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ABSTRACT

We study the mechanism design problem of a social planner
for locating two heterogeneous facilities on a line interval
[0, 1], where a set of 𝑛 strategic agents report their locations
and a mechanism determines the locations of the two facilities.
Unlike prior work on two-facility location games, we consider
the requirement of the minimum distance 𝑑 between the
two facilities. As the two facilities are heterogeneous and
have additive effects on agents, we model that the cost of
an agent is the sum of his distances to both facilities and
the social cost is the total cost of all agents. In the two-
facility location game to minimize the social cost, we show
that the optimal solution can be computed in polynomial
time and prove that carefully choosing one optimal solution
as output is strategyproof. In the obnoxious two-facility
location game for maximizing the social utility, a mechanism
outputting the optimal solution is not strategyproof and we
propose new deterministic group strategyproof mechanisms
with provable approximation ratios. Moreover, we establish
a lower bound 7−𝑑

6
for the approximation ratio achievable by

deterministic strategyproof mechanisms. Finally, we study the
two-facility location game with triple-preference, where each
of the two facilities may be favorable, obnoxious, indifferent
for any agent. We further allow each agent to misreport
his location and preference towards the two facilities and
design a deterministic group strategyproof mechanism with
approximation ratio 4.
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1 INTRODUCTION

In this paper, we study the two-facility location games with
minimum distance requirement between the two facilities.
Here, the minimum distance requirement means the distance
between the two facilities should be at least a certain value.
Its origin, the two-facility location game, models the scenario
where the social planner is going to build two facilities on a
line segment with some agents who want to minimize (maxi-
mize) their own costs (utilities). The agents are required to
report their locations as private information, which will then
be mapped to the two facilities’ locations by a mechanism,
with the purpose of optimizing the social cost (utility).

We find that the minimum distance requirement models
well the real life where the social planner builds two het-
erogeneous facilities to serve agents. There is some natural
conflict for them to co-locate in practice. Consider the first
scenario (fitting the two-facility location game) that the
social planner plans to deploy an Internet café and a primary
school in a street, where all agents prefer living close for
easy access to both internet surfing and education resource.
In the worry that some pupils in the primary school may
develop addiction to computer games after class, the two
facilities should be some distance away from each other. Since
each agent needs services from both heterogeneous facilities,
similar to [17], the cost of each agent should be the sum of his
Euclidean distances to the two facilities. Consider the second
scenario (fitting the obnoxious two-facility location game) for
building a refuse landfill and a sewage treatment plant, where
all agents prefer living far away from both. The minimum
distance requirement should also be considered here since the
refuse landfill may contaminate water output by the sewage
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treatment plant and may need future expansion. The third
scenario (fitting the two-facility location game with triple-
preference) is that the social planner plans to build a park
and a kindergarten with at least some distance in between.
Some agents prefer to live close by to play in the park, others
want to stay away to avoid the crowd around the park and
the rest of agents are indifferent to the park; Some agents
prefer to stay close to the kindergarten to pick up kids, others
want to stay away to avoid noise of the kindergarten and the
rest of agents are indifferent to the kindergarten.

An agent may have a chance to improve his benefit, i.e.,
decrease his cost or increase his utility by misreporting his
location. Therefore, we emphasize on strategyproofness of a
mechanism, which guarantees that an agent cannot acquire
any benefit by misreporting. We aim to design deterministic
strategyproof mechanisms whose performances approximate
well the optimal social cost/utility. The evaluation of a
mechanism is mainly conducted by the approximation ratio,
which is the worst ratio between the social cost/utility of
the mechanism output and the optimal social cost/utility
considering all possible agent profiles.

We summarize our key novelty and results as follows.

∙ Facility location games for two heterogeneous facilities
with minimum distance requirement: To the best of our
knowledge, this is the first time that the minimum dis-
tance constraint is included in the two-facility location
games for strategyproof mechanism design.

∙ Mechanism design for the two-facility location game:
In Section 3, each agent prefers to stay close to both
two facilities and may misreport his location. Given
heterogeneous natures for the two facilities, the cost of
an agent is the sum of his distances to both facilities
and the social cost is the total cost of all agents. We
design a mechanism outputting an optimal solution
and prove it is strategyproof.

∙ Mechanism design for the obnoxious two-facility loca-
tion game: In Section 4, each agent prefers to stay far
away from the two facilities. The optimal solution is no
longer strategyproof and we design new deterministic
group strategyproof mechanisms with provable approx-
imation ratios. We further prove the lower bound for
the approximation ratio achievable by strategyproof
mechanisms.

∙ Mechanism design for the two-facility location game
with triple-preference: In Section 5, we extend to the
general case with triple-preference, where each of the
two facilities may be favorable, obnoxious or indifferent
for any agent. Besides locations, agents can also be
allowed to misreport their preferences towards the two
facilities. We design a deterministic group strategyproof
mechanism with approximation ratio 4 and obtain the
lower bound.

1.1 Related work

In the algorithmic view of locating one-facility, [15] first stud-
ied strategyproof mechanisms with provable approximation

ratios on a line. [14] and [16] provided characterizations of
deterministic strategyproof mechanisms on line, tree, and
cycle networks. For the obnoxious facility game, the mecha-
nism design to improve the social utility was first studied by
[3]. They presented a 3-approximation deterministic group
strategyproof mechanism and proved a lower bound of 2.
[9] characterized strategyproof mechanisms with exactly two
candidates in the general metric and showed that there exists
a lower bound 3 for strategyproof mechanism in any metric,
matching the upper bound 3 in [3]. [24] extended mechanism
design for both games with weighted agents on a line and
provided the lower and upper bounds on the optimal social
utility. Combining the above two models together, the dual-
preference game was studied in [25] and [6], where some
agents want to be close to the facility while the others want
to be far away from the facility.

For the two-facility location game, [11] improved the lower
bounds for the two homogeneous facilities scenario and the
scenario when one agent possesses multiple locations. [10]
considered the cost of an agent to be the distance between
his own location and the nearest facility in a general metric
space. [20] proposed a class of percentile mechanisms in
the form of generalized median mechanisms. [17] and [18]
initiated the study on two heterogeneous facility location
games in the graph where the cost of an agent is the sum
of his distances to both facilities. [23] proposed the optional
preference model for the facility location game with two
heterogeneous facilities on a line, where agents are allowed to
have optional preference. [1] studied heterogeneous 𝑘-facility
location games on the line segment where the preferences of
the agents over the facilities are the private information and
the locations of agents are known to the social planner. [7]
proposed a fractional preference model for the facility location
game with two facilities that serve the similar purpose on a
line where each agent has his location information as well as
fractional preference towards the two facilities.

In addition, [21] extended the original model by fully char-
acterizing the deterministic false-name-proof facility location
mechanisms for locating a single facility on a line. Then [19]
extended the model by characterizing the possible outcomes
of false-name-proof mechanisms on a line for locating two
facilities on a line as well as on a circle. [22] studied variable
populations in the static and dynamic facility location models
and proposed a class of online social choice functions for
the dynamic model. [4] considered a multi-stage facility
reallocation problems on the line, where a facility is being
moved between stages based on the locations reported by 𝑛
agents and characterized the optimal mechanisms both in
the offline setting and in the online setting. Other extensions
of the facility location game can be found in [2, 5, 8, 12].

Besides, for minimum distance requirement, [13] proposed
non-strategic version of the two-facility location problem but
our paper is the first in the strategic two-facility location
game. Unlike prior work on two-facility location games, we
consider the requirement of the minimum distance and agents’
strategic behavior of preferences towards the two facilities.
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2 SYSTEM MODEL

Let 𝑁 = {1, 2, · · · , 𝑛} be the set of agents located on a line
interval 𝐼 = [0, 1]. We denote x = (𝑥1, 𝑥2, · · · , 𝑥𝑛) as the
𝑛 agents’ location profile, which is private information and
needs to be reported by each agent. Without loss of generality,
we assume 𝑥𝑖 ≤ 𝑥𝑖+1 for any 1 ≤ 𝑖 ≤ 𝑛− 1.

