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ABSTRACT
We present a new interpretation of the traditional computational

social choice framework, where what are traditionally the candi-

dates are construed as the agents. The particular implementation

in mind is the proposed system for determining the medal winners

for sports climbing in the 2020 Olympic games. We consider the

issues of ties and of potential manipulation with respect to this

interpretation. Simulation results suggest that for the proposed

system ties are unlikely to be a problem, but that there is at least

potential for manipulation, of a novel type. We formalise this con-

ception of manipulation axiomatically. The strongest axioms lead

to an impossibility along the lines of Arrow’s impossibility, while a

small weakening leads to a possibility. We also provide a hardness

result concerning the determination of possible manipulation.
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1 INTRODUCTION
The 2020 Olympic Games in Tokyo will inaugurate ten new gold

medals; one male and one female in each of five new events: karate,

skateboarding, surfing, baseball and sports climbing. Of these, sports

climbing did not exist in a unique competition format before its in-

troduction as anOlympic event. Instead there are three types of com-

petitive climbing: bouldering, lead-climbing and speed-climbing.

Each requires different skills and measures the performance of

athletes using different methods. Thus sports climbing is to be a

composite event, similar to the pentathlon, however the novel event

will have its own novel system for determining the medal winners.

For Tokyo 2020 the International Federation of Sports Climb-

ing (IFSC) has devised a combined format for sports climbing [15].

Twenty athletes—each country can have up to two representatives—

will be involved in the main event. A qualification round reduces

this to six, who then compete in a final round to determine the

medal winners. Both rounds proceed in the same manner: the ath-

letes compete in all three disciplines, producing three linear orders

over the athletes. Each athlete is assigned a score corresponding

to the product of their rank in each discipline, where the rank of

an athlete is the number of other athletes that defeat her plus one.

The products are used to determine a final, overall ranking: athletes
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with lower product scores are ranked better than those with higher.

If two athletes receive the same score ties are broken in favour of

the athlete that performs better in more disciplines.

Unfortunately, the combined Olympic format may lead to tied

situations if more than two athletes have the same product score

and the pairwise comparisons form a cycle. Ties are problematic in

both rounds of the competition: in the final round, it is desirable

to have a single gold winner; in the qualifying round, ties may

necessitate an extra method to determine which athletes progress.

An example demonstrates the problem. The following table shows

potential ranks of seven of the athletes and bounds on the ranks of

the other thirteen athletes after the qualification round.

Ranking in discipline

Athlete Speed Bouldering Lead Product

a 3 3 6 54

b 1 5 12 60

c 4 15 1 60

d 15 1 4 60

e 2 10 3 60

f 5 6 2 60

д 6 2 5 60

others ≥ 7 ≥ 4 ≥ 7 ≥ 196

Clearly a progresses to the final round and none of the unnamed

athletes progress, thus one of the athletes b–д must be eliminated.

We here display a directed graph over these athletes such that

arcs give the pairwise comparisons, e.g. b ranks

better than c in speed and bouldering, so we

draw an arrow from b to c . Amongst the six tied

athletes there is no Condorcet loser—no athlete

defeated by all the others. So it is not immedi-

ately obvious who should be eliminated.

b

c

d

e

f

д

We continue developing our example to demonstrate another po-

tential problem with the combined Olympic format: it may prompt

deliberate bad performances. Suppose that b is eliminated.
1
The

final round can be predicted by the performances in the qualifying

round, giving the following ranks and products.

Ranking in discipline

Athlete Speed Bouldering Lead Product

a 2 3 6 36

c 3 6 1 18

d 6 1 4 24

e 1 5 3 15

f 4 4 2 32

д 5 2 5 50

1
The IFSC uses a “seeding list” to break ties that are not resolvable by pairwise

comparisons. Such a seeding list is, in effect, an external linear order tiebreaker. For

the final round the ranking of the qualification round is used as a seeding list; for the

qualification round a seeding list based on the prior qualification system is used [22].
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Suppose that a and c have the same nationality. Athlete a is not

predicted towin amedal, while c is on course for the silver. However,
if a deliberately performs worse than c in the speed competition

and the other ranks are as predicted, c will be the unique gold

medal winner with a product score of 12.
2
National loyalty may

lead a tomanipulate in this manner, spoiling e’s efforts which would
otherwise procure a gold medal.

We have seen two potential problems with the proposed compe-

tition format for climbing: firstly ties, and secondly a phenomenon

that we refer to as manipulation. The rest of the paper further

explores these two issues. In Section 2 we define our framework,

including formal definitions of manipulation. Section 3 is divided

into three subsections in which we present our main results. Our

simulation results in the first subsection show that the probability of

ties under the proposed method is low, but there is a high potential

for manipulation. In the second subsection, we present a hardness

result concerning determining one of the types of manipulation,

however this only applies asymptotically as the number of athletes

and disciplines grows, thus is not applicable to the practical case of

sports climbing at the Olympics. We consider the theoretical possi-

bility of methods that do not allow for manipulation in the third

subsection. We show that it is impossible to completely rule out

manipulation, but we give a possibility for a plausible weakening.

Section 4 provides a summary and further discussion; we discuss

our framework’s position with respect to other literature, possible

extensions and other further work, and the relevance of our results

to the climbing competition at the 2020 Olympics.

