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ABSTRACT

Despite the prevalence of voting systems in the real world there is
no consensus among researchers of how people vote strategically,
even in simple voting settings. This paper addresses this gap by com-
paring different approaches that have been used to model strategic
voting, including expected utility maximization, heuristic decision-
making, and bounded rationality models. The models are applied
to data collected from hundreds of people in controlled voting ex-
periments, where people vote after observing non-binding poll
information. We introduce a new voting model, the Attainability-
Utility (AU) heuristic, which weighs the popularity of a candidate
according to the poll, with the utility of the candidate to the voter.
We argue that the AU model is cognitively plausible, and show that
it is able to predict people’s voting behavior significantly better
than other models from the literature. It was almost at par with (and
sometimes better than) a machine learning algorithm that uses sub-
stantially more information. Our results provide new insights into
the strategic considerations of voters, that undermine the prevalent
assumptions of much theoretical work in social choice.
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1 INTRODUCTION

Voting is a commonplace tool for group decision making, used in
political elections, in professional committees, in local assemblies,
and also in online platforms such as Doodle.com and robovote.org.
While there is general consensus that people vote strategically,
understanding individual voting behavior is a challenging open
question. Due to inherent uncertainty about other people’s votes,
the strategies that people apply are far from obvious.

Researchers in economics, political science, and more recently in
Al and computational social choice, have suggested various models
to represent and reason about voters’ decision making under un-
certainty. These include models of utility maximization, heuristic,
and bounded rational (see below). In a recent paper, Meir, Lev and
Rosenschein [19] suggested different criteria for evaluating models
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of strategic voting, that included “theoretic criteria” (such as gener-
ality and discriminative power among actions), “behavioral criteria”
(such as cognitive plausibility), and “scientific criteria” (such as
alignment with empirical data). Theoretical analysis of voting mod-
els are abundant (see Sec. 2.1), and in this work we focus on the
latter two kinds of criteria.

Research Goal. The goal of the paper is to study strategic choices
of human voters, and in particular to test how their individual
behavior fits different types of models. We use real world data
from controlled experiments in which human voters either faced a
non-binding poll or played a strategic game versus other people.

We follow Wright and Leyton-Brown [33], who separate col-
lected data from strategic games into training and test data, and
compared the predictive power of strategic decision-making models
based on their predictive performance on the test data. If a certain
model predicts well the behavior of many voters, this is an im-
portant indication for the plausibility of this model.Prediction is a
standard evaluation metric in behavioral economics [8, 12]. Thus it
should be considered in addition to its theoretical properties, cogni-
tive limitations of the voters and so on. By further analyzing which
models succeed and when they fail, we hope to better understand
the considerations that guide people’s strategic choices.

1.1 Theoretical Models

We briefly describe common approaches for modeling strategic
voting behavior in the theoretical literature.

Expected utility maximization. A rational voter maximizes her
expected utility with respect to a probability distribution over the
actions of the other voters. The distribution itself may be given
exogenously (e.g., by a poll), or derived via equilibrium analysis
from the uncertain preferences of the other voters. Such models
were developed mainly in the economics literature and are some-
times known as the “calculus of voting” [20, 21, 27]. A somewhat
different model was suggested by Bowman et al. [6] for voting on
multiple binary issues. The model explicitly estimates the “attain-
ability” of each issue (the probability it gets a majority of the votes),
and uses this estimate to calculate the expected utility of every
possible combinatorial vote.

Heuristic decision-making. A voter uses some function that
maps any given situation to an action. The voter is not assumed to
be rational, and may not even have a cardinal utility measure or an
explicit probabilistic representation of the different outcomes. For
example, a voter following the k-pragmatist heuristics behaves as
if only the k leading candidates are participating [26].

Bounded rationality. A voter makes a rational strategic decision
based on a subjective, rather than accurate, belief. These models
present a mid-point between utility maximization and heuristics.
One example of such a model is local dominance [19], which assumes
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that each voter derives a set of possible outcomes based on a poll,
and then selects a non-dominated action within these outcomes.
Similar probability-free approaches were followed in [11, 22].

All the models we work with assume that individual voters may
behave differently, but each one follows a deterministic, consistent
voting strategy. They are unable to perfectly explain or predict votes
that have a random component or where voter behavior changes
over time. Therefore, if the models can still explain the data, it
would mean that noise and learning only play a secondary role in
people’s voting decisions. We go back to this point when analyzing
the results.

