include structured and unstructured data such as CCTV streams,

ticketing information, wifi traces, system data on the train locations,

and quantities derived from cellular devices.

One of the ways in which users interact with the FASTER sys-

tem is through the key performance indicators (KPI) that the system
produces and transmits to the command centre. The KPIs produced

include real-time quantities such as estimated station platform

crowd, dwell time delays and long aggregate passenger wait times.

The estimates are updated every time new data becomes avail-

able, so that users have access to the most accurate information

despite latency of some data sources. This set of KPIs constitutes

the common representation model for all analysis.

Breaking with the usual situation in that planning users and

command centre users have different, segregated tools and method-

ologies to analyze the public transport system, FASTER offers these

two classes of users access to the same system, so that all informa-

tion used, estimated or observed, is consistent across the real-time

analyses and the planning studies. Figure 1 showcases a view of

the key performance indicators.

Simulation and optimization functionalities are integrated into

the overall system using the streaming data processing flow and

the online KPI estimates. Thus the user can choose to analyze past

actual days based on replaying the stored (real-time) estimates, sim-

ulate historical events with adjustments based also on the estimated

values from the historical day, analyze “typical day” scenarios in the

aggregate, or investigate more prospective hand-crafted scenarios

designed from an arbitrary base-case. Users can run the estimated
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Figure 1: FASTER integrated real-timemonitoring interface.

or simulated scenario forward in time, or they may trigger the

mixed-integer optimization routine to find an improved solution

based on a given pool of resources and one or more pre-defined

metrics. For instance, the optimization module can recommend

emergency bus routes and schedules when an incident occurs.

3.2 Lambda architecture
The FASTER solution relies on a lambda architecture to ingest

on the order of 1 TB of data daily and serve all classes of users

according to their requirements. Processed data feeds contribute to

updating the common representation in the form of aggregate KPIs,

which supports all of the applications such as prediction, alerts,

production of optimal response plans, and playback analysis.

The architecture, see Figure 2, includes both a batch layer and a

speed layer with the speed layer focused on real-time monitoring

and decision support, while the batch layer orchestrates heavy

processing, simulation and calibration jobs.

Figure 2: Lambda architecture.

The low-latency data feeds consumed include data from wifi-

enabled devices, CCTV cameras, and train locations.

3.3 Reconciliation engine
The FASTER solution provides a full digital twin of locations, people,

and vehicles using a common referential. Each of these object types

is augmented with appropriate KPIs. The reconciliation engine thus

alleviates the intrinsic limitations of individual sources, such as the

limited coverage of cameras, the positioning noise of indoor traces,

and the latency of ticketing information.

In order to support transparent fusion of data sources as they

become available, we make use of a principled framework relying

on data-stream specific fundamentals such as linear models and

entity resolution methods, that we then combine in a common

reconciliation engine integrating the most likely current common

representation, as well as specific applications requirements.

For each KPI, or related group of KPIs, the reconciliation operates

at the level of coarse agent metrics, using methods inspired by

(prior) linear pooling from the combination of experts literature.

Here each expert is a learner tasked to maximize the accuracy of

certain commuter metrics, such as point-to-point travel-time, or

crowd density. The estimates are then re-aligned on a common

spatio-temporal grid, and re-weighted according to estimates of

the reliability of each learner for this data feed and the quantities

produced in previous time steps.

This method allows improving estimate accuracy, and has a com-

putational advantage in terms of providing the estimates on the

quantities of interest. Using a single combined indirect sensing

mechanism facilitates the updates and reasoning as well as error

analysis. The end result is that the FASTER system produces accu-

rate estimates of quantities such as train occupancy or platform

crowding, which are traditionally not available due to the lack of

direct sensing mechanisms.

3.4 Example: demand-supply gap estimation
We illustrate the system design philosophy by describing below

how a complex high-level KPI, the demand-supply gap (DSG), is

computed, based on estimates provided as part of the common

referential in the form of low-level KPIs.