2 DEFINITIONS
Denote byA = {a,b,c, . . . } the set of athletes and by N = {1, . . . ,n}
the set of disciplines. We suppose thatm ≥ 3 and n ≥ 2. Denote

by L the set of linear orders and byW the set of total preorders

on A. We use ⪰ for a total preorder over the athletes, with ≻ the

asymmetric part. Each athlete competes in each discipline i ∈ N ,

resulting in n linear orders ≻i over A. A profile summarising the re-

sults for each discipline is some (≻1, . . . ,≻n ) = ≻ ∈ L
N
. A ranking

function f takes a profile and produces a total preorder of athletes:

f : LN → W . For an ordering ⪰ over competitors, the rank of

a ∈ A is r⪰ (a) = |{x ∈ A : x ≻ a}| + 1. To simplify notation, for a

discipline i ∈ N we write ri for r⪰i .
3
We refer to athletes ranked

first in the output aswinners. Denote the distinct pairs of athletes by

D = {(x ,y) | x ,y ∈ A,x , y}. Given a profile ≻, define ct≻ : D → Z
by ct≻ (x ,y) = ��{i ∈ N | ri (x ) < ri (y)}�� − ��{i ∈ N | ri (y) < ri (x )}��.
For an arbitrary profile ≻ the weak majority relation T≻ ⊆ A ×A is

defined by xT≻y iff ct≻ (x ,y) ≥ 0. This is complete regardless of the

parity of |A|, but may not be transitive; for a binary relation R we

writeR+ for the transitive closure ofR. We call the proposed ranking

function inverse-Borda-Nash
4
, denoted by bn : LN →W . Write

2
This would be feasible in practice. The speed-climbing final proceeds as a kind of

knockout tournament. Under the assumption that a defeats д and that c defeats f in

the quarter finals, a will face c in the semifinals; if a deliberately loses then c will be

guaranteed to be ranked at second or better at speed-climbing [15].

3
Note that ≻i inverses the natural ordering on ranks: for all x, y ∈ A and i ∈ N ,

x ≻i y iff ri (x ) < ri (y ); and that the output can contain ties, but if two competitors

are ranked first, no competitor is ranked second.

4
Our nomenclature invokes Borda scores and the Nash product. The Nash product is

sometimes described as a compromise between the utility maximisation of additive

methods and the maximin of egalitarian methods. This is not the case for the proposed

prodN (x ) =
∏

i ∈N ri (x ), when N is clear from context we will

leave out this subscript. Define the binary relationQ ⊆ A×A by xQy
iff (prod(x ) < prod(y) or (prod(x ) = prod(y) and xT≻y)) . Define
bn(≻) = Q+; because Q is complete this is a total preorder.

2.1 Basic desiderata
An athlete x ∈ A clearly beats y ∈ A in ≻ if for all i ∈ N , x ≻i y.
We say f satisfies the clear winner condition if whenever x clearly

beats y in ≻, then for ⪰ = f (≻) it is the case that x ≻ y. We say f is

neutral if for any permutation σ : A→ A, given ≻ and ≻′ such that

for all a,b ∈ A, i ∈ N a ≻i b ⇔ a ≻′i b, then af (≻)b ⇔ af (≻′)b.
Our last basic desideratum limits how much a single discipline

determines the winner. The gold is determined by i ∈ N if, for any

profile ≻, ri (x ) = 1 implies r⪰ (x ) = 1, where ⪰ = f (≻). We say f
is non-determined if the gold is not determined by any i ∈ N .

5

2.2 Formal definitions of manipulation
Manipulation in social choice theory traditionally involves insin-

cere representation of preference [11, 27], and allows for any pos-

sible change to one of the orderings in the profile. Our situation

is slightly different: a potential manipulator has a position within

each ordering and can manipulate, individually, by changing her

position in multiple orderings; and she is restricted in the type of

change she can make to each ordering; specifically, she can only

make her own ranking worse: an athlete cannot perform better

than her best. Ruling out purely individual manipulation amounts

to a version of monotonicity that is satisfied by Inverse-Borda-Nash.

However, an athlete may be able to altruistically manipulate for a

teammate—in particular, this may be possible without worsening

their own output ranking.

Definition 2.1 (Non-sacrificial manipulation). Take a ranking

function f . Let f (≻) = ⪰ and f (≻′) = ⪰′, and a,b ∈ A. Athlete a
can manipulate without sacrifice, for athlete b, from the profile ≻

to the profile ≻′ if

(1) for all i ∈ N , x ∈ A\{a} and y ∈ A, x ≻i y implies x ≻′i y
(2) r⪰′ (b) < r⪰ (b)
(3) r⪰′ (a) ≤ r⪰ (a).

Condition (1) implies that only a changes her ranking in the profile,

and that she can only worsen it. Condition (2) implies thatb receives
a strictly better ranking in the output. Condition (3) implies that

a doesn’t receive a worse ranking in the output. We say that a

manipulation is strictly without sacrifice if it also satisfies

(4)
��{x ∈ A : x ⪰′ a}�� ≤ |{x ∈ A : x ⪰ a}|.

The strictness condition makes it harder to manipulate: the idea

is that an athlete prefers to be uniquely ranked in a position than to

method because the Borda scores are inverted. According to inverse-Borda-Nash, an

athlete with rankings (1,1,4) beats an athlete with (2,2,2); whereas for traditional

Borda scores the opposite is true: (19,19,19) would be considered better than (20,20,17).

This is considered an advantage because it favours specialists—it is preferred that the

winner of the combined format is a potential winner of world-cups in some individual

discipline, rather than a generalist [22]. We are not aware of a precedent for this,

perhaps because it becomes “anti-fairness” when applied to social welfare.

5
These three desiderata correspond to axioms from social choice theory. The clear

winner condition is called, for e.g., the “Pareto criterion” [6, p. 42]. “Neutral” is standard

terminology in social choice theory. A discipline that determines the gold may be

thought of as a “weak top-dictator”: a voter whose top ranked alternative is among

the top ranked alternatives in the output.
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share this ranking with multiple athletes. Indeed, this small change

makes the difference between an impossibility and possibility result.

The example of manipulation in the introduction is not a manip-

ulation without sacrifice—instead, a poorly ranked athlete “spoils”

the fair result concerning other, better ranked, athletes.