Other models, such as quantal-response equilibrium (QRE) [16,
17], sampling equilibrium [24] or trembling hand equilibrium [23]
assume voters act stochastically. Evaluation of such models is much
easier on the aggregate rather than individual level (see below), and
therefore they are outside the scope of the current paper.

1.2 Previous Empirical Work

While the literature is abundant with voting experiments, the vast
majority analyze voter behavior in political or organizational elec-
tions [1, 5, 13, 25, 31]. These studies test how well historic election
results fit various game-theoretic models, without any considera-
tion of individual votes. Further, each voter makes a single strategic
decision, and her true preferences are typically unknown.

Explaining aggregate voting behavior. Some controlled experi-
ments track voters’ decisions in different situations (e.g., [14, 30, 32]).
Most of these experiments included groups of 12-70 subjects who
played a repeated strategic voting game, knowing the preferences of
others but not how they are going to vote. Yet these papers focused
on how well aggregate behavior fits the equilibrium models. For
example, in the QRE model used in Tyszler and Schram [30], voters
are assumed to vote for low utility candidates with some probabil-
ity, which is determined by a parameter of the model. A model is
considered to be an adequate explanation for a dataset if there are
some parameters that result in a similar distribution of votes (e.g.,
a similar rate of strategic compromise) to the one observed in the
data. However, such models are not designed to track individual
behavior and whether it is consistent. For example, a 20% rate of
strategic compromise could result either from a small group that is
consistently strategic, from all voters being occasionally strategic,
or even from some random component in the behavior.

Explaining individual voting behavior. Blaise et al. compare
individual behavior to rational models, inferring voters’ parameters
from verbal surveys [5] or from carefully designing the conditions
of a controlled experiment [4]. However, they focused on voting
with two candidates, where the only strategic decision is whether
to vote or abstain.

We emphasize that all of the above work tested how well empir-
ical data fits the theory in retrospect, without dividing the data into
separate training and test sets. This approach may cause overfitting,
especially in complex models with many parameters.

Tal et al. [28] study voter behavior under poll information, but
did not compare to any existing decision model, neither suggested
a new one. They demonstrated empirically that there are voters
exhibiting different behaviors: in particular, truthful voters, voters
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who compromise strategically, and voters that tend to vote for
the poll leader (“leader biased”). These findings were part of our
inspiration to focus on understanding individual votes.

Our contributions and results are as follows:

(1) We provide a new voting model called the Attainability-
Utility (AU) heuristic. The model is based on the model sug-
gested by Bowman et al. [6] which considers the attainability
of a binary issue (the probability it is accepted in referen-
dum) when computing the expected benefit of a vote. The
AU heuristic extends this model in two ways, first by consid-
ering multi-candidate voting settings, second by including
a parameter that measures the tradeoff between how much
the voter values candidates’ attainability given the poll in-
formation versus their utility (if selected).

We collect the strategic decisions of 520 people in voting
experiments with three candidates, where participants each
play up to 36 rounds, each round with different poll infor-
mation and preferences (more than 14,000 decisions in total).
All of the data and code will become available for the public
using repositories such as votelib.org.

Using behavioral data from our experiments as well as from
Tal et al. [28] and Tyszler and Schram [30], we compare
the performance of the AU approach to that of theoretical
decision models from the literature and to benchmarks set
by off-the-shelf machine learning algorithms.

Our results show that the AU model outperforms all other
voting models, some of them by a large margin, and gets
close to the benchmark set by machine learning algorithms.
In particular, AU is able to capture much of the behaviors
described by the models in Sec. 2.1. Most errors in the predic-
tion of the AU model can be attributed to participants who
played few number of rounds, demonstrated random behav-
ior, and/or changed their strategy during the experiment.
Our main insight from the success of the AU model is that
people independently evaluate each candidate and use simple
substitutes to probabilistic calculations. These findings are
in line with the more general research on decision making
under uncertainty, and at odds with the underlying assump-
tions of most models from the social choice literature.
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This is the first paper to provide an empirical evaluation of theo-
retical decision making models on individual voter behavior under
poll information, and the first to test the predictive performance of
any voting model in general. Understanding the strategic decisions
made by voters of different types, is crucial to the development,
analysis and application of voting rules in strategic environments,
and can inform the design of agents for making voting decisions
with other people [3, 34].

2 PRELIMINARIES

We consider a single voter who faces a decision, to vote for one of
several candidates C. We use the Plurality rule which collects the to-
tal number of votes for each candidate, and returns the candidate(s)
with the largest number of votes.