In the two-facility location game, a mechanism 𝑓 outputs
two facilities’ locations (𝑦1, 𝑦2) based on a given location
profile x, i.e., (𝑦1, 𝑦2) = 𝑓(x) : 𝐼𝑛 → 𝐼2. Denote the minimum
distance requirement between the two facilities as 𝑑 ∈ [0, 1],
i.e., |𝑦2 − 𝑦1| ≥ 𝑑. Since the two facilities are heterogeneous,
the cost of agent 𝑖 is denoted as the sum of his distances to
the two facilities, i.e.,

𝑐𝑖(𝑓(x), 𝑥𝑖) = |𝑦1 − 𝑥𝑖|+ |𝑦2 − 𝑥𝑖|. (1)

Let x−𝑖 = (𝑥1, · · · , 𝑥𝑖−1, 𝑥𝑖+1, · · · , 𝑥𝑛) be the location profile
without agent 𝑖. Let x𝑆 be the location profile with all agent
𝑖 ∈ 𝑆 ⊆ 𝑁 and x−𝑆 be the location profile without any agent
𝑖 ∈ 𝑆 ⊆ 𝑁 . The social cost of a mechanism 𝑓(x) on x is
denoted as the sum of costs of 𝑛 agents, i.e.,

𝑆𝐶(𝑓(x),x) =

𝑛∑︁
𝑖=1

𝑐𝑖(𝑓(x), 𝑥𝑖). (2)

As agents may misreport their locations to change 𝑦1 and 𝑦2
for their own benefits, strategyproofness of 𝑓(x) is important
to ensure. Next we formally define the strategyproofness and
the group strategyproofness respectively.

Definition 2.1. A mechanism is strategyproof in the two-
facility location game if no agent can benefit from misre-
porting his location. Formally, given agent 𝑖, profile x =
{𝑥𝑖,x−𝑖} ∈ 𝐼𝑛, and any misreported location 𝑥′

𝑖 ∈ 𝐼 , it
holds that 𝑐𝑖(𝑓(𝑥𝑖,x−𝑖), 𝑥𝑖) ≤ 𝑐𝑖(𝑓(𝑥

′
𝑖,x−𝑖), 𝑥𝑖).

Definition 2.2. A mechanism is group strategyproof in
the two-facility location game if for any group of agents, at
least one of them cannot benefit if they misreport simultane-
ously. Formally, given a non-empty set 𝑆 ⊆ 𝑁 , profile x =
{x𝑆 ,x−𝑆} ∈ 𝐼𝑛, and the misreported x′

𝑆 ∈ 𝐼 |𝑆|, there exists
𝑖 ∈ 𝑆, satisfying 𝑐𝑖(𝑓(𝑥𝑆 ,x−𝑆), 𝑥𝑖) ≤ 𝑐𝑖(𝑓(𝑥

′
𝑆 ,x−𝑆), 𝑥𝑖).

In the facility location game, we are interested in designing
strategyproof mechanisms that also perform well with respect
to minimizing the social cost. For a location profile, let
𝑂𝑃𝑇1(x) be the optimal (minimum) social cost. A mechanism
𝑓 has an approximation ratio 𝛾, if for any possible profile
x ∈ 𝐼𝑛, 𝑆𝐶(𝑓,x) ≤ 𝛾𝑂𝑃𝑇1(x).

In the obnoxious two-facility location game, the agents
prefer to be far away from the two facilities. We define
agent 𝑖’s utility as 𝑢𝑖(𝑓(x), 𝑥𝑖) = |𝑦1 − 𝑥𝑖| + |𝑦2 − 𝑥𝑖|. The
objective is to maximize the social utility 𝑆𝑈(𝑓(x),x) =∑︀𝑛

𝑖=1 𝑢𝑖(𝑓(x), 𝑥𝑖).

Definition 2.3. A mechanism is strategyproof in the obnox-
ious two-facility location game if no agent can benefit from
misreporting his location. Formally, given agent 𝑖, profile
x = {𝑥𝑖,x−𝑖} ∈ 𝐼𝑛, and any misreported location 𝑥′

𝑖 ∈ 𝐼 , it
holds that 𝑢𝑖(𝑓(𝑥𝑖,x−𝑖), 𝑥𝑖) ≥ 𝑢𝑖(𝑓(𝑥

′
𝑖,x−𝑖), 𝑥𝑖).

The definition of the group strategyproofness in the ob-
noxious two-facility location game can be similarly defined
by following Definition 2.2. For a location profile x, let
𝑂𝑃𝑇2(x) be the optimal (maximum) social utility. A mech-
anism 𝑓 has an approximation ratio 𝛾, if for any profile
x ∈ 𝐼𝑛, 𝑂𝑃𝑇2(x) ≤ 𝛾𝑆𝑈(𝑓,x). Combining the above two
models, the two-facility location game with triple-preference
will be shown later where we will further allow agents to
misreport their preferences towards the two facilities.

3 TWO-FACILITY LOCATION GAMES

In this section, we consider the cost of agent 𝑖 as 𝑐𝑖 = |𝑦1 −
𝑥𝑖|+ |𝑦2−𝑥𝑖|. Assume, without loss of generality, that facility
1 is on the left of facility 2, i.e., 0 ≤ 𝑦1 ≤ 𝑦2 ≤ 1. From (1) and
(2), we rewrite the social cost as function 𝑔 = 𝑆𝐶(𝑓(x),x)
of two variables (𝑦1, 𝑦2) ∈ 𝐷, and the social optimal cost
𝑂𝑃𝑇1(x) can be obtained by solving:

min
𝑦1,𝑦2

𝑔(𝑦1, 𝑦2|x) = min
𝑦1,𝑦2

𝑛∑︁
𝑖=1

(|𝑦1 − 𝑥𝑖|+ |𝑦2 − 𝑥𝑖|),

s.t. (𝑦1, 𝑦2) ∈ 𝐷 = {(𝑦1, 𝑦2)|𝑦2 − 𝑦1 ≥ 𝑑, 0 ≤ 𝑦1, 𝑦2 ≤ 1},
given 0 ≤ 𝑥𝑖 ≤ 1, for 𝑖 = 1, ..., 𝑛 and 0 ≤ 𝑑 ≤ 1. (3)

The feasible region 𝐷 of (𝑦1, 𝑦2) is an isosceles right triangle
with three corners (0, 𝑑), (1− 𝑑, 1), (0, 1) and is closed convex.

Proposition 3.1. 𝑔 is a convex function with (𝑦1, 𝑦2) ∈ 𝐷
and can obtain its minimum in 𝐷 at 𝑦2 − 𝑦1 = 𝑑.

Proof. According to the property of convex functions,
agent 𝑖’s cost function |𝑦1 − 𝑥𝑖|+ |𝑦2 − 𝑥𝑖| with two variables
(𝑦1, 𝑦2) is convex, since function |𝑦1−𝑥𝑖| with variable 𝑦1 and
function |𝑦2−𝑥𝑖| with variable 𝑦2 are both convex. Therefore,
social cost

∑︀𝑛
𝑖=1(|𝑦1 − 𝑥𝑖| + |𝑦2 − 𝑥𝑖|) is convex in (𝑦1, 𝑦2).

As 𝐷 is a convex set, 𝑔 is a continuous convex function in
𝐷. To obtain the optimal social cost 𝑂𝑃𝑇1, we consider the
linear optimization problem (3). Further, we define 𝜕𝐷 =
𝜕𝐷1 ∪ 𝜕𝐷2 ∪ 𝜕𝐷3, as the boundary of the closed convex set
𝐷, where 𝜕𝐷1 = {(𝑦1, 𝑦2)|𝑦2 − 𝑦1 = 𝑑, 0 ≤ 𝑦1 ≤ 1 − 𝑑},
𝜕𝐷2 = {(𝑦1, 𝑦2)|𝑦1 = 0, 𝑑 ≤ 𝑦2 ≤ 1}, 𝜕𝐷3 = {(𝑦1, 𝑦2)|𝑦2 =
1, 0 ≤ 𝑦1 ≤ 1 − 𝑑}. Obviously, 𝐷∖𝜕𝐷 is the largest open
convex subset of 𝐷.