Definition 2.2 (Spoiler manipulation). Take a ranking function f .
Let f (≻) = ⪰ and f (≻′) = ⪰′, and a,b ∈ A. Athlete a can spoil,

for athlete b, from the profile ≻ to the profile ≻′ if

(1) for all i ∈ N , x ∈ A\{a} and y ∈ A, x ≻i y implies x ≻′i y
(2) r⪰′ (b) < r⪰ (b)
(5) r⪰′ (b) < r⪰ (a).

Note that conditions (1) and (2) are as before; condition (5) cap-

tures the idea that a is a poorly ranked alternative with respect to

the possible ranking of b.

3 RESULTS
Inverse-Borda-Nash satisfies all the basic desiderata—the proof is

omitted due to space considerations.

Proposition 3.1. Inverse-Borda-Nash satisfies the clear winner

condition, is neutral, and is non-determined.

However, our example in the introduction shows that inverse-

Borda-Nash may produce ties and is potentially manipulable—

undesirable possibilities that we consider further in the next two

subsections. In the third subsection we apply a broader analysis

and give an impossibility that applies to ranking functions more

generally.

3.1 Simulations: the frequency of ties and
manipulation

Our simulations suggest that for inverse-Borda-Nash, although ties

are unlikely to be a problem, potential for manipulation occurs with

a high probability.

We generated profiles with six athletes and three disciplines,

the same numbers as in the Olympics sports climbing competition.

The generated profiles form three groups: in the first group, for

each discipline every possible linear order is equally likely—this is

the impartial culture [29]. For profiles in the second group there

is a positive correlation in an athlete’s results across the three

disciplines. In the final group there is positive correlation between

two disciplines and negative correlation with the third. This third

culture conforms best to our actual expectations for the competition

because the two disciplines of bouldering and lead climbing have

an intersection of athletes at the top level, whereas top level speed

climbers do not typically compete in the other disciplines.

For a profile based on the impartial culture we independently

select three strict linear orders, each uniformly at random from the

set of all possible linear orders. Our positively correlated culture

uses the Plackett-Luce ([1959, 1975]) model
6
with initial odds

2
1
: 2

2
: 2

3
: 2

4
: 2

5
: 2

6.

Label the athletes as aj for j ∈ {1,2,3,4,5,6}. Writing t =
∑
6

i=1 i
2
,

each athlete aj has a pj = j2/t probability of being ranked first.

The idea is that the initial odds also represent the strengths of the

6
This model’s ability to forecast Formula 1 results has been studied by [14].

Culture Ties Spoiler Without

sacrifice

Strict

without

Any

manip.

Impartial 632 37,730 47,807 47,326 59,660

Positive cor. 779 13,792 43,723 41,597 46,964

Negative cor. 526 44,826 48,741 48,350 63,151

Table 1: The number of randomly generated profiles that involved
ties, were subject to spoilermanipulation, were subject tomanipula-
tionwithout sacrifice, were subject tomanipulation strictlywithout
sacrifice, and that were subject to any of the manipulations that we
define. We generated 100,000 profiles for each culture.

athletes; in particular, we suppose that each athlete is two times

stronger than her closest competitor. Given that every athlete in

set B defeat all the athletes in A\B, the probability that an athlete

in A\B defeats the other athletes in A\B only depends upon the

strengths of the athletes in A\B. So if athlete ak , k , j ranks first,
then aj has a

j2

t − k2
=

pj

1 − pk
probability of being ranked second. If ak ranks first and al ranks
second, l , j, l , k , then aj has a

j2

t − k2 − l2
=

pj

1 − pk − pl

probability of being ranked third. The positive correlation arises

because we suppose that the athletes have the same strengths for

each discipline; a profile consists of three independently generated

strict linear orders using the same initial odds. A negatively corre-

lated profile is created by taking a positively correlated profile and

reversing the strict linear order of the last discipline.
7

We randomly generated 100,000 profiles of each type. A profile

counts as tied if at least one tie occurs at any ranking level—we do

not count the number of distinct ties nor how many athletes are

involved in each tie. To count manipulations, we first randomly pair

the athletes into three disjoint pairs. A profile counts as manipulable

if at least one of the pairs can manipulate. We perform the count

separately for spoiler manipulation, manipulation without sacrifice,

manipulation completely without sacrifice, and for any type of

manipulation. The results are presented in Table 1.

According to our models, it is very unlikely that there will be

a tie at any level of the output total preorder in the final round

of the competition. We also ran simulations for twenty athlete

profiles obtaining similar results.
8
This strongly supports the idea

that a tie in the actual competition is very unlikely to occur: note

that each of our models exhibits a high degree of symmetry; one

would expect that such symmetries would be the most likely to

cause tied situations. Indeed, it has been shown that the impartial

culture maximises the probability for majority cycles [29], one of

the necessary conditions for a tie. However, from our simulations

we see more ties for the positively correlated culture: this is perhaps

because two opposing criteria need to be fulfilled for there to be a

7
The associated culture best represents our, somewhat naive, expectations for the

competition—we expect lead climbing and bouldering to be positively correlated with

each other and negatively correlated with speed climbing.

8
For profiles with twenty athletes, of the 100,000 profiles we generated for each culture,

208 profiles had ties for the impartial culture, 1108 profiles had ties for the positively

correlated culture, and only 92 profiles had ties for the negatively correlated culture

that conforms best to our expectations for the actual competition.
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x ′
1

x ′
2

c a d x1 x2 x3 b x4 · · ·

x ′
1

x ′
2

c d x1 x2 x3 b a x4 · · ·

4/5 5/6 6/7 7/8 8/9 9/4

Figure 1: The best ten athletes in the ranking of a single dis-
cipline before and after a manipulates for b. The numbers
display the ratio between an athlete’s product scores before
and after this particular manipulation.

tie; there need to be majority cycles, but these must occur among

athletes with the same scores. Regardless, the incidence of ties is low

even for the positive culture. Of the three cultures, we see fewest

ties ties in the negatively correlated culture which best represents

our expectations for the competition.