The voter has a cardinal utility function u : C — R, where u(c)
is the utility of the voter if candidate ¢ wins (different utility for
each candidate). In case of a tie with multiple winners W C C, the
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Figure 1: Left: Poll s from Example 2.1. The utility of each
candidate to the voter appears in brackets, and the height
of the column is the number of votes. Right: The candidate
selected by each decision model.

utility to the voter is u(W) = ﬁ > cew u(c). Denote by U(C) the
set of all utility functions over the set C.

Prior to her vote, the voter is faced with non-binding poll infor-
mation that reflects the popularity of each candidate. Formally, the
pollis a vector s € N, where s(c) is the number of voters expected
to vote for c. Denote n = ) .¢c s(c).

We index the candidates q1, g2, . . . from the perspective of the
voter, where q; is the most preferred, then gz, and so on.

A decision model (for Plurality with m candidates and a poll) is
a function M : U(C) x N™ — C. Here, M(u, s) € C is the vote
of a voter with utility function u, using decision model M given
a poll s. We use a superscript for the name of the decision model,
and subscripts to denote voter-specific parameters, if relevant. For
example, a voter who is always truthful regardless of the poll follows
the decision model MUt (y, 5) := arg max, o u(c), which is g;.

To illustrate we introduce a running example with 5 candidates,
and specify which candidate the voter will choose under every
decision model.

Example 2.1. The set of candidates is C = {qy, ..., g5}, and the
voter’s utility is described by the vector u = (40, 30, 20, 10, 0) (prefer-

ences are lexicographic). Poll scores are given by s = (25, 70, 20, 100, 80),

where n = 295 voters. Figure 1 (left) shows the poll scores of all
candidates graphically.

2.1 Decision models from the literature

We describe decision-making models of voting behavior from the
literature. Figure 1 (right) shows the result of using each of the
decision models, applied to the voting decision in Example 2.1.

k-pragmatist (KP): Let B (s) contain the k candidates with high-
est score in s, Reijngoud and Endriss [26] formalized the k-pragmatist
heuristic (following early work such as [7] which selects the most
preferred candidate among k candidates with highest score in By (s):
M]}ip(u, s) := argmax u(c).
c€B(s)
We allow k to be an individual parameter that differs from voter
to voter. When k = 1 the rule always selects the leader of the poll,
and for k = m, MK? = MT74th In Figure 1 for k = 2 the voter will
vote for the candidate that is most preferred among the two leading
candidates (g4 and gs). For k = 4, the voter considers all candidates
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except g3 as possible winners, and will vote for her most preferred
candidate q;.

Calculus of Voting (CV): The calculus of voting suggests that a
rational voter always votes in a way that maximizes her expected
utility [21, 27]. The complications of the model usually arise from
the fact that the voter is assumed to know the other voters’ pref-
erences, and uses an equilibrium model to predict their votes. We
consider a simpler version where the distribution of votes is given
exogenously [20], as is the case with poll information.

We denote by D(s) the distribution on the actual candidate
scores, conditional on poll scores s. We say a voter is pivotal for
candidate y over x, if voting for y makes y a joint or unique winner,
whereas any other vote results in the victory of candidate x. Denote
by P, p(x,y) the probability that the voter is pivotal for y over x
given the distribution over candidate scores D induced by poll s. A
voter following the calculus of voting (CV) model maximizes her
expected utility:

M%’(u, §) := arg max Z Ps p(c’, c)(ulc) — u(c")).
ceC  rze

To make the model concrete, we determine a specific distribution
D in a way that depends on the score of the candidates in the poll
s. We use Ps, 5 as a shorthand for Py 5 when D(s) is a multinomial
distribution with 5 voters, and the probability for sampling a vote
for each candidate c is s(c)/n. When n = n (i.e., the true number
of voters), this means that Mgv selects the candidate that exactly
maximizes the voter’s expected utility given the true distribution
over candidate scores. However, the Mgv decision model allows for
a more flexible, bounded-rational decision: when 1 < n the voter
overestimates her true pivot probability, and thus her influence on
the outcome, whereas > n means that she underestimates her
influence. In Figure 1 when 1 = 10000 the resulting vote is g4 and
when 5 = 8 the resulting vote is g2.

Local Dominance (LD): Under the Local dominance model [18,
19], a bounded-rational voter has an ‘uncertainty parameter’ r. Meir
et al. [19] characterize the set of undominated candidates U(s, u, r)
in poll s for a voter with utility u and parameter r:

e The set of Possible Winners PW includes all candidates
whose score in s is at least max.cc s(c) — 2r - n.

o If [PW| > 2, then the undominated candidates are all candi-
dates in PW except the least preferred.

e If |[PW| = 1, then all candidates are undominated.

