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ABSTRACT
Task assignment and routing are tightly coupled problems for teams
of mobile agents. To fairly balance the workload, each agent should
be assigned a set of tasks which take a similar amount of time
to complete. The completion time depends on the time needed to
travel between tasks which depends on the order of tasks. We for-
mulate the task assignment problem as the minimum Hamiltonian
partition problem (MHPP) form agents, which is equivalent to the
minmax multiple traveling salesperson problem (m-TSP). While
the MHPP’s cost function depends on the order of tasks, its solu-
tions are similar to solutions of the average Hamiltonian partition
problem (AHPP) whose cost function is order-invariant. We prove
that the AHPP is NP-hard and present an effective heuristic, AHP,
for solving it. AHP improves a partitions of a graph using a series
of transfer and swap operations which are guaranteed to improve
the solution’s quality. The solution generated by AHP is used as an
initial partition for an algorithm, AHP-mTSP, which solves the com-
bined task assignment and routing problems to near optimality. For
n tasks andm agents, each iteration of AHP is O(n2) and AHP-mTSP
has an average run-time that scales with n2.11m0.33. Compared to
state-of-the-art approaches, our approach found approximately 10%
better solutions for large problems in a similar run-time.

KEYWORDS
Task allocation; vehicle routing; combinatorial optimization; multi-
agent systems
ACM Reference Format:
Isaac Vandermeulen, Roderich Groß, and Andreas Kolling. 2019. Balanced
Task Allocation by Partitioning the Multiple Traveling Salesperson Problem.
In Proc. of the 18th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2019), Montreal, Canada, May 13–17, 2019,
IFAAMAS, 9 pages.

1 INTRODUCTION
Work is shared in multi-agent teams by assigning different tasks to
each agent. For tasks associated with physical locations, a mobile
agent must travel to the task before completing it. The total time
taken for this agent to complete its tasks includes the time needed
to travel between consecutive tasks, which depends on the order of
tasks. This transit time must be considered when fairly assigning
tasks among agents.

Task allocation problems are based on the central objective of
maximizing the utility of the tasks allocated to each agent [13, 21].
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For heterogeneous teams, different agents have different utilities
for each task [12]; for homogeneous teams, the utility depends only
on the task [27]. Utility can be defined as the sum over subsets of
tasks and is not necessarily the sum of the utility of individual tasks
[31, 37]. The objective of task allocation is to maximize either the
sum of utilities, or the utility of the agent with the smallest utility
which results in a fair allocation [47].

Tasks are commonly allocated using economic approaches such
as auctions [5, 12, 30], markets [8, 47], or token exchange [9]. An-
other approach is using bounties where agents are only rewarded
after completing a task [45]. Task assignment and path finding
(TAPF) are often combined into a single problem to find optimal
assignments while planning collision free paths [26] which can be
extended to include additional tasks by using auctions [27] or by
not requiring every task to be completed [17].

For mobile agents, the combined task allocation and routing
problem is closely related to the multiple traveling salesperson
problem (m-TSP) [2, 19, 36, 40, 46]. Them-TSP asks: “What is the
quickest way form salespeople to visit a set of n cities?” and is a
generalization of the 1-TSP, which is well-known NP-hard rout-
ing problem [33]. While task assignment is primarily a partition
problem, them-TSP is primarily a routing problem.

There are two common objectives for them-TSP. In the minsum
m-TSP, the objective is to minimize the sum of the path lengths; in
the minmaxm-TSP, the objective is to minimize the length of the
longest path. In practical applications, these objectives correspond
to minimizing total distance traveled by the team and minimizing
mission time, respectively. These objectives are usually conflicting
even for small problems [35]. Minmax objectives are more suited
to balanced task allocation; however, a minsum objective with a
constraint on agents’ path lengths can have a similar result [41, 43].

The 1-TSP (and hence them-TSP) is NP-hard [33]. Christofides
[6] proposed an O(n3) algorithm which returns a tour with length
no more than 3/2 times the optimal length. Other 1-TSP heuristics
consist of an initial tour construction phase followed by an improve-
ment phase [22]. The variable k-opt method proposed by Lin and
Kernighan [23] and similar variants [16, 18] are some of the most
effective improvement-based heuristics. It is a major component of
the freely available Concorde [7] solver.

Solutions to the minmaxm-TSP are often found by converting
the problem into the 1-TSP by copying one vertexm times [14] or
dividing a 1-TSP solution intom pieces [3]. Alternatively, vertices
can be assigned to agents, for example by k-means clustering [29],
before finding a route for each agent by solving the 1-TSP. A multi-
agent version of Christofides’ algorithm can guarantee a solution
with an optimality bound of 5/2 − 1/m [10].
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Otherm-TSP heuristics use a common approach of tour genera-
tion, improvement, and recombination. An initial set of paths are
generated using a modified version of Christofides’ algorithm [4],
k-means clustering [20], k-centers clustering [28], nearest neighbor,
greedy, or random heuristics. These tours are improved by tabu
search [32], simulated annealing [38], compressed annealing [25],
or general variable neighborhood search [39]. If many solutions
are generated, they can be recombined using evolutionary methods
[1], ant colony optimization [24], invasive weed optimization [42],
or a memetic algorithm [44].