Next we prove that the optimal point in (𝑦1, 𝑦2) ∈ 𝐷 can
be obtained in 𝜕𝐷1. It is known that

argmin
𝑦

𝑛∑︁
𝑖=1

|𝑦 − 𝑥𝑖| =

{︃
[𝑥𝑛

2
, 𝑥(𝑛

2
+1)], if 𝑛 is even;

𝑥𝑛+1
2

, if 𝑛 is odd.
(4)

We have two cases according to the parity of 𝑛.
Case 1: 𝑛 is even. Due to (4), function 𝑔(𝑦1, 𝑦2|x) obtains

its local minimum at the point (𝑦1, 𝑦2) ∈ 𝐸 = [𝑥𝑛
2
, 𝑥𝑛

2
+1]×

[𝑥𝑛
2
, 𝑥𝑛

2
+1], given (𝑦1, 𝑦2) ∈ [0, 1]× [0, 1]. 𝐸 is a square area

and also a closed convex set. We have two subcases depending
on the relationship between 𝐸 and 𝐷.

1) 𝐸 ∩𝐷 ≠ ∅. The necessary condition for 𝐸 ∩𝐷 ̸= ∅ is that
𝐸 ∩ 𝜕𝐷1 ̸= ∅, due to the shapes of triangle 𝐷 and square
𝐸 in [0, 1]2. See convex sets 𝐸 and 𝐷 in Figure 1. The
optimal point in (𝑦1, 𝑦2) ∈ 𝐷 can be obtained in 𝐸 ∩ 𝜕𝐷1

which is a non-empty subset of 𝜕𝐷1.

Session 5E: Auctions and Mechanism Design AAMAS 2019, May 13-17, 2019, Montréal, Canada

1463



Figure 1: Connections between the line segment 𝐿
and convex sets 𝐸, 𝐷.

2) 𝐸 ∩𝐷 = ∅. Since 𝑔 is a convex function, by (4), its local
minimum can only be obtained at the point (𝑦1, 𝑦2) ∈ 𝐸,
given (𝑦1, 𝑦2) ∈ [0, 1] × [0, 1]. Since 𝐸 ∩ 𝐷 = ∅, there is
no local minimum point but one global minimum point
(optimal point) in 𝐷. The optimal point in 𝐷 can only
be obtained at a point in 𝜕𝐷. Otherwise, if the optimal
point is obtained at a point in open set 𝐷∖𝜕𝐷, this point
must be the point of local minimum, which contradicts
the fact that 𝑔 can only obtain its local minimum at the
point (𝑦1, 𝑦2) ∈ 𝐸 and 𝐸 ∩𝐷 = ∅.
Further, this optimal point can be obtained in 𝜕𝐷1.
Otherwise, we assume the optimal point (𝑦1, 𝑦2) is only
obtained in 𝜕𝐷2∪𝜕𝐷3 as shown in Figure 1. Then we can
always draw a line segment 𝐿 connecting the optimal point
(𝑦1, 𝑦2) ∈ 𝜕𝐷2 ∪ 𝜕𝐷3 and any point (𝑦1, 𝑦2) ∈ 𝐸. This
line segment 𝐿 must intersect with line segment 𝜕𝐷1 at
point ( ̃︀𝑦1, ̃︀𝑦2). Note that ( ̃︀𝑦1, ̃︀𝑦2) is between points (𝑦1, 𝑦2)
and (𝑦1, 𝑦2) on line segment 𝐿. Recall that the value of 𝑔
at point ( ̃︀𝑦1, ̃︀𝑦2) is greater than the values of 𝑔 at points
(𝑦1, 𝑦2) and (𝑦1, 𝑦2). However, this contradicts the fact
that function 𝑔 is also convex in convex line segment 𝐿.

Case 2: 𝑛 is odd. Due to (4), function 𝑔(𝑦1, 𝑦2|x) can obtain
its local minimum at the point (𝑦1, 𝑦2) = (𝑥𝑛+1

2
, 𝑥𝑛+1

2
), given

(𝑦1, 𝑦2) ∈ [0, 1]× [0, 1]. This point cannot overlap with 𝐷, i.e.,
(𝑥𝑛+1

2
, 𝑥𝑛+1

2
)∩𝐷 = ∅, since any point in 𝐷 must satisfy that

𝑦2 − 𝑦1 > 0. Thus we can follow the similar proof in subcase
2) of Case 1 and draw the same conclusion that this optimal
point in 𝐷 can be obtained in 𝜕𝐷1. �

According to Proposition 3.1, we can consider an equivalent
linear optimization problem to replace (3):

min
𝑦1,𝑦2

𝑔(𝑦1, 𝑦2|x) s.t. (𝑦1, 𝑦2) ∈ 𝜕𝐷1

={(𝑦1, 𝑦2)|𝑦2 − 𝑦1 = 𝑑, 𝑦1 ∈ [0, 1− 𝑑]}. (5)

Thus, we let 𝑦2 = 𝑦1 +𝑑 and only need to find the solution of
facility 1’s location to solve (5), which we denote as 𝑦⋆

1(𝑑;x):

𝑦⋆
1(𝑑;x) = argmin

𝑦1∈[0,1−𝑑]

𝑛∑︁
𝑖=1

(|𝑦1 − 𝑥𝑖|+ |𝑦1 + 𝑑− 𝑥𝑖|). (6)

Before solving (6), it is widely known that if 𝑛 is even,

argmin
𝑦

𝑛∑︁
𝑖=1

|𝑦 − 𝑥𝑖| = [𝑥𝑛
2
, 𝑥(𝑛

2
+1)]. (7)

Define location profile x− 𝑑 = {𝑥1 − 𝑑, 𝑥2 − 𝑑, . . . , 𝑥𝑛 − 𝑑}.
From (6) and (7), we have 𝑦⋆

1(𝑑;x) ∈ [�̃�𝑛, �̃�𝑛+1], where �̃�𝑖 is
denoted as the 𝑖-th order statistic of the set {x− 𝑑,x} ∈ 𝐼2𝑛.
Since 𝑦⋆

1(𝑑;x) should be within feasible interval [0, 1− 𝑑], we
have the solution of facility 1’s location, which is

𝑦⋆
1(𝑑;x) ∈[�̃�𝑛, �̃�𝑛+1] ∩ [0, 1− 𝑑]

= [max{0, �̃�𝑛},min{1− 𝑑, �̃�𝑛+1}]

We can also choose a special 𝑦⋆
1(𝑑;x) to make it strate-

gyproof as shown in Mechanism 1 below. However, we should
note that an arbitrary choice of 𝑦⋆

1(𝑑;x) in the range cannot
guarantee strategyproofness.

Mechanism 1. (𝑦1, 𝑦2) = (𝑦⋆
1(𝑑; x), 𝑦

⋆
1(𝑑; x) + 𝑑) where

𝑦⋆
1(𝑑; x) = max{0, �̃�𝑛} =

{︂
0, if 𝑥𝑛 ≤ 𝑑;
�̃�𝑛, if 𝑥𝑛 > 𝑑.

(8)

Theorem 3.2. Mechanism 1 is strategyproof.

Proof. If 𝑥𝑛 ≤ 𝑑, then 𝑥1 − 𝑑, 𝑥2 − 𝑑, . . . , 𝑥𝑛 − 𝑑 ≤ 0.
Thus �̃�𝑛 = 𝑥𝑛 − 𝑑 ≤ 0 and 𝑦⋆

1(𝑑;x) = max{0, �̃�𝑛} = 0.
Otherwise if 𝑥𝑛 > 𝑑, then �̃�𝑛 ≥ min{𝑥1, 𝑥𝑛 − 𝑑} ≥ 0. Thus
𝑦⋆
1(𝑑;x) = max{0, �̃�𝑛} = �̃�𝑛. Therefore we design 𝑦⋆

1(𝑑;x)
in (8) and 𝑓(x) = (𝑦⋆

1(𝑑;x), 𝑦
⋆
1(𝑑;x) + 𝑑). Suppose that

agent 𝑖 misreports his location from 𝑥𝑖 to 𝑥′
𝑖. Define x′ =

{𝑥1, . . . , 𝑥𝑖−1, 𝑥
′
𝑖, 𝑥𝑖+1, . . . , 𝑥𝑛}, 𝑥𝑛(x

′) = max{x′}, �̃�𝑛(x
′) as

the 𝑖-th order statistic of the set {x′ − 𝑑,x′} ∈ 𝐼2𝑛 and
𝑦⋆
1(𝑑;x

′) as the location of facility 1 in (8) after agent 𝑖’s
misreporting. We divide our discussion of strategyproofness
into three cases according to 𝑥𝑖.