The demand-supply gap, expressed as the count of passengers

unable to board a train at a given point in time, is a key metric of

network level of service. However indirect methods such as network

simulation only provide low-accuracy estimates, and no sensor

provides a complete measurement of that quantity. In particular

CCTV provides observations on portions of the platform and is

notoriously difficult to use for measuring accurately the demand-

supply gap. Ticketing data provides only the entry counts, reflecting

the demand rather than the demand-supply gap.

In order to estimate the demand-supply gap, we rely on crowd

level estimates, that are provided from linear models learning adap-

tively scaling parameters relating the number of connected device

observations to actual crowd level in a supervised way. The DSG is

then estimated using a discriminative classification method with

the following feature set:

• count of commuters waiting to board a train,

• count of commuters “missing the train”, i.e. observed contin-

uing to wait for the next train once a train departs,

• waiting time third quartile and standard deviation,

• train headway obtained by robust spectral clustering.

We highlight that we are estimating the macroscopic demand-

supply gap, and not whether specific commuters will be left behind.

We use greedy forward feature selection to select the most relevant

features for model building. Since the datasets are highly skewed,
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the vast majority of samples reflecting no DSG, we invoke a boot-

strapping procedure to obtain an unbiased classification result.

Given the low number of DSG events, it is unrealistic to rely

solely on station-specific models for accurate estimation. On the

other hand, given the lack of stationarity of the underlying pro-

cesses across stations and times, we cannot readily train models

across the entire dataset. We thus normalize the features across

the entire dataset, and build a hierarchy of models. The models are

trained in a top-down fashion from a network-wide model for all

stations to line specific models, with distinct models for each line

on the network, and finally fine-grained models for each unique

station on the network.

3.5 Scalable agent-based modeling
The FASTER simulation engine ingests the state estimated by the

machine learning models used to create the KPI representation and

forwards them in time to offer a fully data-driven simulation.

Computation time being an imperative, the agent-based frame-

work integrates microscopic models with a generic mesoscopic

formulation in the form of a queuing network, which has been

shown to provide a good trade-off between accuracy and efficiency.

A dominant computation cost in traditional agent-based routing

being the computation of shortest paths, we rely on low frequency

shortest path updates combined with event-based re-computation

to account for sudden global or local changes.

During simulation, several metrics can be produced depending

on the user’s interest. Unnecessary storage of simulation data is

avoided by a dynamically generated data structure containing only

the data necessary for the user-specified metric. This reduces the

memory usage of the simulator by around 15% and results in mod-

erate but noticeable speedup.

A generic incident model supporting the class of faults encoun-

tered triggers the optimization engine. In the interest of scalability,

we parameterize the set of candidate response lines for a given

incident as illustrated in Figure 3. The set is parameterized by the

number of response lines, the allowed amount of overlap, the maxi-

mal lengths, and the number of distinct train lines they are required

to cover. This achieves a good trade-off between quality of the re-

sponse plans, responsiveness of the system, and practicality of the

lines for actual real-time operations.

Figure 3: Response lines; emergency train lines may “loop”
around the incident or go through available tracks. Emer-
gency bus lines are focused on re-connecting the network at
a regional or connection to connection scale.

In order to solve the optimal action plan problem, we first con-

vert the discrete transport supply provided by individual train and

bus services to a so-called continuous flow supply, and model the

passenger movements as flows in a time expanded transportation

network. The objective of the optimization routine is to produce

emergency response bus routes and train schedules minimizing

delay to impacted commuters.

We model the network using a classical time-expanded graph

with a node nu,t,l representing a station u at time t for line l , and
with arcs modeling service runtime, passenger walking time, and

waiting time. For every group ofvp passengers with same origin and

start time, we add a commodityp from a nodenop,sp (corresponding

to origin station op and start time sp ), to a destination node zdp
(corresponding to station dp ), with demand vp . Taking the number

of servicesnl on a line l as a variable we get amixed integer program

solving the optimal action plan problem:

min

∑
p∈P, a∈A

fp,aha s.t. (1)∑
n′∈N

fp,n′n =
∑
n′∈N

fp,nn′ ∀ n , nop,sp , zdp ,p ∈ P (2)∑
n′∈N

fp,n′n = vp for n = nop,sp ∀ p ∈ P (3)∑
n′∈N

fp,nn′ = −vp for n = zdp ∀ p ∈ P (4)∑
p∈P

fp,a ≤ clnl /τl ∀ arc a = −−−−−−−−−−−−→nu,t,lnv,t+r,l ∈ A. (5)

with flow variables fp,a , and where service capacities and headways
are denoted cl and τl , respectively, and with a ∈ A the set of arcs.