In this paper, we design a new task allocation algorithm for
mobile agents which allocates tasks to minimize the completion
time for a team of agents. This algorithm exploits a relationship
between average and minimum Hamiltonian cycle lengths which
is explained in Section 3. The algorithm consists of partitioning
(Section 4) and routing (Section 5) phases, can be decentralized
(Section 6), and can incorporate constraints on the agents’ start and
end locations (Section 7). Some comparisons with existing minmax
m-TSP algorithms are presented in Section 8.

2 TASK ALLOCATION AND THEm-TSP
The combined task allocation and routing problem can be defined
on a complete graph G = (V, E)with verticesV representing tasks
and edge set E = V ×V representing transit between two tasks.
Task completion times are represented by a functionwv : V → R≥0
and transit times are represented bywe : E → R≥0. We denote the
number of tasks by n and the number of agents bym.

Suppose agent i is assigned a set of tasks,Vi ⊂ V withni = |Vi |.
The time needed to complete these tasks depends on the order
they are completed. This order can be represented as a cycle c =
(e0, . . . , eni )which visits each vertex ofVi once. For an assignment
Vi and route c , the completion time is

ttotal(Vi , c) =
∑
v ∈Vi

wv(v) +
∑
e ∈c

we(e). (1)

Each vertex is incident to exactly two edges of the cycle, so we can
definew : E → R≥0 byw(e) = 1

2 (wv(v0) +wv(v1)) +we(e) where
e = (v0,v1) and then rewrite (1) simply as

ttotal(Vi , c) =
∑
e ∈c

w(e). (2)

Through out the remainder of the paper, we simplify notation by
using the edge weightw instead ofwv andwe.

A subset of vertices Vi ⊂ V induces a subgraph Gi of G. A
Hamiltonian cycle on Gi is a cycle which visits each vertex exactly
once. Let c∗(Gi ) be the shortest Hamiltonian cycle on Gi . Agent i
can complete its assigned tasks as quickly as possible by following
c∗ and so we define the size of a subgraph Gi by

Sm(Gi ) =
∑

e ∈c∗(Gi )
w(e). (3)

Computing Sm is difficult because finding the shortest Hamiltonian
cycle is equivalent to solving the 1-TSP which is NP-hard [33]. In
Section 3 we define an alternate size of subgraphs which can be
computed in polynomial time and provide relationship between it
and Sm.

A partition, P = {G1, . . . ,Gm }, of G is a set of subgraphs with
each vertex of G contained in exactly one subgraph Gi . The task
assignment problem is to partition G intom subgraphs while mini-
mizing the size required for the slowest agent to complete all of its
tasks. As the time required for agent i to complete the tasks ofVi
is equal to the size Sm(Gi ), we define the cost of a partition as

Cm(P) = max
Gi ∈P

{Sm(Gi )} . (4)

We define the task allocation problem as the Minimimum Hamil-
tonian Partition Problem (MHPP) whose objective is to find the
optimal partition P∗ which minimizes Cm.

Problem 1 (MHPP). Let G = (V, E,w) be a complete weighted
graph. For a givenm ≥ 2, find a partition P = {G1, . . . ,Gm } of G
which minimizes Cm as defined in Equation 4.

The MHPP is closely related to the minmax multiple traveling
salesperson problem (m-TSP). A strategy for them-TSP is a set ofm
disjoint cycles, S = {c1, . . . , cm } such that eachv ∈ V is in exactly
one cycle of S. The cost of a strategy is the length of its longest
cycle:

C(S) = max
c ∈S

{∑
e ∈c

w(e)
}
. (5)

The objective of them-TSP is to find S∗ which minimizes C .

Problem 2 (m-TSP). Let G = (V, E,w) be a complete weighted
graph. For a given m ≥ 2, find a strategy S = {c1, . . . , cm } on G
which minimizes C as defined in Equation 5.

The MHPP andm-TSP are equivalent problems. A solution to
the MHPP can be converted to a solution to them-TSP by solving
the 1-TSP on each subgraph of the partition. A solution to them-
TSP can be converted to a solution to the MHPP by defining each
subgraph by the vertices of a single cycle of them-TSP solution.
For the remainder of the paper, all cycles are Hamiltonian.

The m-TSP can also be defined for non-cyclic paths. For the
majority of this paper, we consider the cyclic version of them-TSP
and extend these results to non-cyclic paths in Section 7.

3 A PROXY FOR MINIMUM CYCLE LENGTH
The MHPP is difficult to solve because Sm(Gi ) can only be com-
puted by solving the NP-hard 1-TSP. Instead, we consider a similar
partition problem with an easy-to-compute cost function.