The decision model of such a voter selects the most preferred

undominated candidate, if more than one exists:
M';D(u,s) = argmax u(c).
ceU(s,u,r)

In Figure 1 we see that for r = 0.01 the voter believes that the
poll is very accurate (the score of each candidate may change by
at most r - n < 3 votes), and there is only one possible winner
(PW = {q4}). In this case, all candidates are undominated and the
voter remains truthful (M('SPOI(u, s) = q1). When r = 0.08, the voter
believes that the poll is not very accurate and PW = {q2,q4,¢qs5}. In
such a case both q2, g4 are undominated and M(%Pog(u, s) = qo.

Local-Dominance with Leader bias (LDLB): Inspired by the
findings of Tal et al. [28] on “leader bias”, we modify the local
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Figure 2: The attainability Az for different values of § in a
poll with 3 candidates.

dominance model to allow such behavior: when the voter is certain
that there is only one possible winner (|JPW| = 1), she simply votes
for the leader (instead of truthfully), i.e., M:P8(u, s) := M:P(u, s),
and otherwise MEP'B(u,s) := PW. In Figure 1 we see that this
model acts similarly to the LD model. However when there is only
one possible winner, a voter following the LDLB model will vote
for the leader (d in this case).

Attainability (AT): Bowman et al. [6] provide a model for voting
over multiple binary issues. The attainability of issue j is a measure
of certainty that the eventual number of votes cast for j will reach
the majority threshold required for approval. It is defined as

1 1

Aﬁ(f, s) = %arctan(ﬁ (s - 5)) + 5

where s; is the expected number of votes in favor of issue j, and
is a voter-specific parameter.

The “candidates” considered in Bowman et al.[6] are all possible
subsets of issues, i.e., C = 211>k} wwhere w.l.o.g. the voter gains
some nonnegative utility u; from each issue j being approved. Then
the utility of a candidate ¢ C {1, ..., k} is the sum of utilities of all
issues in ¢, and its attainability A ¥ (¢, s) is defined as the product of
Aﬂ(j, s)foralljec,and 1 — Aﬁ(j, s) for all j ¢ c. The voter selects
the candidate ¢ that maximizes the product of its attainability and
utility (Ag(c, s) - u(c)).

To adapt the decision model to Plurality voting with m candi-

dates, we re-define the attainability function as Ag(c, s) := % arctan(f-

(s(c) - %)) + %, and define the attainability choice function (AT) as

M?;T(u,s) = argmax Ag(c, s) - u(c).
ceC

Figure 2 shows how f affects the attainability score. Candidates
that are tied have the same attainability. As shown by the figure,
high f means that a small advantage in score translates to a large
gap in attainability.

3 THE ATTAINABILITY-UTILITY (AU)
MODEL

Bowman et al’s AT model allows voters some flexibility in how they
estimate attainability using the f parameter. However it assumes
the same model for each voter. We extend the attainability model
by an additional parameter that lets each voter choose a different
tradeoff between the attainability and utility of candidates. To this
end we define the Attainability-Utility (AU) decision rule as

MY o= argma (e + ) - (Ag(e.)27).
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Figure 3: The AU scores of all five candidates from Exam-
ple 2.1 for § = 5 and different values of «.

where ¢ is a small constant added to handle 0 utility (¢ can also be
used as a parameter to control the utility range).

Intuitively, the @ parameter trades-off the relative importance of
attainability and utility, where @ = 0 means the voter always selects
the candidate with maximal score, and &« = 2 means the voter is
always truthful. Figure 3 shows how the relative score (and the
selected candidate) changes as we increase «. When « is small, AU
will prefer g4 as it has more votes (higher attainability) and when
it is large the AU will prefer g as it got higher utility. Note that we
get the AT model as a special case when setting @ = 1, = 0. We
further discuss the meaning of these parameters in Sec. 6.1.

4 METHODOLOGY

Datasets. We evaluated the different models described above on
several datasets as follows.

D32 D36 TMG15  TS16
# participants 187 335 437 144
# voters in poll 1000 1000 8 t0 10000 12
# rounds upto32 wupto36 upto20 40
# instances 4886 9478 3011 5760

Three of the datasets (D32, D36 and TMG15) were collected using
the framework of Tal et al. [28], in which voters played multiple
one-shot voting rounds. A snapshot of the GUI used for this setting
is shown in Figure 4.