In contrast to the low incidence of ties, there does seem to be

a high potential for manipulation, of both kinds. For each culture

approximately half the profiles are manipulable.
9
We make two

further observations: first, the incidence of non-strict manipulation

without sacrifice is very small—the value obtained when subtract-

ing the value of column five from the value of column four. A loose

conclusion is that for inverse-Borda-Nash there is not much dif-

ference between the stronger and weaker versions of the without

sacrifice axiom. Second, spoiler manipulation seems less likely un-

der the positively correlated culture. An intuitive explanation for

the lower incidence of spoiler manipulation for the positively corre-

lated culture is the following: for this culture it is more likely that

one athlete in a pair will always be ranked above their teammate,

in which case the lower ranked athlete cannot spoil. Nevertheless,

even for the positive culture there is a non-negligible potential for

spoiler manipulation (more than 10% of the generated profiles).

3.2 Complexity results: NP-hardness of
manipulation without sacrifice

In this subsection we determine the worst-case complexity of de-

tecting whether or not a manipulation without sacrifice is possible.

Given that we have managed to perform simulations, it is obvi-

ously easy in practice to determine whether or not a manipulation

is possible. Although the hardness result we give is not of direct

importance to the case of sports climbing, which involves three

disciplines and at most twenty candidates, it may well be important

for other applications of our model. The decision problem is:

Can-manipulate-without-sacrifice (Cmws) :

Input: a profile ≻ ∈ LN
and two athletes a and b.

Question: Is there a manipulation without sacrifice

by a for b from ≻ to some other profile?

We show that Cmws is NP-complete, thus under typical assump-

tions, intractable for large inputs.

Proposition 3.2. Cmws is NP-complete.

9
We also tested profiles with twenty athletes for manipulation. Each culture resulted

in higher counts of potential manipulation than in the six athlete case. Of course, to

fully address the issue of manipulation in the qualification round would require other

modifications: here a manipulation is only desirable if it moves the target agent below

the sixth place threshold; more fundamentally we require an argument for why the

the non-manipulated profile is common knowledge.

Proof. For membership, take the manipulated profile as a cer-

tificate and verify that this actually is a manipulation, i.e. that b
becomes ranked better and that a does not become ranked worse.

For hardness, we provide a polynomial reduction from exact-3-

cover, which is the following NP-complete problem:

Input: a setX = {x1, . . . ,x3t } and a setX = {X1, . . . ,Xs }
of subsets of X such that for each Y ∈ X, |Y | = 3.

Question: is there a subsetX′ ⊆ X such that

⋃
X′ = X

and for any distinct pair Xi ,X j ∈ X
′
, Xi ∩ X j = ∅.

Take an instance of exact-3-cover. We use this to create a

profile, containing athletes a and b, polynomial in terms of the

size of the original instance, such that our manipulation decision

problem returns “yes” for this profile if and only if exact-3-cover

returns “yes” for the original instance.

The athletes are {a,b,c,d }∪X ∪X ′. The purpose of these athletes
in the reduction is as follows: a is the potential manipulator; b is the

athlete she attempts to help; c is an athlete who defeats b according

to the starting profile, but who will be tied with b if a manipulates

in at least t disciplines; d is an athlete who b defeats according to

the starting profile, but who will defeat b if a manipulates in strictly

more than t disciplines; each xi ∈ X is defeated by a according

to the starting profile, but threatens to defeat a in the course of

the manipulation—in particular a will only be able to improve the

ranking of xi at most once; and X ′ = {x ′
1
, . . . ,x ′

10
} contains ten

dummy athletes who pad rankings and ensure that cycles are of the

right length. In the starting profile, each discipline that a potentially
changes her ranking in corresponds to some Y ∈ X. For each of

these disciplines, if a changes her ranking then she improves the

ranking of each xi ∈ Y (though by different amounts: see Figure

1). If we have such a starting profile, then there is a successful

manipulation without sacrifice iff exact-3-cover returns “yes” for

the original instance.

We construct the starting profile from two parts: a base subprofile

and a padding subprofile. In the base subprofile the athletes {b,c,d }
all receive the same product score, and the athletes {a}∪X all receive

the same product score; it also contains all those disciplines for

which a might want to worsen her ranking in order to manipulate

for b. The padding profile creates the required differences in the

product scores of the athletes.

For the base profile, for each triple {x1,x2,x3} ∈ X we create

t + v + 1 disciplines and the associated rankings, where v is the

smallest natural number such that t + v + 1 is divisible by nine.

For each triple only one of the created rankings is manipulable by

a for b, and we will refer to this ranking as corresponding to the

triple, the remaining rankings make athletes within two specific

sets have the same product scores. Precisely, two dummy athletes

x ′
1
and x ′

2
are placed at the top of the ranking, then c , a, and d ,

then (in arbitrary order) the elements in the triple, then b, then
(in arbitrary order) the remaining elements of X , and finally the

remaining athletes in X ′. To ensure that athletes in {b,c,d } have
the same product scores and that athletes in {a} ∪X have the same

product scores for this partial profile, we add rankings that cycle

through the athletes in these two sets, also requiring that for each

of these rankings b performs better than a. Figure 2 demonstrates

the cycles, and shows how the dummy athletes in X ′ allow for b to

perform better than a in these cases.
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x ′
1

x ′
2

c a d x1 x2 x3 b x4 . . . x3t x ′
3

. . . x ′
10

Figure 2: The ranking corresponding to the set {x1,x2,x3} ∈ X. Leftwards athletes perform better than rightwards athletes. The
cycling is indicated by the thick arrows. For the rankings other than that displayed, we ensure that a is ranked below b if we
cycle by the higher arrow once every three times we cycle by the lower arrow. In the cycle indicated by the lower arrow, of X ′

we cycle through only some X ′′ ⊆ X ′ such that 1 + |X | + ��X ′′�� is divisible by nine; thus the cycles end at the same point.