Problem 3 (AverageHamiltonian Partition Problem (AHPP)).
Let G = (V, E) be a complete weighted graph. For a givenm ≥ 2,
find a partition P = {G1, . . . ,Gm } of G which minimizes

Ca(P) = max
Gi ∈P

{Sa(Gi )} (6)

where Sa(Gi ) is the average length of a cycle on the subgraph Gi .
The AHPP uses the average cycle length in its cost function

instead of the minimum cycle length. The average cycle length can
be computed in quadratic time. Since Gi is a complete subgraph,
each of its edges is equally likely to appear in a cycle. There are
|Ei | = ni (ni−1)

2 edges in Gi and ni edges in a cycle so

Sa(Gi ) = ni
∑
e ∈Ei

2
ni (ni − 1)w(e) =

2
ni − 1

∑
e ∈Ei

w(e). (7)
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Figure 1: Minimum vs average cycle lengths of randomly
sampled subgraphs of a 2D Euclidean graph (top left), a 3D
Euclidean graph (top right), an Erdős-Rényi random graph
with weights from an exponential distributionwith parame-
ter 1 (bottom left), and the graph of the lower 48 US capitals
(bottom right). Dots represents the average and estimated
minimum cycle lengths (computed using Concorde [7]) of a
randomly sampled subgraph, the solid line is the mean re-
lationship between Sa and Sm, and the dashed lines are the
2.5% and 97.5% quantiles.

Using this formula, Sa(Gi ) can be computed in O(n2i ). Computing
Ca(P) requires computation of Sa(Gi ) for allm subgraphs of P. As∑m
i=1 n

2
i < n2, it can be computed in O(n2).

3.1 Is Ca a good proxy for Cm?
Our intention is to use the solution to the AHPP as a solution to
the MHPP. Although Sa(Gi ) is in general much larger than Sm(Gi )
and not proportional to it, there is a relationship between Sa and
Sm for subgraphs of the same graph (Figure 1). For many graphs

Sm(Gi ) = f (Sa(Gi )) + ν (8)

where f is a monotonically increasing function and ν is 0-mean
noise. For any α ∈ (0, 0.5), we define b−α ,b+α ∈ R>0 such that

P
[
ν ≥ −b−α

]
= P

[
ν ≤ +b+α

]
= 1 − α .

For α = 0.25, [−b−α ,b+α ] is the 95% confidence interval for ν . We use
these quantiles to establish that solutions to the AHPP are good
solutions for the MHPP.

Lemma 1. Suppose that G is such that (8) holds, then Cm(P) =
f (Ca(P)) + ν for any partition P of G.

Sketch of proof. Let G∗m,G∗a ∈ P be the subgraphs which
maximize Sm and Sa, respectively. This lemma is a result of the
facts that Sa(G∗a ) ≥ Sa(G∗m), Sm(G∗m) ≥ Sm(G∗a ), and that (8) holds
for both G∗m and G∗a . □

Ca(P∗a ) Ca(P∗m)

f (Ca(P∗a )) − b−α
f (Ca(P∗m)) − b−α

Cm(P∗m)

f (Ca(P∗a ))
f (Ca(P∗m))

Cm(P∗a )

f (Ca(P∗a )) + b+α
f (Ca(P∗m)) + b+α

Cm(P∗m) + b−α + b+α

Figure 2: Magnified section of the bottom right graph of Fig-
ure 1 showing quantities involved in the proof of Theorem 1.
Light gray dots represent (Sa(Gi ), Sm(Gi )) for subgraphs G.
Dark gray dots represent (Ca(P),Cm(P)) for partitions of G.
The red and green dots represent the partitions which min-
imize Ca and Cm.

Theorem 1. Suppose that G is such that (8) holds, then

P
[
Cm(P∗a ) ≤ Cm(P∗m) + b−α + b+α

] ≥ (1 − α)2
where P∗a and P∗m are the partitions that minimize Ca and Cm as
defined in (6) and (4).

Proof. Some quantities used in this proof are colored according
to Figure 2 to aid understanding. First, we define the events:

A : Cm(P∗a ) ≤ Cm(P∗m) + b−α + b+α
B : Cm(P∗a ) ≤ f (Ca(P∗a )) + b+α
C : Cm(P∗m) ≥ f (Ca(P∗m)) − b−α .

Since P∗a minimizes Ca, it is always true that Ca(P∗a ) ≤ Ca(P∗m).
The monotonicity of f preserves the inequality so f (Ca(P∗a )) ≤
f (Ca(P∗m)). If B holds then

Cm(P∗a ) ≤ f (Ca(P∗a )) + b+α ≤ f (Ca(P∗m)) + b+α .
If C also holds, then

Cm(P∗a ) ≤ f (Ca(P∗m)) − b−α + b−α + b+α
≤ Cm(P∗m) + b−α + b+α = Cm(P∗m) + b−α + b+α .