Each round included a single human participant, that is auto-
matically assigned preferences over candidates, observes a noisy
“poll” with the expected votes of the entire population (e.g., 1000
voters), and then votes once.

The outcome of the round was generated by sampling each of
the other votes i.i.d using the poll scores as the distribution (e.g. in
Fig. 4 we sample 102 “voters", each of which votes Blue w.p. %).
Participants were only informed that the poll was inaccurate, but
not on the exact distribution. The final score of each candidate and
the outcome were shown in the end of each round. In all datasets
the reward for participants was determined by the position of the
winning candidate in their preferences, using the average reward if
there was more than one winning candidate.
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Figure 4: A snapshot from the experiment (taken from Tal
et al. [28]). Blue is the most preferred candidate q;, thus if
Blue wins, the participant gets 20 coins (10 cents). The bars
show the poll scores s, s2, 53.

We used this framework to generate datasets D32 and D36, pre-
senting the participants with a different poll each time. All par-
ticipants were recruited via the Amazon Mechanical Turk plat-
form.The reward was R; for each round where q; was elected,
where R; > Ry > Rs. For most of the participants, we set Ry =
10¢, Ry = 5¢, R3 = 0¢. For some participants we varied the rewards.

The dataset TS16 was generated by Tyzsler and Schram [30].
Here, every voting round was a 12-player complete information
game with dictated preferences over 3 candidates, and the outcome
was the result of all actual votes rather than artificial samples. We
used the other 11 voters’ true top preferences (which are visible) as
a true “poll" input to the different decision models.

In all datasets, only when q; is ranked last at the poll, the voter
may have a monetary incentive to vote for g2. There is never a
monetary incentive to vote for gs.

Random Forest (RF) Benchmark. We applied off-the-shelf ma-
chine learning algorithm to build predictive models of voting behav-
ior. We used two types of features: those relating to the particular
voting round (examples: the gap s; — s2 between the two leaders of
the poll, the number of votes s; in the poll, the winning candidate in
the poll); and those aggregating the behavior of the voter (examples:
the frequency that the voter chose g1, g2 and g3 in the training set,
the frequency of a strategic compromise, and the number of domi-
nated actions). Using these features, we compared the performance
of black-box prediction models on the D32 dataset.

We compared Random Forest, Neural Network, AdaBoost al-
gorithms, CART (Decision Tree), Support Vector Machines and
Logistics Regression.! The best performance was exhibited by a
random forest ensemble model using 100 weak trees as subclassi-
fiers, and a Gini splitting criterion. We thus used this algorithm
(henceforth, RF) as our benchmark.

Evaluation. We used a ten-fold cross validation method. We di-
vided the data of each voter into 10 folds (when possible). KP has
only three parameter values. For the other models, we discretized
the parameter space.

For each of the decision models KP, CV, AT, LD, LDLB and AU,
we used a basic fitting procedure to train each model separately
for each voter: 9 folds of data for this voter were used to fit the

!We used the sklearn ensemble python package for this purpose [9]. The full list
of features is available at https://github.com/AdamLauz/OneShotVoting/blob/master/
Documentation/One_Shot_ML_features_description.pdf.
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Figure 5: Prediction error for each of the decision models on
all four datasets. The horizontal orange lines mark the per-
formance of the RF benchmark when trained on the entire
data (solid) or restricted to individual data (dotted).

parameters of the model, and applied the obtained model on the
tenth fold to predict the voter’s actions. Since each voter has only
few samples and the parameter space of each decision model is
small, we used a brute-force search to find the best parameters for
each model. For example, for the LD model, we found for each voter
the parameter r such that ML agrees with the largest number of
rounds in the training set.

The prediction error of a model is the number of wrong predic-
tions on the test set, divided by the total number of rounds.

5 RESULTS AND ANALYSIS

Figure 5 shows the performance of all decision models on the
datasets. We report the prediction error of the models, adding error
bars of two standard deviations.

We can see that the AU model outperforms all other decision
models, with the LDLB model second, and the models that ignore
leader bias (CV, LD) far behind. These results are statistically sig-
nificant in all datasets (p < 0.05) except in TS16, where there was
no significant difference between the performance of AU and AT.

5.1 AU performance vs. the benchmark

Random Forest (RF) uses many features and can create an arbitrarily
complicated model, which learns from the entire population of
hundreds of voters rather than just from several individual samples.
In addition, it uses temporal features and can thus in principle
predict even behavior that changes over time. This is why we use
RF as a benchmark that is supposed to be hard to beat. Even so, RF
does not perform uniformly better than the behavioral models.