Case 1: 𝑦⋆
1(𝑑;x) ≤ 𝑥𝑖 ≤ 𝑦⋆

1(𝑑;x) + 𝑑. Agent 𝑖 has no
incentive to misreport his location since he has obtained the
minimum cost 𝑑.

Case 2: 𝑥𝑖 < 𝑦⋆
1(𝑑;x). Agent 𝑖 misreports his location from

𝑥𝑖 to 𝑥′
𝑖. We divide this case into two parts according to 𝑥′

𝑖.

(1) 𝑥′
𝑖 < 𝑥𝑖. We have two choices of 𝑦⋆

1(𝑑;x) in (8).
(a) If 𝑥𝑛 ≤ 𝑑, then we choose 0 as 𝑦⋆

1(𝑑;x) in (8). We
have 𝑦⋆

1(𝑑;x) = 0, which contradicts the fact that
𝑦⋆
1(𝑑;x) > 𝑥𝑖 ≥ 0. Hence, this choice never exists.

(b) If 𝑥𝑛 > 𝑑, then we choose �̃�𝑛 as 𝑦⋆
1(𝑑;x) in (8). After

agent 𝑖’s misreporting, since 𝑥′
𝑖 < 𝑥𝑖 < 𝑦⋆

1(𝑑;x), we
still have 𝑥𝑛(x

′) = 𝑥𝑛 > 𝑑 and 𝑦⋆
1(𝑑;x

′) = �̃�𝑛(x
′)

in (8). Since 𝑥′
𝑖 < 𝑥𝑖 < 𝑦⋆1(𝑑;x) = �̃�𝑛, we have

�̃�𝑛(x
′) = �̃�𝑛, which means 𝑦⋆

1(𝑑;x
′) = �̃�𝑛 and new

locations of the two facilities do not change.
(2) 𝑥′

𝑖 > 𝑥𝑖. After agent 𝑖 misreports, we have 𝑥𝑛(x
′) ≥ 𝑥𝑛

and thus 𝑦⋆
1(𝑑;x

′) ≥ 𝑦⋆
1(𝑑;x) in (8). Hence, 𝑐𝑖(𝑓(x

′), 𝑥𝑖)
= 2𝑦⋆

1(𝑑;x
′)+𝑑−2𝑥𝑖 ≥ 𝑐𝑖(𝑓(x), 𝑥𝑖) = 2𝑦⋆

1(𝑑;x)+𝑑−2𝑥𝑖

and agent 𝑖 increases his cost.

Case 3: 𝑥𝑖 > 𝑦⋆
1(𝑑;x) + 𝑑. Agent 𝑖 misreports his location

from 𝑥𝑖 to 𝑥′
𝑖. We divide this case into two parts.

(1) 𝑥′
𝑖 < 𝑥𝑖. After agent 𝑖’s misreporting, we have 𝑥𝑛(x

′) ≤
𝑥𝑛, �̃�𝑛(x

′) ≤ �̃�𝑛 and thus 𝑦⋆
1(𝑑;x

′) ≤ 𝑦⋆
1(𝑑;x) in (8).
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Hence, 𝑐𝑖(𝑓(x
′), 𝑥𝑖) = 2𝑥𝑖−2𝑦⋆

1(𝑑;x
′)−𝑑 ≥ 𝑐𝑖(𝑓(x), 𝑥𝑖)

= 2𝑥𝑖 − 2𝑦⋆
1(𝑑;x)− 𝑑 and agent 𝑖 increases his cost.

(2) 𝑥′
𝑖 > 𝑥𝑖. We have two choices of 𝑦⋆

1(𝑑;x) in (8).
(a) If 𝑥𝑛 ≤ 𝑑, then we choose 0 as 𝑦⋆

1(𝑑;x) in (8). We
have 𝑥𝑖 ≤ 𝑥𝑛 ≤ 𝑑, which contradicts the fact that
𝑥𝑖 > 𝑦⋆

1(𝑑;x) + 𝑑. Hence, this choice never exists.
(b) If 𝑥𝑛 > 𝑑, then we choose �̃�𝑛 as 𝑦⋆

1(𝑑;x) in (8). After
agent 𝑖’s misreporting, since 𝑥′

𝑖 > 𝑥𝑖 > 𝑦⋆
1(𝑑;x) + 𝑑,

we still have 𝑥𝑛(x
′) ≥ 𝑥𝑛 > 𝑑 and 𝑦⋆

1(𝑑;x
′) = �̃�𝑛(x

′)
in (8). Since 𝑥′

𝑖 − 𝑑 > 𝑥𝑖 − 𝑑 > 𝑦⋆
1(𝑑;x) = �̃�𝑛, we

have �̃�𝑛(x
′) = �̃�𝑛, which means 𝑦⋆

1(𝑑;x
′) = �̃�𝑛 and

new locations of the two facilities do not change.

Therefore, Mechanism 1 is strategyproof. �

4 OBNOXIOUS TWO-FACILITY
LOCATION GAMES

In this section, we study the obnoxious two-facility location
game, where all agents dislike the two facilities. We need to
solve the problem: max 𝑔(𝑦1, 𝑦2|x) s.t. (𝑦1, 𝑦2) ∈ 𝐷.

Proposition 4.1. Social utility 𝑔 can reach its maximum
if (𝑦1, 𝑦2) is at one out of three points (0, 𝑑), (1− 𝑑, 1), (0, 1).

Proof. Since function 𝑔 is a convex function according
to Proposition 3.1, 𝑔 has a global maximum in 𝐷. Further, 𝑔
can obtain its global maximum on boundary 𝜕𝐷. Otherwise,
if 𝑔 obtains its global maximum at point (𝑦1, 𝑦2) in open set
𝐷∖𝜕𝐷, that point must be a local maximum point, which
contradicts the fact that 𝑔 is a convex function. Then finding
the maximum point of 𝑔 on 𝐷 is equivalent to finding the
maximum point of 𝑔 on 𝜕𝐷 = 𝜕𝐷1 ∪ 𝜕𝐷2 ∪ 𝜕𝐷3. 𝜕𝐷𝑖’s
(𝑖 = 1, 2, 3) are line segments and thus convex sets. Similarly,
the convex function 𝑔 in each line segment 𝜕𝐷𝑖 reaches its
maximum at the boundary of 𝜕𝐷𝑖, i.e., two endpoints of 𝜕𝐷𝑖.
Overall, the maximum point (𝑦1, 𝑦2) of 𝑔 over the three line
segments can only be among the three corner points of 𝜕𝐷 :
(0, 𝑑), (1− 𝑑, 1), (0, 1). �

It is easy to obtain 𝑂𝑃𝑇2 by using Proposition 4.1. How-
ever, a mechanism outputting 𝑂𝑃𝑇2 the optimal solution
is not strategyproof given 𝑑 < 1. Take an example when
𝑑 = 0, the obnoxious two-facility location game degenerates
to the obnoxious one-facility location game, where the optimal
location is not strategyproof according to [3]. Next, we
propose strategyproof mechanisms.

Mechanism 2. Given a location profile x, return 𝑓(x)=
(𝑦1, 𝑦2) = (0, 1).

Theorem 4.2. Mechanism 2 is group strategyproof with
approximation ratio 𝛾 = 2− 𝑑.

Proof. Mechanism 2 is group strategyproof since (𝑦1, 𝑦2)
is fixed at (0, 1).

The social utility of Mechanism 2 is 𝑆𝑈((0, 1),x) = 𝑛. For
any agent 𝑖’s utility, we have

𝑑 ≤|𝑦1 − 𝑦2| ≤ 𝑢𝑖((𝑦1, 𝑦2), 𝑥𝑖) = |𝑦1 − 𝑥𝑖|+ |𝑦2 − 𝑥𝑖|
≤|𝑦1 + 𝑦2 − 2𝑥𝑖| ≤ 2− 𝑑,

due to |𝑦2 − 𝑦1| ≥ 𝑑. Thus, for the optimal utility, we have

𝑂𝑃𝑇2(x) = max
(𝑦1,𝑦2)∈𝐷

𝑛∑︁
𝑖=1

(|𝑦1 − 𝑥𝑖|+ |𝑦2 − 𝑥𝑖|) ≤ (2− 𝑑)𝑛.