Therefore B ∩ C⇒ A so P
[
A
] ≥ P[B ∩ C

]
. As B and C depend on

different variables (P∗a and P∗m), they are independent so P
[
A
] ≥

P
[
B
] × P[C] . By Lemma 1, the probabilities of B and C are both at

least (1 − α) and therefore P
[
A] ≥ (1 − α)2. □

Corollary 1. Suppose there exists a graphG and f : R≥0 → R≥0
such that Sm(Gi ) = f (Sa(Gi )) for every subgraph Gi of G. Then
P∗a = P∗m and so the solution to the AHPP also solves the MHPP.
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Theorem 1 establishes that Ca is a good proxy for Cm when (8)
holds. Experimental evidence suggests (8) holds for many common
graphs (Figure 1). This result motivates us to use a solution to the
AHPP as a proxy for the solutions to the MHPP when developing
a task allocation heuristic. As the AHPP can itself be viewed as a
heuristic approximation of the MHPP, this approach enables us to
find good solutions to the MHPP by solving the AHPP, avoiding the
problem of evaluating the MHPP’s cost function which is NP-hard.

3.2 Hardness of the AHPP
Our task allocation heuristic relies on solutions to the AHPP. Al-
though the AHPP’s cost function can be computed in polynomial
time, the overall problem is still NP-hard so we will develop a
heuristic for the AHPP instead of solving it exactly.

Theorem 2. The AHPP is NP-hard.

Proof. We prove that the AHPP is NP-hard by reducing the
known NP-hard number partition problem (NPP) [11] to it. The
NPP asks "Given a multiset of positive integersZ with even sum K ,
does there exist a partition {Z1,Z2} whereZ1 andZ2 both sum
to at most K

2 ?" We will reduce this problem to a decision version
of the AHPP which asks "Given a complete graph G with positive
weights, does there exist a partition {G1,G2} such that the average
cycle length on each subgraph is at most L?"

For any instance (Z,K) of the NPP, we can construct an instance
(G,L) of the AHPP. Let L = K

2 , n = |Z|, and G = (V, E,w) be a
complete weighted graph with |V| = n. Each vi ∈ V corresponds
to a zi ∈ Z. The weight of an edge e = (vi ,vj ) is defined as
w(e) = 1

2 (zi + zj ). This reduction can be performed in quadratic
time and can be applied to any instance of the NPP.

Let J1 be a subset of {1, . . . ,n}. It corresponds to a multiset of
integers,Z1, and a set of vertices,V1, defined by

Z1 = {zj ∈ Z | j ∈ Ji }, V1 = {vj ∈ V | j ∈ Ji }.
It also corresponds to G1, a subgraph of G induced byV1. Using
this definition, every subgraph of G corresponds to a unique subset
ofZ and vice versa.

By the definition ofw , it is easy to verify that every cycle on G1
has the same length and so the average cycle length is

Sa(G1) =
∑
z∈Z1

z.

From J1, we can define J2 = {1, . . . ,n} \ J1 and corresponding
Z2 and G2. {Z1,Z2} is a partition ofZ and {G1,G2} is a partition
of G. As J2 is also a subset of {1, . . . ,n}, it is also true that Sa(G2)
equals the sum ofZ2.

Suppose the NPP is true. Then there exists a partition {Z1,Z2}
which both sum to at most K

2 . This partition corresponds to a
partition {G1,G2} of G. Both Sa(G1) and Sa(G2) are equal to the
sums of Z1 and Z2 which are both at most L = K

2 so the AHPP
is true. Similarly, if the AHPP is true, then there exists a partition
{G1,G2} with Sa(G1) and Sa(G2) at most L so in the corresponding
{Z1,Z2}, both subsets sum to at most K

2 = L and the NPP is true.
Therefore the NPP can be reduced to the AHPP and since the NPP
is NP-hard, the AHPP must also be NP-hard. □

Corollary 2. The MHPP is NP-hard.

4 A TASK ALLOCATION HEURISTIC BASED
ON THE AHPP

As the AHPP is NP-hard, we designed a novel heuristic for solving it
(Algorithm 3). It consists of two alternating phases—improvement
(Algorithm 1) and transferring outliers (Algorithm 2)—which mod-
ify an initial partition and create a near optimal solution to the
AHPP. Our novel partitioning approach is explicitly based on a
minmax criterion and only depends on the value of the edge weight
function. Unlike other approaches, such as k-means clustering [29],
it can be used on non-Euclidean graphs which are important in
real-world problems where travel times are not proportional to
as-the-crow-flies distances.

4.1 Improvement through transfers and swaps
The improvement phase (Algorithm 1) transfers and swaps vertices
between pairs of subgraphs to decrease their maximum size. This
algorithm improves a partition until it is a local minimizer of Ca
with respect to the transfer and swap operations. As Algorithm 1
requires computation of Sa(Gi ) for many graphs, we define the total
edge weight,W (Gi ), and the marginal edge weight, ∆W (Gi ,v) by

W (Gi ) =
∑
e ∈Ei

w(e) (9)

∆W (Gi ,v) =
∑

v ′∈Vi
w((v,v ′)). (10)

Combining (7) and (9), a subgraph’s size can be written as

Sa(Gi ) = 2
ni − 1W (Gi ). (11)

The marginal edge weights will be used to efficiently updateW (Gi )
and Sa(Gi ) when a vertex is added or removed from the graph.