Figure 6 breaks down the error of the AU model by individual
voters (we refer to the different colors in the next subsection). It
demonstrates visually that AU beats RF for many individual voters
(about a 100 out of 335), and that the advantage of RF is mainly due
to a group of voters for which AU seems to perform substantially
worse (those below the dashed line). Indeed it is possible that the AU
model is appropriate for most voters but not for all (see discussion
in Sec. 6.2).
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Figure 6: Prediction error of AU versus RF for each voter.
Only voters with at least 16 rounds are shown. The predic-
tion of RF for voters below the dashed line was better by at
least 10 percentage point.

Another factor is the data used for learning: while AU and all
other decision models fit their parameters for a particular voter
solely based on her own behavior in other rounds, the black-box
algorithms had access to votes of other voters as well. When re-
stricted to learn only from the samples that belong to the same
individual, the error of RF leaped dramatically (see dotted lines in
Fig. 5). This indicates that information about the entire population
could be exploited to further improve the behavioral models. In
addition, the performance of RF (as well as the other black-box
algorithms we tried) reduces more rapidly when we learn from a
small or non-representative sample.

5.2 Where are the errors?

We analyze the factors that contributed most to prediction error,
with a focus on the AU model.

Some voters are harder to predict. We say that a candidate is
dominated (in a particular round) if there is another candidate that is
associated with a higher score in the poll and is also more preferred
by the voter. E.g. g3 in Example 2.1 is dominated by g2. We count
the number of dominated actions each voter performed throughout
the experiment. Note that a dominated action is never predicted by
any of the decision models we considered. It is hard to think of any
rational justification for voting to a dominated candidate. We thus
conjecture that dominated actions are indication for some random
component in the behavior of the voter.

We classified voters by the number of times they used a domi-
nated action. In Fig. 6 we can see that the number of dominated
actions substantially affects prediction accuracy not just for AU
but also for the benchmark RF (and in fact for all models). The
prediction error of AU for voters who completely avoid dominated
actions is less than 18%, and increases to almost 50% for voters with
more than 2 dominated actions, indicating that their behavior is al-
most completely unpredictable. We emphasize that every additional
dominated action results in more than one (about 1.6-3) predictions
errors. This, together with the low performance of RF, corroborates
our conjecture that dominated actions are merely an indication for
noisy or random voting patterns.
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Figure 7: A histogram of all D36 voters by their AU predic-
tion error. We colored groups of voters for which certain con-
ditions apply.
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Figure 8: Prediction error as a function of the number of
rounds in D36.

Another factor that substantially affects prediction error is the
number of rounds that a voter has played, where prediction error
for voters who completed fewer rounds is much higher. See Fig. 8
which lists error as a function of number of rounds per voter. A
likely explanation is that these voters are more prone to overfitting.

The histogram in Fig. 7 shows that for almost all voters where
AU had high error, the reason was random behavior (indicated by
dominated actions), or few rounds.

Behavior in some polls is hard to predict. The behavior in polls
that present the voter with an obvious dilemma (e.g., when her
favorite candidate is trailing behind) is naturally harder to predict.
In Table 1, we classified all polls into 6 poll types, based on the the
order of candidates’ popularity in the poll.

poll type D32 | D36 | TMGI15 | TS16
q1>q2>qs | 0.085 [ 0.113 | 0.076 | 0.047
q1>q3>qz | 0.089 [ 0.108 | 0.070 | 0.053
q2>q1>qs | 0.224 | 0.261 | 0.268 | 0.254
g3 > q1>qz | 0.202 [ 0.268 | 0.268 | 0.338
q2>q3>qz | 0.233 [ 0.250 | 0.258 | 0.29%
* q3>q2>q1 | 0363 | 0.403 | 0.419 | 0.470

Table 1: AU error for each poll type. The order reflects the
popularity of each candidate in the poll.
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Figure 9: AU and AU, accuracy in D32. AU, is identical to
AU, except that ¢ is used as another parameter.

In the scenario most difficult to predict (where s(g3) > s(gz2) >
s(q1), marked with =), the poll order is reversed to the preference
order of the candidates, and all three actions are frequently selected
by the voters. For this case the prediction error of the AU model
is above 35% (and remains high even if we focus on voters who
played all rounds and avoided dominated actions). The results of the
other models behaved similarly. Note that while in Fig. 5 prediction
accuracy varies considerably between datasets, this is explained by
the frequency of different poll types in each dataset (see Table 1).