For the padding part of the profile, we want to ensure, first, that

the following ratios between the product scores of the athletes hold:

(1) prod(c ) = (8/9)tprod(b),
(2) prod(b) = (9/10)tprod(d ),
(3) prod(d ) ≤ prod(a),
(4) prod(a) = (4/9)t (4/5)prod(x ) for all x ∈ X ,

(5) prod(a) < (4/9)tprod(x ′) for all x ′ ∈ X ′;

second, that b is not ranked worse than a in any of the rankings;

and third, that the number of disciplines required is bounded by a

polynomial in the size of the original input. The construction of

the padding profile is facilitated by the following lemma.

Lemma 3.3. Given disjoint sets X I,X II,X III
such that X I ∪ X II ∪

X III = X , athletes x ,y ∈ X II
, and integers

p,q ∈
{���X

I��� + 1,
���X

I��� + 2, . . . ,
���X

I ∪ X II���
}
,

there is a profile over an index set I , of with cardinality the lowest

common multiple of
���X

I���,
���X

II��� and
���X

III���, such that

prodI (z) = prodI (w ), for j ∈ {I, III}, z,w ∈ X j ,

prodI (z) < prodI (w ), for j < k , z ∈ X j , w ∈ Xk ,

prodI (x ) = (p/q)prodI (z), for z ∈ X II\{x ,y}.

Proof of Lemma 3.3. Create a base ranking starting with ele-

ments of X I
in arbitrary order, then elements of X II

such that x is

at position q and y is at position p and with the other elements in

arbitrary order, and finally elements of X III
in arbitrary order. The

profile is built up of cyclings through this ranking, with the base

ranking replaced (once) by the ranking where the positions of x
and y are swapped. The cycles go individually through X I

, X II
and

X III
. ■

In order to make part (1) hold, we apply the lemma t times with

the values X I = ∅, X II = X ′ ∪ {b,c,d } and X 3 = X ∪ {a}, x = x ′
1
,

y = c , and p = 9 and q = 8. Note that b and d have the same product

scores in the created profile. This means we can then set the ratio

required by (2) between these two athletes, again with repeated

applications of the lemma as above except here x = d , y = x ′
1
and

p = 9 and q = 10. For part (4), set X I = {b,c,d }, X II = X ∪ X ′ ∪ {a}
and X 3 = ∅, and set x = a, y = x ′

1
and p = 4, q = 5 or q = 9.

Finally, we can pad with as many instances where X I = {b,c,d },
X II = X ∪ {a}, X III

and p = q as required to ensure the desired

inequalities of (3) and (5). Note for all of these rankings b is ranked

better than a, and that their amount is bounded by some polynomial.

Suppose that we have a “yes” instance to our original problem, so

there exists a exact covering X′ of X . Let a worsen her ranking so

that she is directly belowb in exactly the t disciplines corresponding
to X′—an example of how this affects each ranking is displayed

in Figure 1. In the resulting profile the product score of c remains

the same, the product score of b is multiplied by (8/9)t , and the

product score of d is multiplied by (3/4)t : thus the product scores
of a, b and c become the same. For each x ∈ X , the product score
is decreased by at most (5/6)—note this is less of a decrease than
(4/5), whereas for a the product score is increased by (9/4)t . For
x ′ ∈ X ′ the product score doesn’t change. Altogether, this means

that c , b and d receive the same, maximal product scores: thus b
goes from being ranked second to being ranked first; and a still

has a product score strictly less than any z ∈ X ∪ X ′: thus the
manipulation is without sacrifice.

In the other direction, suppose that there is a successful manipu-

lation without sacrifice. As the only athlete that b is ranked worse

than in the non-manipulated profile is c , this means that b must be

ranked at least as high as c in the manipulated profile, which means

that a must change her ranking in at least t disciplines where she
is ranked better than b. However, a cannot change her ranking in

more of these disciplines, otherwise d would become ranked strictly

above b and the manipulation would not be successful. Also, of the

disciplines that she changes her ranking in, she can only improve

the ranking of any given xi at most once, otherwise this xi would
multiply her product score by a value less than (7/8)2—itself less
than (4/5)—so xi would be ranked better than a and the manipula-

tion would not be without sacrifice. Thus the disciplines in which a
does manipulate correspond to an exact covering of the set X . □

3.3 Normative results: an impossibility
We want to define a method that satisfies our desiderata and com-

pletely prevents both forms of manipulation. Unfortunately, it is

impossible to completely succeed in this task.

Theorem 3.4. No ranking function prevents spoiler manipulation,

prevents manipulation without sacrifice, satisfies the clear winner

condition, and is non-determined.

Proof. We prove the stronger: if both types of manipulation are

prevented and the clear winner condition is satisfied then there

is a top-dictator, a discipline i ∈ N such that, for a ∈ A such that

ri (a) = 1, a ≻ x for all x , a. This implies that the function is

determined.

Take an arbitrary ranking function f that prevents spoiler ma-

nipulation and manipulation without sacrifice and that satisfies the

clear winner condition. Consider any profile where a comes first

in all disciplines and b comes last. By the clear winner condition

a must be ranked first and b last. Now consider moving b up in
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the first discipline. So long as b does not cross above a, a must still

be uniquely ranked first, as otherwise the agent c that b becomes

ranked above can spoil for the new winner from P1 to P2.