Transfers are the simplest modification of a partition. A transfer
consists of a single vertex v ∈ Vi moving from Gi to Gj . After a
transfer, the new subgraphs G′i and G′j have sizes

Sa(G′i ) =
2

ni − 2
(
W (Gi ) − ∆W (Gi ,v)

)
(12)

Sa(G′j ) =
2
nj

(
W (Gj ) + ∆W (Gj ,v)

)
. (13)

Transfers usually result in a large decrease in Sa(Gi ) and an increase
in Sa(Gj ) which makes them useful when Sa(Gi ) ≫ Sa(Gj ).

When Sa(Gi ) and Sa(Gj ) are nearly equal, we can offset the
increase in Sa(Gj ) by simultaneously moving v ′ ∈ Gj from Gj to
Gi . After swapping v and v ′, the subgraphs’ total edge weights are

W (G′i ) =W (Gi ) − ∆W (Gi ,v) + ∆W (Gi ,v ′) −w((v,v ′)) (14)
W (G′j ) =W (Gj ) + ∆W (Gj ,v) − ∆W (Gj ,v ′) −w((v,v ′)) (15)

and their new sizes can be computed by (11). There are ni potential
swaps and ninj potential swaps so each exchange is O(n2).

Our improvement heuristic (Algorithm 1) repeatedly searches for
transfers or swaps of vertices between pairs of subgraphs. In each
iteration of the main loop (lines 1–13), it consider either transfers
(lines 2–6) or swaps (lines 8–12) between a pair of subgraphs. There
are fewer potential transfers than swaps, so the heuristic prioritizes
searching for transfers. We keep track of which pairs of subgraphs
have been checked (line 13) and only recheck a pair if one of the
subgraphs has changed.
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Algorithm 1: Improve partition
Input: Partition P = {G1, . . . ,Gm }
Output: Partition P ′ with Ca(P ′) ≤ Ca(P)

1 while There are unchecked pairs do
2 (G1,G2) ← Pair with unchecked transfers
3 if (G1,G2) exists then
4 v∗ ← Best transfer from G1 to G2
5 if v∗ exists then
6 Transfer v∗ from G1 to G2
7 else
8 (G1,G2) ← Pair with unchecked swaps
9 if (G1,G2) exists then
10 (v∗1 ,v∗2) ← Best swap between G1,G2
11 if (v∗1 ,v∗2) exists then
12 Swap v∗1 and v

∗
2

13 Update subgraph sizes and checked pairs
14 return P ′ = {G1, . . . ,Gm }

The main loop of Algorithm 1 starts by selecting an unchecked
pair of subgraphs to check for transfers (line 2) or swaps (line 8)
between. Next, it searches for a transfer (line 4) or swap (line 10)
which reduces max{Sa(Gi ), Sa(Gj )} for this pair. We can compute
the effect of a potential move on Sa(Gi ) and Sa(Gj ) in constant
time using (11)–(14). If a move which reduces max{Sa(Gi ), Sa(Gj )}
is found, the vertex is transferred (line 6) or the pair of vertices
is swapped (line 12) and Sa(Gi ) and Sa(Gj ) are updated (line 13).
Once transfers swaps have been checked for all pairs, the main loop
terminates and the current partition, which is a local minimum, is
returned (line 14).

We are able to check the size of subgraphs after a potential
transfer or swap using (11)–(14) if the marginal weights ∆W (Gi ,v)
are known for all Gi ∈ P and v ∈ V . These variables can be
initially computed in O(n2) using (10). After a swap or transfer is
performed, Gi and Gj change so ∆W (Gi ,v) and ∆W (Gj ,v) must
be updated. If v ′ is transfered from Gi to Gj , then

∆W (G′i ,v) = ∆W (Gi ,v) −w((v,v ′))
∆W (G′j ,v) = ∆W (Gj ,v) +w((v,v ′))

for all v ∈ V . Using these equations, each marginal weight is
updated in O(1) and all the marginal weights are updated in O(n)
in line 13 of Algorithm 1. By storing the nm marginal sizes, we can
compute the subgraph sizes after a potential move in O(1) instead
of O(n) and find the best move in O(n2) instead of O(n3).

4.2 Transfer of outliers
The definitions (9) and (10) can be rearranged as

W (Gi ) = 1
2

∑
v ∈Vi

∆W (Gi ,v). (16)

This identity tells us that ∆W (Gi ,v) is proportional to vertex v’s
contribution to Sa(Gi ). An effective way to improve the partition,
therefore, is to search for vertices v ∈ Vi with a large ∆W (Gi ,v)
but a small ∆W (Gj ,v) for some other graph Gj . Such a vertex,

which we call out-of-place, would have a smaller contribution to
the size of Gj than it is currently having to the size of Gi .

Although Algorithm 1 tends to move out-of-place vertices to
more appropriate subgraphs, it only performs moves which de-
crease max{Sa(Gi ), Sa(Gj )}. When two subgraphs already have a
similar size, transferring an out-of-place vertex would often vi-
olate this constraint. In the second phase of the heuristic (Algo-
rithm 2) we allow some violation of this constraint when moving
outlier vertices to better subgraphs. A vertex v ∈ Vi is an outlier if
∆W (Gi ,v) > ∆W (Gj ,v) for some Gj and

∆W (Gi ,v) > α
∑

v ′∈Vi

1
ni

∆W (Gi ,v ′) = α
2
ni
W (Gi ).