Therefore, 𝛾 = 𝑂𝑃𝑇2(x)
𝑆𝑈((0,1),x)

≤ 2− 𝑑, which is within [1, 2]. �

Mechanism 2 does not take agents’ locations into account.
By counting agents’ numbers in different location intervals,
we propose Mechanism 3 which selects (𝑦1, 𝑦2) among all the
three candidate optimal points (0, 𝑑), (1− 𝑑, 1), (0, 1).

Mechanism 3. Denote 𝑙1 = 1
2
(1− 𝑑) and 𝑙2 = 1

2
(1 + 𝑑).

Given a location profile x, if more than 𝑛
2
agents are located

in [0, 𝑙1], 𝑓(x) = (𝑦1, 𝑦2) = (1− 𝑑, 1), if more than 𝑛
2
agents

are located in [𝑙2, 1], 𝑓(x) = (𝑦1, 𝑦2) = (0, 𝑑), and otherwise,
𝑓(x) = (𝑦1, 𝑦2) = (0, 1).

Theorem 4.3. Mechanism 3 is group strategyproof with
approximation ratio 𝛾 = max{ 3−3𝑑

1+𝑑
, 2
1+𝑑

}.

Proof. We first prove group strategyproofness. We have,
for any 𝑥𝑖 ∈ [0, 𝑙1],

𝑢𝑖((1− 𝑑, 1), 𝑥𝑖) ≥ 𝑢𝑖((0, 1), 𝑥𝑖) ≥ 𝑢𝑖((0, 𝑑), 𝑥𝑖); (9)

for any 𝑥𝑖 ∈ [𝑙2, 1], 𝑢𝑖((0, 𝑑), 𝑥𝑖) ≥ 𝑢𝑖((0, 1), 𝑥𝑖) ≥ 𝑢𝑖((1 −
𝑑, 1), 𝑥𝑖); for any 𝑥𝑖 ∈ (𝑙1, 𝑙2), 𝑢𝑖((0, 1), 𝑥𝑖) ≥ 𝑢𝑖((1−𝑑, 1), 𝑥𝑖),
𝑢𝑖((0, 𝑑), 𝑥𝑖). Let 𝑆 ⊆ 𝑁 be an agent coalition. We must prove
that the agents in 𝑆 cannot all gain by misreporting. We
denote 𝑛1, 𝑛2, 𝑛3 as the numbers of agents in [0, 𝑙1], [𝑙2, 1],
(𝑙1, 𝑙2) without misreporting, respectively. 𝑛′

1, 𝑛
′
2, 𝑛

′
3 are the

numbers of agents in [0, 𝑙1], [𝑙2, 1], (𝑙1, 𝑙2) with misreporting,
respectively. The new location profile is x′ to mislead the
two facilities’ locations to (𝑦′

1, 𝑦
′
2). We have three cases.

Case 1: 𝑛1 > 𝑛
2
, thus (𝑦1, 𝑦2) = (1− 𝑑, 1).

(1) If 𝑛′
1 > 𝑛

2
, then (𝑦′

1, 𝑦
′
2) = (1− 𝑑, 1) and 𝑢𝑖(𝑓(x), 𝑥𝑖) =

𝑢𝑖(𝑓(x
′), 𝑥𝑖) for any agent 𝑖 ∈ 𝑁 .

(2) If 𝑛′
2 > 𝑛

2
, then (𝑦′

1, 𝑦
′
2) = (0, 𝑑). Since 𝑛2 + 𝑛3 ≤ 𝑛

2
,

at least one agent 𝑖 in [0, 𝑙1] misreports his location to
𝑥′
𝑖 ∈ [𝑙2, 1]. Thus 𝑢𝑖(𝑓(x

′), 𝑥𝑖)≤𝑢𝑖(𝑓(x), 𝑥𝑖) due to (9).
(3) Otherwise, (𝑦′

1, 𝑦
′
2) = (0, 1). Since 𝑛′

1 ≤ 𝑛
2
, at least

one agent 𝑖 in [0, 𝑙1] misreports his location to 𝑥′
𝑖 ∈

[𝑙2, 1] ∪ (𝑙1, 𝑙2). Due to (9), 𝑢𝑖(𝑓(x
′), 𝑥𝑖) ≤ 𝑢𝑖(𝑓(x), 𝑥𝑖)

Case 2: 𝑛2 > 𝑛
2
, thus (𝑦1, 𝑦2) = (0, 𝑑). Strategyproofness

analysis of Case 2 is the same as Case 1.
Case 3: Otherwise, (𝑦1, 𝑦2) = (0, 1).We have three subcases

and can similarly follow the proof of Case 1 to draw the same
conclusion that 𝑓 is group strategyproof.

Next, we analyze the ratio 𝛾. We have three cases.
Case 1: 𝑛1 > 𝑛

2
and then (𝑦1, 𝑦2) = (1− 𝑑, 1). We have

𝑆𝑈((1− 𝑑, 1),x) ≥
∑︁

𝑥𝑖∈[0,𝑙1]

(2− 𝑑− 2𝑥𝑖) + 𝑛3𝑑+ 𝑛2𝑑

≥𝑛1 + 𝑛2𝑑+ 𝑛3𝑑, (10)

𝑆𝑈((0, 𝑑),x) ≤
∑︁

𝑥𝑖∈[0,𝑙1]

(𝑥𝑖 + |𝑑− 𝑥𝑖|) + 𝑛3 + 𝑛2(2− 𝑑)

≤𝑛1 max{𝑑, 1− 2𝑑}+𝑛2(2− 𝑑) +𝑛3, (11)

𝑆𝑈((0, 1),x) =𝑛. (12)
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Due to (10), (11), (12) and 𝑛1 > 𝑛
2
, we have

𝑆𝑈((0, 𝑑),x)

𝑆𝑈((1− 𝑑, 1),x)
≤𝑛1 max{𝑑, 1− 2𝑑}+(𝑛− 𝑛1)(2− 𝑑)

𝑛1 + (𝑛− 𝑛1)𝑑

≤
𝑛
2
max{𝑑, 1− 2𝑑}+ 𝑛

2
(2− 𝑑)

𝑛
2
+ (𝑛− 𝑛

2
)𝑑

=max{3− 3𝑑

1 + 𝑑
,

2

1 + 𝑑
},

𝑆𝑈((0, 1),x)

𝑆𝑈((1− 𝑑, 1),x)
≤ 𝑛

𝑛1 + (𝑛− 𝑛1)𝑑
≤ 𝑛

𝑛
2
+ 𝑛

2
𝑑
=

2

1 + 𝑑
,

and thus according to Proposition 4.1,

𝛾=
max{𝑆𝑈((0, 𝑑),x), 𝑆𝑈((0, 1),x)}

𝑆𝑈((1− 𝑑, 1),x)
=max{3− 3𝑑

1 + 𝑑
,

2

1 + 𝑑
}.

Case 2: 𝑛2 > 𝑛
2
. The analysis is similar to Case 1.

Case 3: otherwise, (𝑦1, 𝑦2) = (0, 1). By (11),

𝑆𝑈((0, 𝑑),x) ≤ 𝑛1 + 𝑛2(2− 𝑑) + 𝑛3 = 𝑛2(1− 𝑑) + 𝑛

≤ 𝑛

2
(1− 𝑑) + 𝑛 (13)

and we have 𝑆𝑈((1− 𝑑, 1),x)≤ 𝑛
2
(1− 𝑑) + 𝑛. Thus

𝛾 = max{𝑆𝑈((0, 𝑑),x)

𝑆𝑈((0, 1),x)
,
𝑆𝑈((1− 𝑑, 1),x)

𝑆𝑈((0, 1),x)
}

≤
𝑛
2
(1− 𝑑) + 𝑛

𝑛
=

3− 𝑑

2
.

In conclusion, 𝛾 ≤ max{max{ 3−3𝑑
1+𝑑

, 2
1+𝑑

}, 3−𝑑
2

} = max

{ 3−3𝑑
1+𝑑

, 2
1+𝑑

}, which is within [1, 3]. �

By combining Mechanism 2 and Mechanism 3, we have
the following mechanism which is also group strategyproof
and can obtain a smaller approximation ratio for 𝑑 ∈ [0, 1].