P1

1 > 1

a a
| |

c |

b |

| |

| b

7→
a
|

P2

1 > 1

a a
| |

b |

c |

| |

| b

7→
a
|

If we rank b above a, either a remains the unique winner or there

is some other set of winners. If we continue to rank b first suc-

cessively for the remaining disciplines, eventually b becomes the

unique winner by the clear winner condition—in particular when

b is ranked first in all disciplines: thus the second disjunct of the

previous sentence must be fulfilled at some point; there is a profile

that outputs a top, while if b is moved above a in one discipline

the set of winners is X with some x ∈ X such that x , a. Label
the discipline for which this happens i∗ and label the respective

profiles as P3 and P4. Note that in P3 athlete b has been moved up

to be directly below a, the same argument as above implies that a
is still the winner in the output.

P3

< i∗ i∗ > i∗

b a a
a b |

| | |

| | b

7→
a
|

P4

< i∗ i∗ > i∗

b b a
a a |

| | |

| | b

7→
b
|

We know that a < X , otherwise a could spoil for x from P3 to P4.
This implies that b ∈ X , as otherwise b could spoil for a from P4 to
P3; thus x < X for x , a,b, as otherwise b could manipulate without

sacrifice for x from the profile where b is the unique winner. In P4
we can move a down in the profile without changing the output

winner b (otherwise a could spoil), call this P5. Create P6 from P5
by moving a up to win in discipline i∗.

P5

< i∗ i∗ > i∗

b b |

| a |

| | |

| | a
a | b

7→
b
|

P6

< i∗ i∗ > i∗

b a |

| b |

| | |

| | a
a | b

7→
a
|

We claim athlete a must the unique winner in P6. First, note that if
neither a nor b were ranked first for P6, then a can spoil for b from

P6 to P5. If b is ranked first but not uniquely ranked first, then b can

spoil from P5 to P6. If b is uniquely ranked first, then at some point

in stepwise changes from P6 to P3 some other athlete must perform

a spoiler manipulation. Thus as b is not ranked first a is amongst

the winners. If a were not unique, a could spoil from P3 to P6. Take
some third alternative c , a,b. The profile P7 is obtained from P6
by moving b and c down in the profile. Here the unique winner is

still a, as otherwise b or c could spoil. Create P8 by moving a to be

ranked last in all disciplines except i∗.

P7

< i∗ i∗ > i∗

| a |

| | |

c | c
b c a
a b b

7→
a
|

P8

< i∗ i∗ > i∗

| a |

| | |

c | c
b c b
a b a

7→
a
|

In the profile P8, alternative c is a clear winner overb, sob cannot be
ranked first. If a were not ranked first then b could spoil for a from

P8 to P7. If any other athlete is ranked first, then a can manipulate

without sacrifice from P7 to P8. Thus a is the unique winner in P8.
In general, for any profile where a wins in discipline i∗, a must

be uniquely ranked first in the output, as otherwise there would

be some chain of changes from P8 to the profile in question, one

of which would be a spoiler manipulation for the new winning

athlete. As a is arbitrary, for each alternative x there is a discipline

ix such that whenever x wins in ix , x is uniquely ranked first. As

two alternatives x and y cannot both be ranked first, ix = iy for all

x ,y ∈ A, thus i∗ is a top dictator. □

The proof closely follows Reny [24], who presents Arrow’s im-

possibility and the Gibbard-Satterthwaite theorem side-by-side.

Although we consider manipulation, the shape of our result is

closer to Arrow’s result than to the Gibbard-Satterthwaite result.

Requiring the impossibility of both forms of manipulation replaces

the axiom of independence of irrelevant alternatives (IIA), though

this requirement does not imply IIA
10
, thus our impossibility is not

simply a corollary of Arrow’s theorem.

We cannot satisfy all our desiderata simultaneously. However, if

we weaken manipulation without sacrifice to manipulation strictly

without sacrifice there are methods that work. The method we

define proceeds in stages, determining the top ranked candidates

then removing them from the profile. It may be thought of as a

back-to-front version of instant runoff voting [33, p. 37] applied

using a majority quota rule. Also cf. the Coombs rule [13]. If an

athlete is ranked first in strictly more than half the disciplines, then

she is the unique winner with respect to the athletes in the profile.

Otherwise, any athlete that has at least one first place ranking in

the profile is a joint winner. The winners are removed from the

profile, and the procedure repeats. We name this iterative first place

elimination, ifpe : LN →W . For an arbitrary profile ≻, let

win(≻) =



{a} if ∃a ∈ A, |{i ∈ N : ri (a) = 1}| > n/2,

{x ∈ A : ∃i ∈ N ,ri (x ) = 1}

otherwise.

Let ≻1 = ≻. For t ≥ 1, recursively define ≻t+1 as the restriction of

≻t to A\win(≻t ). Writing ⪰ = ifpe(≻), for x ,y ∈ A, define x ⪰ y
iff there are integers s,t such that s ≤ t and x ∈ win(≻s ) and
y ∈ win(≻t ).

10
Consider the discipline aggregator that returns the total preorder where a is ranked

uniquely first and all other alternatives jointly second if a is first in all disciplines, and

a is ranked second and all other alternatives jointly first otherwise; this violates IIA

but prevents both kinds of manipulation.
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Proposition 3.5. Iterative first place elimination prevents spoiler

manipulation, prevents manipulation strictly without sacrifice, sat-

isfies the clear winner condition, is neutral, and (for n ≥ 3) is non-

determined.

Proof. Prevents spoiler manipulation: an athlete cannot affect

any of the partial profiles ≻t starting from t = 1 until the pro-

file where she is ranked first in one of the disciplines. Consider

those partial profiles in which she is ranked first. There are two

possibilities. (1) The athlete is a winner for the partial profile: she

cannot spoil because she does as well as the remaining athletes

would. (2) The athlete is not a winner for the partial profile, so a

different athlete is ranked first in more than half the disciplines: this

other athlete is the winner no matter how the putative manipulator

changes her ranking.