This second criterion is that v contributes more to Sa(Gi ) than an
average vertex of Gi . The outlier detection threshold, α ≥ 1, is
used to control the number outliers detected which decreases as α
increases. We found that α = 1.5 gave good results.

Algorithm 2 begins by identifying all outliers (lines 2–9). For
each subgraph, it checks if each vertex’s contribution is above the
detection threshold (line 4) and if it is, checks if the vertex is out-
of-place (line 5). Every outlier, along with its current subgraph
and the subgraph it fits best in, is added to a list (lines 7–9). After
identifying all outliers, they are transferred to the subgraphs they
fit best in (line 11) andW (Gi ) and ∆W (Gi ,v) are updated to reflect
this transfer (line 12).

Algorithm 2: Transfer outliers
Input: Partition P, threshold α ≥ 1
Output: Partition P ′ with outliers transferred

1 U ← {} /* Set of outliers */

2 for Gi ∈ P do
3 for v ∈ Gi do
4 if ∆W (Gi ,v) > α 2

niW (Gi ) then
5 Gj ← minimizer of ∆W (G′i ,v)
6 if Gj , Gi then
7 U ←U ∪ {v}
8 Gold(v) ← Gi
9 Gnew(v) ← Gj

10 for v ∈ U do
11 Transfer v from Gold(v) to Gnew(v)
12 UpdateW and ∆W for Gold, Gnew, and all v ′ ∈ V
13 P ′ ← (G1, . . . ,Gm )
14 return P ′

4.3 Overall partition algorithm
Transferring outliers using Algorithm 2 and the transfers and swaps
of Algorithm 1 are two effective ways to improve a partition. Al-
ternating between these two algorithms is the basis of our main
heuristic for the AHPP (Algorithm 3).

Algorithm 3 starts with a randomly generated partition (line 1)
and improves it by alternating between Algorithms 1 and 2. It com-
putesW (Gi ) and ∆W (Gi ,v) for this partition (line 2) using their
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Figure 3: Partition of a graph after one round improve-
ments (left), after transferring outliers with α = 1.5 (center),
and the final partition produced by AHP-mTSP (right). The
numbers overlayed on each subgraph are the average cycle
length of that subgraph using Euclidean edge weights.

definitions (9) and (10) and then improves the partition as much as
possible using transfers and swaps (line 3). In each round of the
main loop (lines 4–9), outliers are transferred (line 6) and the re-
sulting partition is improved (line 7). When outliers are transferred,
∆W (Gi ,v) changes if v has been transferred or Gi has had at least
one vertex transferred to/from it. This phase (line 6) is therefore
not guaranteed to improve Ca(P) so it is always followed immedi-
ately by a partition improvement phase (line 7). If these two phases
improve the partition, we keep the improved partition (line 9); oth-
erwise, the algorithm returns the partition from before the outliers
were transferred (line 10). In this way, Algorithm 3 never returns a
worse partition as a result of transferring outliers.

Algorithm 3: Average Hamiltonian Partition (AHP)
Input: Complete graph G, number of agentsm
Output: Near-optimal solution, P, to the AHPP

1 P ← Random partition of G
2 ComputeW (Gi ), ∆W (Gi ,v), for all Gi ∈ P and v ∈ V
3 Improve P by transfers/swaps /* Algorithm 1 */

4 while Improvements decreased Ca(P) do
5 P ′ ← P
6 Transfer outliers of P ′ /* Algorithm 2 */

7 Improve P ′ by transfers/swaps /* Algorithm 1 */

8 if Ca(P ′) < Ca(P) then
9 P ← P ′

10 return P

Figure 3 shows how transferring outliers affects a partition. The
top lefts blue vertex is an outlier and is detected by Algorithm 2
and transferred to the orange subgraph. Two yellow outliers in
the bottom right are also transferred to the blue subgraph. After
transferring these outliers, the Ca(P) from 1019.3 to 1093.3 but
after another improvement phase Ca(P) = 983.4 which is a 3.6%
improvement on the original cost of 1019.3.

5 FROM A PARTITION TO CYCLES
By Corollary 1, if Sm(Gi ) = f (Sa(Gi )) for all Gi , then the solutions
to the AHPP and MHPP are identical. This solution solves the task
allocation problem and then the routing problem can be solved
by solving the 1-TSP on each subgraph of the partition. In reality,

271.3

284.0

287.8

283.7

278.4

283.3

Figure 4: Completed graph partition (left), 1-TSP solutions
on each subgraph (center), and m-TSP solution resulting
from Algorithm 4 after three transfers (right).

the relationship between Sa and Sm contains some noise (Figure 1),
so the optimal partitions for the AHPP and MHPP differ slightly.
The solution to the AHPP is still useful as an initial partition for
an improved m-TSP algorithm (Algorithm 4). The initial m-TSP
strategy is obtained by solving the 1-TSP on each subgraph of the
partition. The strategy is improved by transferring vertices between
cycles to reduce its minmax cost. The best transfer can be found
in O(n2) by checking all pairs of vertices in the longer cycles and
locations for insertion in the shorter cycle. The algorithm alternates
between transferring vertices between cycles and solving the 1-TSP
for each cycle until no more improvements can be made.