Equations (2)-(3)-(4) are the flow conservation constraints, and (5)

contains the service capacity constraints. The objective (1) is the

total travel time of the passengers, various objective functions are

supported in the system. Observe that a passenger uses a waiting

arc a = −−−−−−−−−−−−→nv,t,lnv,t+1,l only if line l leaving from node nv,t,l is full.
The mixed-integer program (MIP) is solved on multiple cores

using CPLEX, and is followed by a local search step. If demand is

well-met based on the result of the MIP optimization, relative to

the train and bus availability, the local search simply fine-tunes

the result by either adjusting the rate of trains on existing lines or

swapping out less-used lines for others. If the demand is not well-

met or the number of available trains or buses is large, new train

and bus lines are generated using a vehicle routing formulation,

based on the residual demand from the output of the optimization,

to replace or supplement lines in the current response plan.

A work queue is used to parallelize the simulation runs during

the local search step. The simulation runs are assigned to threads

in an asynchronously streaming manner such that minimal waiting

is required by individual threads. The parallelism is designed such

that each thread runs entirely independently from the other threads.

These two features of the implementation allow for a very straight-

forward implementation of a distributed parallelism variation of the

local search step, which generalizes to an API for running multiple

simulations across hardware resources over the network.
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4 MODELING COMMUTER DYNAMICS
In this section we describe commuter movement models in a HMM

framework, focusing on handling a continuous state-space, and

scalability over large number of users.

4.1 CHMM

Figure 4: Continuous HMM.

The continuous hidden Markov model (CHMM) [11] is a HMM

extension which considers clusters of hidden states, see Figure 4. In

our formulation, the index t is the trip and the hidden variable xt
is the exit station of the t trip. We denote A the transition matrix,

so that A =
{
ai, j

}
where ai, j = P(xt+1 = j | xt = i). Each state

emits to a hidden cluster, according to a stochastic emission matrix

G = {дi,k } where дi,k = P(mt = k | xt = i). Each cluster emits

a continuous observation, according to a Gaussian distribution

ot ∼ N(µk , Σk ). The CHMM model is thus fully parameterized by

λ = {A,G, {µk , Σk }}.
In our setting the model is trained on the observations given as

a tuple including the time of entry in the network, duration of the

activity, i.e. the time out of the network, and the position of the exit

station. We perform the parameter estimation via a variant of the

Baum-Welch algorithm [9].

4.2 Aggregate model
The scalability of the CHMM approach can be substantially im-

proved by clustering similar users and building an aggregate model

for each cluster. A naive approach and one that we use as a base-

line is to compute a histogram representation of spatio-temporal

frequency over a discretized domain for the relevant spatial and

temporal features. Specifically, in our baseline representation, the

following spatio-temporal features are employed:

• frequency of presence, over a discretized spatial domain,

• frequency of travel by time period, over a discretized tempo-

ral domain,

• spatial entropy, over a discretized spatial domain,

where the spatial entropy of user u is defined as:

entropy(u) = −
∑
s ∈Su

fs log fs ,

Su is the set of stations visited by the user and fs is the frequency
with which the user visited station s . The resulting adjacencymatrix

for a subset of 8000 users using a euclidean distance metric is

illustrated in Figure 5.

The best available clustering of the adjacency matrix derived

from the histogram distance, obtained using spectral clustering,

Figure 5: Adjacency matrix for euclidean distance in spatio-
temporal histogram-based feature space.

is shown in Figure 6. K-means and DBSCAN (not visualized here)

produce significantly inferior clustering results on this dataset.