Mechanism 4. Given a location profile x, if 𝑑 ≤ 2−
√
3,

use Mechanism 2 to return (𝑦1, 𝑦2); if 𝑑 > 2 −
√
3, use

Mechanism 3 to return (𝑦1, 𝑦2).

Mechanism 4 has an approximation ratio

𝛾 = min{2− 𝑑,max{3− 3𝑑

1 + 𝑑
,

2

1 + 𝑑
}} ∈ [1, 2].

The next theorem establishes the lower bound for any deter-
ministic strategyproof mechanism.

Theorem 4.4. Given 𝑑 ∈ [0, 1], for any 𝑛 ≥ 2 agents, any
deterministic strategyproof mechanism 𝑓 has an approxima-
tion ratio 𝛾 of at least 7−𝑑

6
.

Proof. Assume 𝑁 = {1, 2, 3}. Let 𝑓 be a determinis-
tic mechanism. Consider the profile x = {𝑥1, 𝑥2, 𝑥3} =
{ 1+3𝑑

4
, 1+𝑑

2
, 3+𝑑

4
} and 𝑓(x) = (𝑦1, 𝑦2). Note that given 𝑑 ∈

[0, 1], 𝑑 ≤ 𝑥1 ≤ 𝑥2 ≤ 𝑥3 ≤ 1. For the social utility, we have
𝑆𝑈((0, 𝑑),x) = 3,

𝑆𝑈((1−𝑑, 1),x) =
6−6𝑑+ |3−7𝑑|+ |2−6𝑑|+ |1−5𝑑|

4
≤ 3,

and 𝑆𝑈((0, 1),x) = 3. Hence, the optimal solution of x is

𝑂𝑃𝑇2(x) =max{𝑆𝑈((0, 𝑑),x), 𝑆𝑈((1− 𝑑, 1),x),

𝑆𝑈((0, 1),x)} = 3. (14)

Denote x′ as the location profile after one of the three agents
misreports. Let (𝑦′

1, 𝑦
′
2) = 𝑓(x′) and (𝑦′

1, 𝑦
′
2) satisfies 𝑦

′
2−𝑦′

1 ≥
𝑑 and 0 ≤ 𝑦′

1, 𝑦
′
2 ≤ 1. We have the following cases.

Case 1: 𝑦1 > 𝑥1 and 𝑦2 ≤ 𝑥3. We have 𝑑 ≤ 𝑦2 − 𝑦1 ≤
𝑥3−𝑥1 = 1−𝑑

2
, which implies 𝑑 ≤ 1

3
. Since 𝑥1 < 𝑦1 ≤ 𝑦2 ≤ 𝑥3,

by similar analysis and conclusion of proposition 4.1, the
social utility can reach its maximum when (𝑦1, 𝑦2) is one out
of (𝑥1, 𝑥1 + 𝑑), (𝑥1, 𝑥3), (𝑥3 − 𝑑, 𝑥3), which is

𝑆𝑈((𝑦1, 𝑦2),x) ≤max{𝑆𝑈((𝑥1, 𝑥1 + 𝑑),x), 𝑆𝑈((𝑥1, 𝑥3),x),

𝑆𝑈((𝑥3 − 𝑑, 𝑥3),x)}

= max{5− 5𝑑+ |5𝑑− 1|
4

,
3(1− 𝑑)

2
,
5− 5𝑑+ |5𝑑− 1|

4
}

≤ 1.5. (15)

Accordingly, by (14) and (15), 𝛾 ≥ 𝑂𝑃𝑇2(x)
𝑆𝑈((𝑦1,𝑦2),x)

≥ 2.

s
0

s
1

s𝑥1 = 1+3𝑑
4 s

𝑥2 = 1+𝑑
2

s𝑥3 = 3+𝑑
4s

𝑑

𝑥′
1s s

𝑦1

s
𝑦2

Figure 2: Case 2 for the proof of Theorem 4.4.

Case 2: 𝑦1 ≤ 𝑥1 and 𝑦2 ≤ 𝑥1, as shown in Figure 2. In this
case, 𝑢1((𝑦1, 𝑦2), 𝑥1) ≤ 2𝑥1 − 𝑑 = 1+𝑑

2
. Consider 𝑥′

1 = 0 and

x′ = {𝑥′
1, 𝑥2, 𝑥3}. Note that 𝑆𝑈((0, 𝑑),x′) = 5+𝑑

2
≤ 3,

𝑆𝑈((1− 𝑑, 1),x′) =
11− 7𝑑+ |2− 6𝑑|+ |1− 5𝑑|

4{︂
> 3, if 𝑑 ∈ [0, 1

9
);

≤ 3, if 𝑑 ∈ [ 1
9
, 1].

and 𝑆𝑈((0, 1),x′) = 3. Thus the optimal solution of x′ is

𝑂𝑃𝑇2(x
′) = max{𝑆𝑈((1− 𝑑, 1),x′), 𝑆𝑈((0, 1),x′)} ≥ 3.

(16)

As 𝑓 is strategyproof and agent 1 cannot gain by misreporting
from 𝑥1 to 𝑥′

1, the utility of agent 1 must satisfy

𝑢1((𝑦
′
1, 𝑦

′
2), 𝑥1) = |𝑦′

1 − 𝑥1|+ |𝑦′
2 − 𝑥1|

≤ 𝑢1((𝑦1, 𝑦2), 𝑥1) ≤
1 + 𝑑

2

⇔
{︂

2𝑥1 − 1+𝑑
2

≤ 𝑦′
1 + 𝑦′

2 ≤ 2𝑥1 +
1+𝑑
2

,
|𝑦′

1 − 𝑦′
2| ≤ 1+𝑑

2
,

⇔
{︂

𝑦′
1 + 𝑦′

2 ≤ 1 + 2𝑑,
𝑦′
2 − 𝑦′

1 ≤ 1+𝑑
2

.
(17)

By (17), the domain of (𝑦′
1,𝑦

′
2) is a convex polygon with corner

points:

(1) (0, 𝑑), (0, 1+𝑑
2

), ( 1+𝑑
2

, 1+3𝑑
2

), ( 1+3𝑑
4

, 3+5𝑑
4

) if 𝑑 ∈ [0, 1
5
];

(2) (0, 𝑑),(0, 1+𝑑
2

),( 1+𝑑
2

, 1+3𝑑
2

),( 1−𝑑
2

, 1),(2𝑑, 1) if 𝑑∈( 1
5
, 1
3
];

(3) (0, 𝑑), (0, 1+𝑑
2

), ( 1−𝑑
2

, 1), (1− 𝑑, 1) if 𝑑 ∈ ( 1
3
, 1].

Hence, for the profile x′, by similar analysis and conclusion
of Proposition 4.1, the social utility of x′ under 𝑓 can obtain
its maximum if (𝑦1, 𝑦2) is at one out of all corner points. By
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some calculations, the social utility of x′ under 𝑓 is

𝑆𝑈((𝑦′
1, 𝑦

′
2),x

′) ≤⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑆𝑈((0, 𝑑),x′), if 𝑑 ∈ [0, 1

5
];

max{𝑆𝑈((0, 𝑑),x′), 𝑆𝑈(( 1−𝑑
2

, 1),x′),
𝑆𝑈((2𝑑, 1),x′)}, if 𝑑 ∈ ( 1

5
, 1
3
];

max{𝑆𝑈((0, 𝑑),x′), 𝑆𝑈(( 1−𝑑
2

, 1),x′),
𝑆𝑈((1− 𝑑, 1),x′)}, if 𝑑 ∈ ( 1

3
, 1],

=

⎧⎨⎩
5+𝑑
2

, if 𝑑 ∈ [0, 1
5
];

max{ 5+𝑑
2

, 5+𝑑
2

, 3− 2𝑑}, if 𝑑 ∈ ( 1
5
, 1
3
];

max{ 5+𝑑
2

, 5+𝑑
2

, 2 + 𝑑}, if 𝑑 ∈ ( 1
3
, 1],

=
5 + 𝑑

2
.

(18)

Accordingly, by (16) and (18), 𝛾 ≥ 𝑂𝑃𝑇2(x
′)

𝑆𝑈((𝑦′
1,𝑦

′
2),x

′) ≥ 5
5+𝑑

.