We emphasize that in TS16, most of the rounds people played
as part of the majority group (see first two rows of Table 1), and
thus faced a trivial decision where all models predicted the same.
This could be the reason we did not obtain statistically significant
results on this dataset, and also explains the poor performance of
RF (which had few non-trivial rounds to learn from).

Negative reward is harder to predict. In D32, we varied the re-
ward Rs, to see the effect of positive/zero/negative reward (see
Fig. 9). Higher reward Rs results in higher accuracy (the only statis-
tically significant difference was between negative and zero reward,
as we only varied the reward for 25 participants).

A closer look revealed the reason for the excess failures: with a
negative reward, us+¢ is still negative, and thus the AU model would
never select g3. Perhaps surprisingly, participants do not care much
about R3 being negative. Adding ¢ as a third optimization parameter
that may get higher values (so that us + ¢ > 0) completely negates
that effect, as can be seen by the striped columns in Fig. 9. We also
varied the reward Rj to get convex and concave utility scales rather
than linear. While higher Rz does lead to more frequent votes to
q2, we did not observe a consistent effect on prediction error.

5.3 Subjective reporting by participants

From each participant in our experiment (datasets D32 and D36),
we asked to report their subjective answers about how well they
understood the instructions; which strategy they used in the study;
and whether they changed a strategy during the game.

Descriptions of strategies. Some of the participants described
strategies that are similar to the models we tested from the voting
literature. Some primary examples appear below.

e “Itried to vote for the person most likely to beat the candidate
that would give me no coins." Describes KP with k = 2.

o ‘Twvoted for either my first or second priority candidate. I was
more likely to vote for the one that appeared to have the highest
probability of winning." - Describe behavior similar to AT.
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o “My strategy was to mainly vote for who was leading except
when it was a close race and then I voted for who would earn
me the most points.” - describes LDLB with low r.

Interestingly, people did not adhere to their reported strategies in
all rounds, and often their behavior was predicted more accurately
by a different model than the one they verbally describe.

For example, some people who explicitly declared that they
would not vote for the least preferred candidate did in fact choose
this option. It is not clear whether this results from noisy behavior,
from changing the behavior over time, or from poor self-reflection.

Do voters use consistent strategies? Identifying individual changes
in strategy from the data is very difficult with only a handful of
samples per voter. However from the subjective self-reports, about
63% of those who responded in D36, answered that they did not
change their strategy, whereas only 18% did.?

There was a strong correlation between how well people under-
stood the instructions (by their self-report) and their consistency: in
D36, more than 80% of those who reported perfect understanding,
claimed they kept their strategy. Results in D32 were similar.

Recall the questions from the introduction about consistency nd
predictability. The level of (reported) consistency strongly affected
the empirical error: the average error of AU for consistent voters in
D36 was about 24% vs. 30% for inconsistent ones (and 22% vs. 34%
in D32). This can also be partly seen in Fig. 7, where voters who
reported strategy change (dotted blue) are responsible for slightly
more errors.

6 DISCUSSION

Regenwetter et al. [25] observe that “...individual choice research
finds actors to behave worse than normative theory requires, whereas
the sparse empirical research on social choice appears to suggest that
electorates may outperform normative expectations” However, most
research they refer to considered aggregated behavior, as discussed
in the early sections.

Our Attainability-Utility (AU) model explains well (and in par-
ticular much better than calculus of voting) the behavior of most
subjects in the data, except those with inherent inconsistencies
in their actions. This partly settles the discrepancy observed by
Regenwetter et al.: on the individual level, most voters follow AU
or other heuristics that do not maximize expected utility, just like
decision makers in other domains, even if on the aggregate level
the vote distribution can be explained by more rational theories
like calculus of voting [5, 14], or quantal response equilibrium [30].
Interestingly, quantal response can account for the frequency of
dominated actions at the aggregate level, even if it cannot predict
when a particular action will be dominated. We may therefore get a
more complete picture of voters’ behavior by combining individual
and aggregate analysis (see also future work below).

6.1 Is AU cognitively plausible?

There are two seemingly “irrational” components in the AU model
(both inherited from Bowman [6]), that become apparent when
we compare it to the “rational” Calculus of Voting method. The

2The others provided an answer that could not be easily classified, e.g. “It took me a
few rounds to get the hang of it”
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first is the fact that the voter asses the chances of each candidate
to win, rather than of each possible tie. The second is that this
chance is estimated using a somewhat arbitrary transformation
of the candidate’s score (the logit-shaped “attainability function”),
rather than by explicit probabilistic calculations.