Prevents manipulation strictly without sacrifice: by the above,

an athlete a cannot affect athletes that get better output ranks. Let

≻ be the partial profile for which a ∈ win(≻). First suppose a is

ranked first in more than half the disciplines: if she performs worse

in enough of these she will no longer be the unique winner but

such a manipulation is not strict; otherwise she will be removed

from the profile in the next step thus any changes to her ranking

will not affect the output. Second suppose a is ranked first in less

than half the disciplines. If a performs worse in a discipline i for
which ri (a) > 1, this will not affect the output ranking as a is

removed from the profile in the next round. If a performs worse in

a discipline i for which ri (a) = 1, there are three possibilities. (1) A

different athlete becomes the unique winner, thus a is ranked lower

in the output. (2) A new athlete becomes a winner, in which case

the manipulation is not strict. (3) The winners remain the same,

thus the same athletes will be removed from this profile and the

output will not change.

Clear winner: if a is ranked better than b in all disciplines, then

b cannot ranked first in a partial profile if a is still in the partial

profile.

Neutrality: permuting the athletes in the profile will result in

permuted sets win(≻).

Ranking in discipline

Athlete {i } N \{i }

a 2 1

b 1 2

others ≥ 3 ≥ 3

Non-determined: here we

require the condition that

n ≥ 3; for arbitrary i ∈ N
consider the profile to the

left. □

Iterative first place elimination is unsatisfactory because it is

indecisive, where we use “decisiveness” to refer to a measure of how

often ties are produced in the output. A maximally decisive method

would always produce a linear order—this recreates the impossi-

bility because it makes manipulation without sacrifice equivalent

to the strict version. However, maximal decisiveness is arguably

too strong a condition: for a completely symmetric profile, it seems

reasonable that conditions external to the profile are used to break

the ties.

4 FINAL REMARKS
We propose a novel interpretation of Arrow’s traditional social

choice framework involving the aggregation of linear orders, un-

der which what are traditionally thought of as candidates are the

agents of the model. These agents can strategize by worsening

their own position within one or more of the input linear orders.

This interpretation captures the problem of aggregating multiple

ranked competitions; in particular we consider the method pro-

posed for determining the medal winners for sport climbing at the

2020 Olympics, a method that we call inverse-Borda-Nash. Simu-

lations suggest that although ties are unlikely to occur, inverse-

Borda-Nash is potentially manipulable. Although no method can

rule out two basic types of manipulation, a small assumption about

how athletes are willing to manipulate means that non-manipulable

methods are possible. The method demonstrating this possibility is,

however, too indecisive to be practical.

Our interpretation is novel to the best of our knowledge. Work

concerning manipulation in sports competitions tends to be con-

sidered in operations-research (see [31] for a survey) rather than

multi-agent settings.
11

We are not aware of any work that explicitly

considers candidates as agents in the way that we do—our work is

distinct from the traditional presentation of manipulation by strate-

gic candidacy [5, 8, 18].
12

Of course, there are similarities between

what we do and other concepts in the literature, e.g. between our

definitions of manipulation and Condorcet independence of irrele-

vant alternatives [32] or one-way monotonicity [26]; there may be

implicit connections that we have missed.

Our interpretation fits well into Arrow’s framework. Arguably,

the problem of aggregating multiple disciplines is better served by

this framework than typical problems of social choice theory. The

linear order profile is the input in practice. There are no questions,

as there are for social choice theory, about whether eliciting full

linear orders is problematic, let alone whether linear order pref-

erences are suitable or even sensible—cf. competing approaches

such as approval voting [19] and majority judgment [1].
13

It is not

obvious that manipulation is actually undesirable for social choice

theory, especially when one considers iterative manipulation [20]—

arguably, a better term would be strategic behaviour. In contrast,

for sports competitions manipulation is aptly named as it is clearly

undesirable in and of itself, because it goes against the spirit of the

competition or (for the less principled) because it cheapens the spec-

tacle. Concerning information requirements for manipulation, we

have proposed that the qualification round can be used as a proxy

for the results in the final round. Although this is unrealistic—the

11
However, there is considerable literature in computational social choice concerning

manipulating seedings in tournaments [25, 30].

12
This does not mean, however, that our work is completely divorced from strategic

candidacy. Sometimes candidates have not completely withdrawn from an election

race but have merely stopped actively campaigning, in order not to attract votes from

a competitor that they prefer to another competitor. This closely parallels the type of

manipulation that we consider here. Our ideas may be applied to social choice theory

directly, not just the sports competition interpretation.

13
The use of linear orders is an express desideratum of the IFSC. Rather than linear

orders, points could be assigned based upon individual performances, as in, e.g. the

pentathlon. Thus the final score for an athlete would be necessarily independent of

the performance of other athletes, which rules out our type of manipulation. This

approach was discarded by the IFSC because (1) it is too complex for spectators and

(2) it is difficult, perhaps impossible, to assign points in a balanced way across the

disciplines [22]. We thus take it is as given that the input is ordinal.

Interestingly, Balinski and Laraki [1] use the example of Olympic figure skating as

part of their argument against the traditional ordinal approach of social choice. In the

past the ranking of skaters was similarly produced by aggregating multiple ordinal

rankings given by multiple judges. The particular method has since been replaced,

and it is argued that this is its ordinal nature was recognised to be unsatisfactory.

Balinski and Laraki thus go in the opposite direction to us: they use experience from

the Olympics and apply it to social choice theory.
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athletes are unlikely to perform exactly the same—it is not less

realistic than the traditional Gibbard-Satterthwaite assumption of

common knowledge of all preferences of all agents. It should also

be noted that in practice there is a small domain of three disciplines

and up to twenty athletes, for such small domains assumptions of

common knowledge are intuitively more reasonable.