Case 3: 𝑦1 ≤ 𝑥1 and 𝑥1 < 𝑦2 ≤ 𝑥3. In this case,

𝑆𝑈((𝑦1, 𝑦2),x)=(𝑥1 + 𝑥2 + 𝑥3− 𝑦1) + (𝑥3− 𝑥1 + |𝑦2− 𝑥2|)
=𝑥2 + 2𝑥3 − 𝑦1 + |𝑦2 − 𝑥2|

≤𝑥2 + 2𝑥3 − 0 + (𝑥3 − 𝑥2) =
3(3 + 𝑑)

4
.

(19)

Accordingly, by (14) and (19), 𝛾 ≥ 𝑂𝑃𝑇2(x)
𝑆𝑈((𝑦1,𝑦2),x)

= 4
3+𝑑

.

s
0

s
1

s𝑥1 = 1+3𝑑
4 s

𝑥2 = 1+𝑑
2

s𝑥3 = 3+𝑑
4s

𝑑

𝑥′
3ss

𝑦1

s
𝑦2

Figure 3: Case 4 for the proof of Theorem 4.4.

Case 4: 𝑦2 > 𝑥3, as shown in Figure 3. In this case,
𝑢3((𝑦1, 𝑦2), 𝑥3) = 𝑦2 − 𝑦1 ≤ 1. Consider 𝑥′

3 = 1 and
x′ = {𝑥1, 𝑥2, 𝑥

′
3}. Note that 𝑆𝑈((0, 𝑑),x′)= 2𝑥1−𝑑+2𝑥2−𝑑+

2𝑥′
3−𝑑 = 7−𝑑

2
≥ 3, 𝑆𝑈((1−𝑑, 1),x′) = 5−𝑑+|3−7𝑑|+|2−6𝑑|

4
≤ 3

and 𝑆𝑈((0, 1),x′) = 3. Thus the optimal solution of x′ is

𝑂𝑃𝑇2(x
′) = 𝑆𝑈((0, 𝑑),x′) =

7− 𝑑

2
. (20)

As 𝑓 is strategyproof and agent 3 cannot gain by misreporting
from 𝑥3 to 𝑥′

3, the utility of agent 3 must satisfy

𝑢3((𝑦
′
1, 𝑦

′
2), 𝑥3)= |𝑦′

1− 𝑥3|+ |𝑦′
2− 𝑥3|≤𝑢3((𝑦1, 𝑦2), 𝑥3) ≤ 1

⇔ 2𝑥3 − 1 ≤ 𝑦′
1 + 𝑦′

2 ≤ 2𝑥3 + 1 ⇔ 1 + 𝑑

2
≤ 𝑦′

1 + 𝑦′
2. (21)

By (21), the feasible region of (𝑦′
1, 𝑦

′
2) is a convex quadrangle

with corner points (0, 1+𝑑
2

), (0, 1), (1− 𝑑, 1) and ( 1−𝑑
4

, 1+3𝑑
4

).
Hence, for the profile x′, by similar analysis and conclusion
of Proposition 4.1, the social utility of x′ under 𝑓 can obtain
its maximum if (𝑦1, 𝑦2) is at one out of all four corner points,
which is

𝑆𝑈((𝑦′
1, 𝑦

′
2),x

′) ≤ max{𝑆𝑈((0,
1 + 𝑑

2
),x′), 𝑆𝑈((0, 1),x′),

𝑆𝑈((1− 𝑑, 1),x′), 𝑆𝑈((
1− 𝑑

4
,
1 + 3𝑑

4
),x′)}

= max{5 + 𝑑

2
, 3,

5− 𝑑+ |3− 7𝑑|+ |2− 6𝑑|
4

, 2 + 𝑑} = 3.

(22)

Accordingly, by (20) and (22), 𝛾 ≥ 𝑂𝑃𝑇2(x
′)

𝑆𝑈((𝑦′
1,𝑦

′
2),x

′) = 7−𝑑
6

.

In conclusion, 𝑓 has an approximation ratio 𝛾 of at least

min{2, 6

5 + 𝑑
,

4

3 + 𝑑
,
7− 𝑑

6
} =

7− 𝑑

6
∈ [1,

7

6
].

�

5 TWO-FACILITY LOCATION GAMES
WITH TRIPLE-PREFERENCE

In this section, we design the deterministic strategyproof
mechanism for the two-facility location game with triple-
preference. Each agent has his own preference towards one out
of the two heterogeneous facilities and we denote preference of
agent 𝑖 to facility 𝑗 as 𝑝𝑗𝑖 which is −1, 0 or 1. An agent 𝑖 with

𝑝𝑗𝑖 = 1 prefers to be close to facility 𝑗, an agent 𝑖 with 𝑝𝑗𝑖 = −1

prefers to be far away from facility 𝑗 and an agent 𝑖 with 𝑝𝑗𝑖 =
0 is indifferent to facility 𝑗 where 𝑗 = 1, 2. We denote 𝑝𝑖 =
{𝑝1𝑖 , 𝑝2𝑖 } ∈ {−1, 0, 1}2 and p = {𝑝1, 𝑝2, . . . , 𝑝𝑛} represents the
profile of all 𝑛 agents’ preferences. We allow any agent to
misreport both his location and his preferences. The social
planner needs to gather information of both agents’ locations
x and preferences p to determine the two facilities’ locations
(𝑦1, 𝑦2). Given the two facilities’s locations (𝑦1, 𝑦2) = 𝑓(x,p),
we define agent 𝑖’s utility towards facility 𝑗 as

𝑢𝑗
𝑖 =

⎧⎨⎩
|𝑦𝑗 − 𝑥𝑖|, if 𝑝𝑗𝑖 = −1;

1, if 𝑝𝑗𝑖 = 0;

1− |𝑦𝑗 − 𝑥𝑖|, if 𝑝𝑗𝑖 = 1.

(23)

Note that in the case that 𝑝𝑗𝑖 = −1, to make the approxima-
tion ratio positive and meaningful, we require non-negative
utilities and purposely add 1 to the utility; in the case of
𝑝𝑗𝑖 = 0, we define agent 𝑖’s utility as 1. Those methods are
widely used (e.g., [1, 25]). Denote agent 𝑖’s utility as

𝑢𝑖 = 𝑢1
𝑖 + 𝑢2

𝑖 . (24)

The social utility of a mechanism 𝑓 is defined as:

𝑆𝑈(𝑓(x,p), (x,p)) =

𝑛∑︁
𝑖=1

𝑢𝑖(𝑓(x,p), 𝑥𝑖, 𝑝𝑖). (25)

𝑂𝑃𝑇3(x,p) is the optimal social utility. Next, we formally
define the strategyproofness in the two-facility location game
with triple-preference.

Definition 5.1. A mechanism 𝑓 is strategyproof in the
two-facility location game with triple-preference if no agent
can benefit from misreporting his location or preferences.
Formally, given agent 𝑖, location profile x = {𝑥𝑖,x−𝑖} ∈
𝐼𝑛, preference profile p = {𝑝1𝑖 , 𝑝2𝑖 ,p−𝑖} ∈ {−1, 0, 1}2𝑛, any
misreported location 𝑥′

𝑖 ∈ 𝐼 and any misreported preferences

{𝑝
′1
𝑖 , 𝑝

′2
𝑖 } ∈ {−1, 0, 1}2, it holds that

𝑢𝑖(𝑓((𝑥𝑖,x−𝑖), (𝑝
1
𝑖 , 𝑝

2
𝑖 ,p−𝑖)), 𝑥𝑖, 𝑝𝑖)

≥𝑢𝑖(𝑓((𝑥
′
𝑖,x−𝑖), (𝑝

′1
𝑖 , 𝑝

′2
𝑖 ,p−𝑖), 𝑥𝑖, 𝑝𝑖).