Algorithm 4: AHP-mTSP
Input: Complete graph G, number of agentsm
Output: Set ofm cycles solving the minmaxm-TSP

1 P ←Minmax partition of G obtained by AHP

2 while Improvements possible do
3 for Gi in P do
4 pi ← 1-TSP optimal cycle on Gi
5 S ← {p1, . . . ,pm }
6 Improve S by transferring vertices between cycle
7 P ← partition induced by S
8 return S

Algorithm 4 involves solvingm instances of the 1-TSP. Although
the 1-TSP is NP-hard, several open-source solvers [7, 15] have
very good performance and runtimes. Furthermore, we are solving
m instances of the 1-TSP with n1, . . .nm vertices each such that
n1 + ... + nm = n instead of a single instance with n vertices.
Solving thesem smaller instances is faster than solving the single
large instance because the runtime of TSP solvers is slower than
linear in the number of vertices.

In Figure 4, we find cycles using the partition from Figure 3. The
initial cycles have similar lengths so Algorithm 4 only made three
transfers to reach its final solution. These transfers reduced the
strategy’s cost from 287.8 to 283.7, a decrease of 0.15%.

6 DECENTRALIZATION
Although we have presented a centralized versions of AHP-mTSP, it
is straightforward to decentralize it by decentralizing each of its
component algorithms. Algorithm 1 consists of exchanges (trans-
fers in lines 4–6 or swaps in lines 10–12) of vertices between pairs
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of subgraphs. As these exchanges only involve 2 agents’ graphs,
multiple pairs of agents can compute exchanges simultaneously
resulting in a decentralized version of Algorithm 1 which is faster
than the centralized version if there are 4 or more agents. Algo-
rithm 2 consists of a search for outliers in each graph which doesn’t
modify any of the graphs (lines 2–9) and then a transfer of these
outliers after they have all been identified (lines 10–12). It can be de-
centralized by having each agent identify outliers in its own graph
followed by pairwise communication with other agents to transfer
the outliers that were identified. The decentralized versions of Al-
gorithms 1 and 2 result in a decentralized version of Algorithm 3.
Algorithm 4 consists of an initial partition by Algorithm 3, solution
of the 1-TSP on each subgraph (lines 3–4), and transfers of vertices
between pairs of paths (line 6) which can be decentralized like
the transfers in Algorithm 1. The solutions to them instances of
the 1-TSP are independent and can be decentralized by each agent
solving the 1-TSP on its own subgraph resulting in a decentralized
Algorithm 4. Some synchronization is also required to ensure the
agents progress through the algorithm at the same rate.

7 PATHS WITH DEPOTS
An agent’s path may be constrained to start or end at specific depot
vertex. We classify an agent’s path into one of five types depending
on the constraints:

(1) Cycle with 1 depot: vstart = vend = vdepot
(2) Cycle with 0 depots: vstart = vend
(3) Path with 2 depots: vstart = vdepot , v ′depot = vend
(4) Path with 1 depot: vstart = vdepot
(5) Path with 0 depots: No constraints

In all of these cases vdepot is a specified vertex and vstart and vend
are the first and last vertices of the agent’s path. Another important
distinction is whether a depot is unique to one agent or shared by
multiple agents.

Problems with different depot constraints can be solved using
Algorithm 3 with slight modifications to Algorithms 1–4. In the
initial partition, each subgraph must contain its agent’s depots
and these depots cannot be transferred or swapped in Algorithms
1 or 2. For open paths, Sa(Gi ) = 2/ni ∑e ∈Ei w(e) as open paths
only contain ni − 1 edges. Once a partition is found, the 1-TSP is
solved with the relevant depot constraint. When the paths are being
improved by Algorithm 4, the depots again cannot be transferred.
This approach can be used to generate solutions to the various
types of minmaxm-TSPs (Figure 5).

8 RESULTS
We compared our algorithm against two state-of-the-art algorithms
for problems with 50 ≤ n ≤ 5000 and 3 ≤ m ≤ 100 and different
depot configurations. Our algorithm was implemented in python
and solutions were computed with α = 1.5 using a Linux desktop
computer with a 3.40GHz processor and 8GB of memory.

8.1 Problems with multiple depots
We compared our algorithm with the hierarchical market-based
solution (HMS) from Kivelevitch et al. [20] for cycles with unique
depots for each agent. They considered n = 5000 vertices on the

271.6

263.3
272.3

258.1

222.7

224.4

223.8

223.0

225.3

228.4226.9

227.6

Figure 5: Minmax m-TSP solutions for cycles with one
shared depot (left), cycles with unique depots (center), and
paths with one depot (right). Colored/grey squares are de-
pots for one/multiple agent(s).