Figure 6: Re-organizedmatrix after spectral clustering using
euclidean distance on histogram-based feature space.

Note furthermore that the histogram representation of trips

suffers from the drawback of not being able to distinguish trips with

similar spatial patterns but differing temporal patterns; consider

for example a user regularly making the trip from A to B to C and

one who travels from C to B to A. The histograms of such users

will be identical in spite of vastly different temporal patterns.

We thus define a representation that describes the spatial and

temporal patterns of users jointly. Specifically, we use the history

of the user trips and the most likely CHMM corresponding to those

trips. These CHMM are grouped into trip groups. Thus each user is

represented by a Gaussian mixture.

Performing a new clustering on this CHMM-based representa-

tion of the users requires a new distance metric. The appropriate

metric in this case is the Kullback-Leibler (KL) divergence. How-

ever, computing the KL divergence is computationally costly due

to the lack of an analytical solution and as such, in the interest of

scalability, we employ an approximation of the KL divergence in

the form of the quadratic form distance.

Session 5C: Industrial Applications Track AAMAS 2019, May 13-17, 2019, Montréal, Canada

1408



Defining the signature of a Gaussian mixture as:

Sq = {⟨c
q
i ,w

q
i ⟩, i = 1..n},

the Quadratic FormDistance (QFD) between two distributions reads

QFD(Sq , So ) =
√
(wq −wo ) · Af · (wq −wo )⊤, whereAf is the sim-

ilarity matrix given by ai j = f (ci , c j ), and f is a pairwise distance

such as f−(ci , c j ) = −d(ci , c j ) or fд(ci , c j ) = e−αd (ci ,c j )
2

.

Figure 7 shows the adjacency matrix resulting from spectral clus-

tering performed on the pairwise gaussian quadratic form distance.

Note that the clusters are far more homogeneous in size and with

far fewer outliers than that obtained using spectral clustering on

the histogram-based representation, shown in Figure 6.

Figure 7: Adjacencymatrix obtainedwith spectral clustering
using pairwise QFD.

4.3 CHMMmodel numerical results
We consider a dataset of 900 million trips over a four months period,

across 5 train lines and 300 bus routes.

The Gaussian mixture clustering of the activities in the CHMM is

calibrated by maximizing the likelihood. On this dataset, when the

number of Gaussian clusters increases above ten, the log-likelihood

drops substantially, due to overfitting of the model on the training

set. The hyper-parameters, namely the number of hidden clusters,

i.e. trip groups, optimized via a grid search, was set to 8.

Figure 8 shows the boxplots of the model performance without

clustering users; the box plots illustrate a baseline CHMM in which

only information from the previous trip t is used for the t + 1

prediction, the CHMM two stage-model, in which we augment the

observations from the previous trip with the time of entry into

the network and duration of the activity (in principle considered

observations of the t + 1 trip), and finally the two-stage model

in its online version, in which the entry station, is also included

as observation. A prediction is considered accurate if the station

is within a range of 1 km. The boxes show the median accuracy

(middle red line), and the accuracy at the upper and lower quartiles

(Q1=25% and Q3=75%). The inter-quartile range (IQR), defined as

the accuracy range between Q3-Q1, is used to define the upper

and lower horizontal lines as Q1-1.5(IQR) and Q3+1.5(IQR). Dots

outside the horizontal lines represent the outliers.

A measurable improvement is observed when using the two-

stage model compared to the CHMM baseline.

(a) Full population

(b) Users having entropy ≤ 3 (54.8% of the population)

Figure 8: Accuracy of the proposed models, boxplots.

4.4 Comparison of aggregate models
performance

Table 1 compares the prediction performance of the 2-stage model

(middle boxplot in Figure 8) using the (symmetric) Kullback-Leibler

and Quadratic Form Distances for the clustering. As expected, the

KL QFD
Mean 35.5% 33.2%

Median 35.0% 30.0%

Table 1: Comparison of cluster-level prediction accuracy for
KL and QFD with spectral clustering, on 100 clusters.

method using KL distance performs slightly better, but the loss of

accuracy from the QFD approximation is very small, while the QFD

approximation is obtained at a fraction of the computational cost.