The group strategyproofness in the two-facility location
game with triple-preference can be similarly defined as in
Definition 2.2. A mechanism 𝑓 has an approximation ratio 𝛾,
if for any profile x ∈ 𝐼𝑛 and p ∈ {−1, 0, 1}2𝑛, 𝑂𝑃𝑇3(x,p) ≤
𝛾𝑆𝑈(𝑓,x,p).
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Define eighteen sets of agents 𝑄1∪· · ·∪𝑄18 = 𝑁 as shown
in Table 1, depending on their locations and preferences.
Then define the following sets based on 𝑄1 . . . 𝑄18 :

𝑅1 = {𝑖|𝑝1𝑖 = 1} = 𝑄1 ∪𝑄2 ∪𝑄5 ∪𝑄6 ∪𝑄11 ∪𝑄16,

𝑅2 = {𝑖|𝑝2𝑖 = 1} = 𝑄1 ∪𝑄3 ∪𝑄5 ∪𝑄7 ∪𝑄9 ∪𝑄14,

𝑅3 = {𝑖|𝑝1𝑖 = −1} = 𝑄3 ∪𝑄4 ∪𝑄7 ∪𝑄8 ∪𝑄12 ∪𝑄17,

𝑅4 = {𝑖|𝑝2𝑖 = −1} = 𝑄2 ∪𝑄4 ∪𝑄6 ∪𝑄8 ∪𝑄10 ∪𝑄15. (26)

Then define the social utility function 𝑆𝑈(𝑓(x,p),(x,p))

Set of agents
{𝑝1𝑖 , 𝑝2𝑖 } =

{1,1} {1,-1} {-1,1} {-1,-1}

𝑥𝑖 ∈
[0, 1

2
] 𝑄1 𝑄2 𝑄3 𝑄4

( 1
2
, 1] 𝑄5 𝑄6 𝑄7 𝑄8

Set of agents
{𝑝1𝑖 , 𝑝2𝑖 } =

{0,1} {0,-1} {1,0} {-1,0} {0,0}

𝑥𝑖 ∈
[0, 1

2
] 𝑄9 𝑄10 𝑄11 𝑄12 𝑄13

( 1
2
, 1] 𝑄14 𝑄15 𝑄16 𝑄17 𝑄18

Table 1: Sets of agents 𝑄1 −𝑄18.

based on (23), (24), (25), Table 1 and (26):

𝑆𝑈((𝑦1, 𝑦2), (x,p))=
∑︁
𝑖∈𝑅1

(1− |𝑦1 − 𝑥𝑖|)+
∑︁
𝑖∈𝑅2

(1− |𝑦2 − 𝑥𝑖|)

+
∑︁
𝑖∈𝑅3

|𝑦1−𝑥𝑖|+
∑︁
𝑖∈𝑅4

|𝑦2−𝑥𝑖|+ |𝑄13|+ |𝑄18|+
18∑︁
𝑖=9

|𝑄𝑖|. (27)

To obtain 𝑂𝑃𝑇3 is to solve

max𝑆𝑈((𝑦1, 𝑦2), (x,p)),

s.t. (𝑦1, 𝑦2) ∈ 𝐺 = {(𝑦1, 𝑦2)||𝑦2 − 𝑦1| ≥ 𝑑, 0 ≤ 𝑦1, 𝑦2 ≤ 1}.
Note that different from the feasible region 𝐷 in problem
(3), the feasible region 𝐺 includes two isosceles right tri-
angles, as the two facilities are different to any agent. A
mechanism outputting 𝑂𝑃𝑇3 is not strategyproof since this
triple-preference game’s special case is the obnoxious two-
facility location game. We need to design a new deterministic
strategyproof mechanism. Define 𝑁 = 𝑅5 ∪𝑅6 ∪𝑅7, where

𝑅5 = 𝑄2 ∪𝑄7 ∪𝑄10 ∪𝑄11 ∪𝑄14 ∪𝑄17,

𝑅6 = 𝑄3 ∪𝑄6 ∪𝑄9 ∪𝑄12 ∪𝑄15 ∪𝑄16,

𝑅7 = 𝑄1 ∪𝑄4 ∪𝑄5 ∪𝑄8 ∪𝑄13 ∪𝑄18. (28)

Mechanism 5. If |𝑅5| ≥ |𝑅6|, 𝑓(x,p) = (𝑦1, 𝑦2) = (0, 1),
otherwise, 𝑓(x,p) = (𝑦1, 𝑦2) = (1, 0).

Theorem 5.2. Mechanism 5 is group strategyproof with
approximation ratio 4.

Proof. By (23), (24) and Table 1, we have for any agent
𝑖 ∈ 𝑅5, 𝑢𝑖((0, 1), 𝑥𝑖, 𝑝𝑖) ≥ 𝑢𝑖((1, 0), 𝑥𝑖, 𝑝𝑖); for any agent
𝑖 ∈ 𝑅6, 𝑢𝑖((1, 0), 𝑥𝑖, 𝑝𝑖) ≥ 𝑢𝑖((0, 1), 𝑥𝑖, 𝑝𝑖); and for any agent
𝑖 ∈ 𝑅7, 𝑢𝑖((0, 1), 𝑥𝑖, 𝑝𝑖) = 𝑢𝑖((1, 0), 𝑥𝑖, 𝑝𝑖). Note that, in
Mechanism 5, there are only two options of the two facilities’
locations, which are (0, 1) and (1, 0). By following the similar
proof of group strategyproofness in Theorem 4.3, obviously,
we can also prove Mechanism 5 is group strategyproof.

Next, we prove approximation ratio 𝛾. Without loss of
generality, assume that |𝑅5| ≥ |𝑅6|, and therefore (𝑦1, 𝑦2) =
(0, 1). For the optimal utility, because |𝑅5| ≥ |𝑅6|, we have

𝑂𝑃𝑇3(x,p) = max
(𝑦1,𝑦2)∈𝐺

𝑆𝑈((𝑦1, 𝑦2), (x,p))

=
∑︁
𝑖∈𝑁

max
(𝑦1,𝑦2)∈𝐺

(𝑢1
𝑖 + 𝑢2

𝑖 ) ≤ 2𝑁

=2(|𝑅5|+ |𝑅6|+ |𝑅7|) ≤ 4|𝑅5|+ 2|𝑅7|. (29)

By (27) and (28), we have the social utility of Mechanism 5:

𝑆𝑈((0, 1), (x,p)) =
∑︁

𝑖∈𝑅1∪𝑅4

(1− 𝑥𝑖) +
∑︁

𝑖∈𝑅2∪𝑅3

𝑥𝑖

+ |𝑄13|+ |𝑄18|+
18∑︁
𝑖=9

|𝑄𝑖|

≥(|𝑄1|+ |𝑄2|+ |𝑄11|+ |𝑄2|+ |𝑄4|+ |𝑄10|)× (1− 0.5)

+ (|𝑄5|+ |𝑄7|+ |𝑄14|+ |𝑄7|+ |𝑄8|+ |𝑄17|)× 0.5

+ |𝑄13|+ |𝑄18|+
18∑︁
𝑖=9

|𝑄𝑖|

=|𝑅5|+ 0.5|𝑅7|+ 0.5(|𝑄10|+ |𝑄11|+ |𝑄14|+ |𝑄17|)
+ (|𝑄9|+ |𝑄12|+ |𝑄15|+ |𝑄16|) + 1.5(|𝑄13 +𝑄18|)

≥|𝑅5|+ 0.5|𝑅7|. (30)

By (29) and (30), we have the approximation ratio,

𝛾 ≤ 𝑂𝑃𝑇3(x,p)

𝑆𝑈((0, 1), (x,p))
≤ 4|𝑅5|+ 2|𝑅7|

|𝑅5|+ 0.5|𝑅7|
= 4.

�

The lower bound result of Theorem 4.4 for the obnoxious
two-facility location game can carry over to the two-facility
location game with triple-preference as we have remarked
that the obnoxious facility location game is a special case of
the two-facility location game with triple-preference.

6 CONCLUSIONS

We considered the mechanism design problem of a social
planner for locating two facilities with minimum distance
requirement on a line interval, where a set of 𝑛 strategic
agents report their locations. In the two-facility location
game, we found the optimal solution and proved carefully
choosing one optimal solution as output is strategyproof. In
the obnoxious two-facility location game, the optimal solution
is not strategyproof. We proposed new deterministic group
strategyproof mechanisms with provable approximation ratios
and obtained the lower bound 7−𝑑

6
. In the two-facility location

game with triple-preference, we designed a deterministic
group strategyproof mechanism with approximation ratio 4.

In the future, we will study the randomized mechanism
design in the obnoxious two-facility location game and in the
two-facility location game with triple-preference. Besides, we
will consider minimizing the maximum cost of all agents and
maximizing the minimum utility of all agents. Moveover, we
will extend our model to include more than two facilities or
consider the facility location games in more general metric
spaces such as circles and trees.
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