Our interpretation does have a slightly different focus from that

of traditional social choice: it stresses the importance of having

a minimal rank; an athlete is only concerned with the number of

athletes ranked strictly higher than her in the output total preorder.

Another difference is the importance of the decisiveness of the

ranking method; how often ties are output at any ranking level.

Authors often sidestep the issue of ties in order to obtain their main

results, by supposing that there is an external linear order tiebreaker

or by restricting the output to linear orders [33, p. 33], but this is

obviously unsatisfactory for our purposes because it is the issue

of ties itself that we are interested in. Alternative approaches such

as using a randomised mechanism to break ties or dealing directly

with set-valued outcomes [2] are similarly unsatisfactory. Of course,

decisiveness is also required for elections, however once again the

size of the domain plays a role: even for a small election involving a

hundred voters most rules will distinguish the candidates, but this

may no longer be the case for a “population” of three disciplines.

Because preventing manipulation is not equivalent to indepen-

dence of irrelevant alternatives, Theorem 3.4 is a non-trivial adap-

tation of Arrow’s famous impossibility. For completeness, we note

that the impossibility is tight for the four conditions. Dictatorships,

where the ranking of a single discipline are copied, violate only

non-determination. Constant functions violate only the clear win-

ner condition, except the function that always ranks every athlete

first. (Constant functions also violate neutrality, but this is not

included in the impossibility.) Our method of iterative-first-place-

elimination only allows manipulation without sacrifice. Finally, we

sketch an upside-down variant of instant runoff voting that only

allows spoiler manipulation: at stage t , remove the athlete who is

ranked last in discipline t modulo n, and rank this athlete below

the other athletes remaining in the profile.

Our positive result is interesting in part because of its unsuit-

ability: it would certainly produce too many ties to be useful in

practice. Completely prohibiting ties recreates the impossibility. It

would be interesting to determine if there is a satisfactory middle

ground, but there is an intriguing gap in (at least our knowledge

of) the literature—we do not know of any suitable definitions of

decisiveness that could be brought to task here.

An originating ideas of computational social choice is that, even

if manipulation is possible in theory, it might be computationally

hard to determine a strategy for manipulation, thus manipulation

is unfeasible in practice [3]. Because calculating the outcome of

inverse-Borda-Nash is polynomial, if we fix the number of disci-

plines, the complexity of finding a manipulation is polynomial in

the number of athletes: one need only check the result for the (less

than) 2
n
profiles where the manipulator does just worse than her

teammate for each possible subset of the disciplines. In particular

it is easy to determine whether manipulation in possible for three

disciplines. However, note that it is not clear that determining our

types of manipulation is easy for a fixed number of athletes, as is

known to be the case for traditional definitions of manipulation [7].

Allowing both the number of athletes and disciplines to vary, we

have a hardness result for manipulation without sacrifice, but we

do not know if the same applies to spoiler manipulation.

An interesting extension of our model would be to apply a se-

quential protocol approach, where one considers partial revelation

of the profile in a sequential manner. This is precisely how the

Olympic sports climbing event will unfold, though in practice there

will be measures put in place to isolate the athletes from the partial

results during the progress of competition for a single discipline.

Of course, a sequential extension can also be applied to other com-

petition formats. There is already a literature of related results

concerning necessary and possible winners (stemming from [17])

to base such study upon. Another avenue for further study would

be to introduce the issue of bribery [10]; in particular the notion of

swap bribery [9] seems applicable. This would extend the relevance

of any results beyond the case of altruistic teammates.

One might postulate a variant of Murphy’s law for sport com-

petitions: “if it can be manipulated, then at some point it will be

manipulated”. Although this law is almost certainly too strong to

be true, we can observe that cheating does occurs in the Olympics,

including in the form of deliberate bad performances [16, 28]. In

another arena, Formula 1, altruistic manipulation (more precisely,

spoiler manipulation) has be observed to occur [12].
14

So will there

be a wave of manipulation at Tokyo 2020? Probably not. Athletes

will be held in isolation during the competition of a single disci-

pline, which in theory limits manipulation according to a sequential

protocol approach. What about using qualification results as pre-

dictions? We have argued that this is no less realistic than the

assumptions made for the Gibbard-Satterthwaite result, but this

still does not mean that the prediction will be reliable enough in

practice. Lead-climbing routes and boulder problems are not stan-

dardised: some problems are easier for tall athletes, while others

are easier for short athletes; the qualifying round may favour one

type of athlete and the final round another. Also, an athlete may

rise to the challenge and perform better in the final round than in

the qualifying round, or vice-versa crack under the pressure. The

effects of most manipulations will probably be too uncertain to

make them worthwhile.

We thank our anonymous reviewers for their careful reading

and valuable feedback, and also Jerome Meyer (sport director of

the IFSC) for kindly answering our numerous questions about the

combined format.

14
This paper has been considerably improved thanks to comments and discussions

that arose during its revision and presentation at COMSOC 2018. We in particular

want to address a remark that was made concerning Formula 1: that the type of

manipulation that we consider is less “important” than the phenomenon where a

racer blocks the passage of cars of rival teams in order to preserve an advantage for

a teammate. In our opinion this exemplifies the distinction between manipulation

and strategic behaviour. In Formula 1 a single “blocking move” is sanctioned [4].

Allowing blocking may be considered desirable because it adds a strategic level for

the competitors and improves the spectacle for viewers; one might consider blocking

to be strategic behaviour. On the other hand, the type of behaviour we consider—

which although rare, also seems to occur in Formula 1 [12]—is clearly undesirable—the

reviewer used the term “scandalous”—and merits its designation as manipulation. Now,

strategic behaviour between teammates plays an important role in many seemingly

individualistic competitions, e.g. in various cycling events teammates draft behind

each other. However, such strategic behaviours are typically domain specific and thus

difficult to consider in the general manner that we treat manipulation; they would

arguably be better investigated under the heading of operations research.
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