5 FASTER SYSTEM EVALUATION
The FASTER solution described in this work has been implemented,

deployed, and evaluated both in terms of accuracy metrics for quan-

tities of interest estimated by the system, as well as in terms of

benefits obtained from the operational improvements enabled by

the system. In this section we illustrate this validation process using

an exemplary set of evaluations.

5.1 Early warnings for real-time monitoring
Real-time estimation of network conditions allows anomaly detec-

tion methods to raise alerts regarding situations that the control
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center should pay closer attention to. In Figure 9 we illustrate such

a case of interruption of train services reported from 19:53pm to

20:23pm. The KPI illustrates clearly that the service was impacted as

early as 19:30pm, more than 20 minutes before the incident report

was created.

Figure 9: An anomalous trend in commuter crowding (solid
black line) exceeding the medium (dotted blue line) and se-
vere (dotted green line) alert levels is detected beforemanual
incident reports (vertical blue lines).

Such early warnings have been proven useful to mitigate the

compounded impact of the incident as time progresses.We highlight

that, as in most real-world implementations, the priority of anomaly

detection methods is to maintain the number of false positive under

a certain value, and maximize the number of true positive under

this constraint.

5.2 Daily estimation of demand-supply gap
A key quantity in the monitoring of the quality of the transport

service level is the demand-supply gap (DSG). The DSG measures

the proportion of commuters intending to travel who are unable

to board a train because it is full. Due to the difficulty of collecting

fine-grained ground-truth DSG estimates (i.e. how many trains

commuters are forced to miss before boarding a train), we perform

validation on the binary DSG detection problem (i.e. existence

during a time period of a DSG event or not).

We used 100K ground-truth DSG event labels (positive and neg-

ative instances) collected over a period of 8 months at about 60

stations, where a DSG event is declared if any passenger is forcedly

left behind due to lack of capacity. In Table 2 we present Precision,

Recall, and Accuracy, for detecting DSG for a family of models,

running at the station, line, or network level.

The statistical improvement in model accuracy obtained with

more fine-grained models has to be balanced with the complexity

associated with the maintenance of 100 times more model instances

and data streams. As these algorithms form the basis of an opera-

tional system, the importance of model maintenance is not to be

neglected. We refer the interested reader to [37] for more details

on this model.

Category #Models Precision Recall Accuracy

Network 1 75 72 98

Line 1 to 10 77 72 98

Station 10 to 100 85 75 99

Table 2: Performance of different model categories.

5.3 Long-term analysis of level of service
The system includes a long-term demand model which can be

invoked in particular for the management of planned events. This

parsimonious long-term predictive model, used for one-day ahead

to one-year ahead, was shown to perform well across a number

of special events, with less than 20% error 90% of the time. We

illustrate here the performance on the case of a yearly event in

Figure 10.

(a) Offline prediction of crowding (green) at train station neighbor-
ing the event, at a 10 min resolution, compared to actual situation
(red), and typical day (black).

(b) Offline prediction of crowding (green) at the train station closest
to the event, at a 10 min resolution, compared to actual situation
(red), and typical day (black). Evening crowding is visible on the two
days.

Figure 10: Performance of the predictive model, able to cap-
ture spatial distinctions in rare temporal variations due to
recurrent events.

The model includes a hierarchy of calendar dependencies. The

first level includes weekday/weekend classes, the second level in-

cludes the day of week, and the third level includes whether the day

is a special event or not (National Day, New Year’s Eve, etc.). Ad-

ditive terms are then calibrated based on the full history, typically

involving multiple years of data, to learn level-specific harmonics,

considered as additive to the model from the previous level.

5.4 Data-driven response plans
Our agent-based implementation leads to a serial simulation of

several millions of passengers and trains across 5 lines at 5000x

speed sequentially. The system allows for meaningful explorations

of alternatives during incidents and events based on the data-driven

estimates of the current situation on the ground. Table 3 gives the
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accuracy for a 6 months period, in terms of the mean average

error (MAE), the mean relative error (MRE) and the Bhattacharyya

coefficients (BC) between the simulated and the smart card based

travel-times of the passengers.