Both observations are much less surprising when we recall Kah-
nemann and Tversky’s account of judgment under uncertainty [29]:
they explain that people often use simple substitutes for probabilis-
tic calculation, that require low cognitive effort. For example, rely
on how representative each event is (in our case, the score of each
candidate in the poll).? Future experiments can further test this
hypothesis by making candidates more prominent in other ways
than higher score (e.g., using graphic features), and see if voters’
behavior can still be explained when we translate this to greater
attainability. The extensive literature on the various heuristics peo-
ple use to evaluate likely outcomes (e.g. [2, 10]) can also be used to
develop better models of voting behavior.

It is worth mentioning that trying to use a simple substitute for
probabilistic calculations was the main motivation behind the Local
Dominance model [19], but Local Dominance (like the Calculus of
Voting) still focuses on ties. The fact that AU better explains the
behavior of most voters (and in particular that LD fails to predict
leader-biased actions) suggests that perhaps even LD is too cog-
nitively prohibiting. Indeed, except for KP (which is perhaps too
simple), AU is the cognitively easiest heuristic to apply, as it inde-
pendently evaluates each candidate. We note that the differences
in cognitive burden become even more accentuated in elections
with more candidates. We therefore expect the differences in per-
formance to become more significant as well, and are currently
collecting more data to test this hypothesis.

6.2 Are there voters of different types?

While AU had the best performance overall, there are many individ-
ual voters that are better predicted by one of the other models (not
necessarily the leading one). This can be seen in the bottom bar in
Figure 10 which shows the number of voters that were optimally
predicted by each model. In case of ties we ‘split’ the voter among
all leading models. To illustrate, although 129 voters were best pre-
dicted by the AU heuristic, almost as many (120 voters) were best
predicted by the KP heuristic.

At this point we face a dilemma when trying to explain the
reason that so many voters are better predicted by other models:
One hypothesis (H1) is that AU can in principle account for the
behavior of all voters, but is overfitting its parameters due to the
small dataset of each voter. An alternative hypothesis (H2) is that
there are indeed voters with different inherent behaviors that are
better captured by other models, such as LDLB, KP and so on.

Some evidence for H2 is in the self reports where participants
described distinct strategies. However, we believe there is stronger
evidence for H1: first, the self reports are often inconsistent with
the actual behavior, and AU in fact predicts well many of the voters
who described specific strategies. Also, AU can in principle explain
(for some parameter values) almost all voters in the data, but we
often fail to select the optimal parameters due to the small training

3We tried a variation of the AU model, where attainability was replaced with the actual
winning probability. This did not improve the performance of the model.
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Figure 10: The bottom bar shows, for each model, the num-
ber of participants in D32 and D36 for which this model
achieved the best accuracy (possibly tied with other models).
The top bar shows the same information, for the subset of

voters for which the best prediction error was at most 0.2.

sample so other models have fewer prediction errors. This can
be seen in Fig. 8 where AU improves faster as voters have more
samples to train on.Lastly, the advantage of AU becomes more clear
once we focus on voters with low error (top bar in Fig. 10). These
are the voters for which the selected model is more meaningful.

To better answer this question, richer datasets that better distinct
between decision models should be generated.

6.3 Discussion and future work

Finding a model that perfectly explains the behavior of all voters
is probably impossible. Yet, our AU model does well both on the
“behavioral” and on the “scientific” criteria presented in [19]: It is
a fairly simple and cognitively plausible model, that captures the
behavior of most voters well enough to predict their individual
actions in various situations, and even to compete with machine-
learning algorithms that use hundreds of features from the entire
population. This model trades-off the popularity of a candidate (as
a proxy for its winning chances) and its utility to the voter.

Future voting models should be extended to allow behavior that
changes over time in some predictable way. More importantly,
deterministic decision models should be combined with stochastic
ones like quantal response and trembling hand perfection [17, 23] to
explain both consistent individual choices and random departures
from those choices. New evaluation methods are needed for these
combined aggregate and individual choices.

Our findings can inform the development new and better models
for strategic voting, much like the PrefLib project [15] is contribut-
ing to the study of preference structure, as well as to inform the
design of agents for making voting decisions with other people,
which is a growing area of research [3, 34].

Most of the decision models we used, including the new AU
heuristic, naturally extend to more candidates and other voting
rules. We intend to run experiments in more diverse settings (e.g.
more than 3 candidates). Those experiments can expose behaviors
that do not exist in the current data, can help differentiate between
the decision models, and serve as a benchmark for the development
of new models.
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