Table 1: Comparison of minmax cost, C, and run-times, t ,
achieved by HMS [20] with AHP-mTSP. Results for HMS are
from the single solutions computed in [20] for 5000 ver-
tices uniformly distributed on [0, 100]×[0, 100]with 10 or 100
agents. Results for AHP-mTSP are based on 20 solutions with
different random seeds.

HMS AHP-mTSP

n m C t Cmin Cavg tavg

5000 10 577 12000 513.66 516.56 6199.36
5000 100 64.738 76477 55.65 56.73 4786.58

square [0, 100] × [0, 100] withm ∈ {10, 100} agents. As they did
not publish the exact locations of the vertices in their instances,
we randomly generated a new set of 5000 vertices from the same
distribution for each of our 20 tests. Our results show an average
improvement of approximately 10% and had a worst case with
lower cost than their result for both 10 and 100 agents (Table 1).
Furthermore, our solutions required less computation time. The
best solutions we found for 10 agents is shown in Figure 6.

8.2 Problems with one depot
For the minmaxm-TSP with one shared depot, we compared our
approach with the best results found by any of the 6 heuristics that
Wang et al. compared (Table 2). They computed cyclic solutions for
several problems from TSPLIB [34] using the first vertex as a shared
depot for all agents. As the number of solutions for the minmax
m-TSP increases exponentially with both n and m, a heuristics
performance can be best evaluated by its performance on large
problems. For the largest problem, with n = 1173, our heuristic
produced better solutions with lowerminmax costs for both the best
solution found and average solution cost for 3, 5, 10, and 20 agents.
The best solutions we found for the largest problem, pcb1173, are
shown in Figure 7.

Our problem had average run-times ranging from less than 1 s
to 426 s. For the largest problem (n = 1173), our algorithm took
between 146 s and 426 s which is the same order of magnitude
as the 236 s used by Wang et al. [44]. However, as the problems
were run on different computers, we cannot make more detailed
comparisons.
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Figure 6: The best solution found for 5000 uniformly dis-
tributed vertices with 10 agents and 10 depots.

Table 2: Comparison of Minmax m-TSP costs for pcb1173
[34] obtained using invasive weed optimization (IWO) and
a memetic algorithm (MA) [44] with AHP-mTSP. Results are
based on 20 solutions with different random seeds. n = 1173

IWO MA AHP-mTSP

m Cmin Cavg Cmin Cavg Cmin Cavg

3 24008.5 24300.3 22443.2 22781.6 20733.3 20999.2
5 16057.2 16274.6 14557.3 14861.4 13876.3 14179.2
10 10517.9 10668.0 9222.9 9352.6 8698.4 8871.3
20 8063.2 8207.9 7063.2 7276.7 6595.9 6670.2

8.3 Run-time analysis
We analyzed average runtimes for 31 test problems from TSPLIB
[34]. These problems haven ∈ {51, 100, 150, 200, 318, 532, 783, 1173}
andm ∈ {2, 3, 10, 20}. The problems with n = 1173 are the same
problems as in Table 2. The run-times are averaged over 40 trials
of each problem. We assumed the run-time follows a monomial
model tavg = k0nk1mk2eϵ where k0, k1, and k2 are parameters to
be estimated and eϵ captures the uncertainty of the problem. By
taking the logarithm of both sides of this equation, we obtain an
equation which is linear in the parameters

log(tavg) = log(k0) + k1 log(n) + k2 log(m) + ϵ .
We estimated k1 and k2 by linear regression and obtained the model

t̂avg = (3.1944 × 10−5 s)n2.111m0.325.

The estimates produced using this overall model (Figure 8) are close
to the actual average run-times.

20729.49

20733.32

20700.94

13876.29 13870.79

13873.56

13868.30

13867.91

Figure 7: Best solutions found for pcb1173 with 3 (left), 5
(right) agents. The gray square represents the depot. The
numbers on top of the cycles are their lengths.
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100

101

102

3 5 20
n

t
(s)

m

Figure 8: Actual average run-times (dots) and predicted av-
erage run-times (lines) for varying n with fixedm (left) and
varyingm with fixed n (right).

9 CONCLUSIONS
Task assignment and routing are coupled problems for teams of
mobile agents. We formulated these combined problems as a parti-
tion problem, the MHPP, which is equivalent to the minmaxm-TSP.
As these problems are NP-hard, we developed a heurstic algorithm,
AHP-mTSP, for the combined task assignment and routing prob-
lem. It is based on a graph partition heuristic for the AHPP which
is a similar problem to the MHPP. Despite the MHPP’s simpler
cost function, there is a close relationship between the solutions
of the two problems. AHP-mTSP uses a solution to the AHPP and
computes routes by solving the 1-TSP. The routes are improved
slightly by transferring vertices between them resulting in a set
of cycles which minimizes the length of the longest cycle. These
cycles solve the combined task allocation and routing problems.
Using this approach, we solved large task allocation problems and
obtained better solutions than have previously been reported using
a variety of algorithms. For n tasks andm agents, the algorithm’s
runtime was proportional to n2.111m0.325.
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