Passenger Set MAE (min.) MRE (%) Avg. BC

All 4.9 18 0.93

Within one line 2.5 19 0.95

Table 3: Agent-based simulation average travel time error.
Simulated passengers travellingwithin a line are not subject
to uncertainty at a transfers, hence the higher accuracy.

During operations, the simulation - optimization engine evalu-

ates on the order of 1000 responses per incident, each being auto-

matically generated based on the incident properties and available

public transport resources. For simplicity, properties of the demand,

i.e. the time-varying structure of the origin-destination matrix and

the current station crowd densities, do not intervene in the a pri-
ori design of the response plans, but only in their evaluation via

simulation.

Figure 11: Incident between station B and C in both direc-
tions, from 8am to 8:10am.

For the incident illustrated in Figure 11 occurring during the

morning peak, with the dominant direction of traffic being towards

city center, the optimization engine proposes three diverse response

plans with varying train headway, and standard emergency bus

routes of varying headways, see Table 4. In this example, given the

heavy anisotropic demand and the localized spatio-temporal nature

of the incident, the optimizer improves the situation by increasing

the capacity towards city center.

Given the heavy demand, the emergency bus lines, even operat-

ing at a very low headway of 1 minute, are unable to accommodate

the entire passenger flow. Hence even for short incidents (10 min-

utes here) it is important to manage the post-incident effects, such

as by maintaining additional trains in service when the incident is

over. Plan 3 from Table 4 results in the best overall performance,

reducing large delays as well as overcrowding. This is done by

deploying two interleaving shuttle lines, one each from station C

and D to and from the city center.

In other less constrained settings, the FASTER system has been

able to produce non-standard response lines directly connecting

the incident neighborhood with clusters of intended commuters

destinations. We refer the interested reader to [38] for more details

on the model.

Plan 1 Plan 2 Plan 3

Train service C ↔ X

φ = 4

C ↔ X

φ = 4

C ↔ X

φ = 4

D ↔ X

φ = 8

# additional trains 0 0 10

Shuttle bus service B ↔ C

φ = 2

B ↔ C

φ = 1

B ↔ C

φ = 2

Average delay (min) 7 7 7

Delay ≥ 20 min (#) 300 280 200

Overcrowding (min) 20 19 10

Table 4: 3 plans produced by the simulation optimization en-
gine. Headway is denoted by the symbol φ.

6 CONCLUSIONS AND OPEN PROBLEMS
In the context of the FASTER project, a number of important, yet

often overlooked, challenges were encountered. Here we provide

a succinct list of such problem statements, which, if addressed,

will help facilitate more wide-spread adoption of agent-based tech-

niques in large-scale operational systems.

Non-independent statistics. Many sub-systems in applications

consume data produced by other sub-systems. This results in a

deviation from traditional assumptions of statistical theory for the

existence and convergence of estimators. A related property of avail-

able data is that the statistics of input data are often non-stationary.

Real-world applications would benefit from more principled re-

search on such statistical challenges.

Real-time dominance. One consequence of real-time independent

sub-system interactions is that there is no opportunity to formally

correct or update an estimate, since it is consumed as soon as it

is produced. While multiple estimators differing by an allowed la-

tency can be implemented, their significance decreases with the

latency to the fastest estimator. Furthermore, high-latency estima-

tors have to be either consistent with low-latency estimators, or

in disagreement with transparent and sufficient evidence. In that

context, efficient simulation - optimization of agent-based systems

in real-time settings is of great value in the emerging area of digital

twins and their use in operational control.

Scarcity of significant events. A significant issue arising in large-

scale real-world applications is that the situations of highest interest

to users concern relatively rare circumstances. In contrast, while

data-driven methods are obviously hindered by data scarcity, agent-

based techniques have been considered relatively agnostic to the

frequency of occurrence of the scenario considered. A significant

gap remains between extreme data-driven methods performing

very well in ideal conditions, and principled methods with stable

average performance.
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